Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.510
Filtrar
1.
Protein Sci ; 33(4): e4924, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501590

RESUMO

Targeted delivery of small-molecule drugs via covalent attachments to monoclonal antibodies has proved successful in clinic. For this purpose, full-length antibodies are mainly used as drug-carrying vehicles. Despite their flexible conjugation sites and versatile biological activities, intact immunoglobulins with conjugated drugs, which feature relatively large molecular weights, tend to have restricted tissue distribution and penetration and low fractions of payloads. Linking small-molecule therapeutics to other formats of antibody may lead to conjugates with optimal properties. Here, we designed and synthesized ADP-ribosyl cyclase-enabled fragment antigen-binding (Fab) drug conjugates (ARC-FDCs) by utilizing CD38 catalytic activity. Through rapidly forming a stable covalent bond with a nicotinamide adenine dinucleotide (NAD+ )-based drug linker at its active site, CD38 genetically fused with Fab mediates robust site-specific drug conjugations via enzymatic reactions. Generated ARC-FDCs with defined drug-to-Fab ratios display potent and antigen-dependent cytotoxicity against breast cancer cells. This work demonstrates a new strategy for developing site-specific FDCs. It may be applicable to different antibody scaffolds for therapeutic conjugations, leading to novel targeted agents.


Assuntos
Antígenos CD , NAD+ Nucleosidase , ADP-Ribosil Ciclase , ADP-Ribosil Ciclase 1 , Antígenos CD/química , NAD+ Nucleosidase/química , Preparações Farmacêuticas , NAD/química
2.
Pharmacol Res ; 200: 107068, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232908

RESUMO

Leukopenia is the most common side effect of chemotherapy and radiotherapy. It potentially deteriorates into a life-threatening complication in cancer patients. Despite several agents being approved for clinical administration, there are still high incidences of pathogen-related disease due to a lack of functional immune cells. ADP-ribosyl cyclase of CD38 displays a regulatory effect on leukopoiesis and the immune system. To explore whether the ADP-ribosyl cyclase was a potential therapeutic target of leukopenia. We established a drug screening model based on an ADP-ribosyl cyclase-based pharmacophore generation algorithm and discovered three novel ADP-ribosyl cyclase agonists: ziyuglycoside II (ZGSII), brevifolincarboxylic acid (BA), and 3,4-dihydroxy-5-methoxybenzoic acid (DMA). Then, in vitro experiments demonstrated that these three natural compounds significantly promoted myeloid differentiation and antibacterial activity in NB4 cells. In vivo, experiments confirmed that the compounds also stimulated the recovery of leukocytes in irradiation-induced mice and zebrafish. The mechanism was investigated by network pharmacology, and the top 12 biological processes and the top 20 signaling pathways were obtained by intersecting target genes among ZGSII, BA, DMA, and leukopenia. The potential signaling molecules involved were further explored through experiments. Finally, the ADP-ribosyl cyclase agonists (ZGSII, BA, and DMA) has been found to regenerate microbicidal myeloid cells to effectively ameliorate leukopenia-associated infection by activating CD38/ADP-ribosyl cyclase-Ca2+-NFAT. In summary, this study constructs a drug screening model to discover active compounds against leukopenia, reveals the critical roles of ADP-ribosyl cyclase in promoting myeloid differentiation and the immune response, and provides a promising strategy for the treatment of radiation-induced leukopenia.


Assuntos
Antígenos CD , Leucopenia , Humanos , Camundongos , Animais , ADP-Ribosil Ciclase/metabolismo , ADP-Ribosil Ciclase 1 , Antígenos CD/genética , Antígenos de Diferenciação/genética , Glicoproteínas de Membrana , Peixe-Zebra/metabolismo , Leucopenia/induzido quimicamente , Leucopenia/tratamento farmacológico
3.
Sci Rep ; 13(1): 22085, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086958

RESUMO

The functionally pleiotropic ectoenzyme CD38 is a glycohydrolase widely expressed on immune and non-hematopoietic cells. By converting NAD+ to ADP-ribose and nicotinamide, CD38 governs organismal NAD+ homeostasis and the activity of NAD+-dependent cellular enzymes. CD38 has emerged as a major driver of age-related NAD+ decline underlying adverse metabolic states, frailty and reduced health span. CD38 is upregulated in systemic sclerosis (SSc), a chronic disease characterized by fibrosis in multiple organs. We sought to test the hypothesis that inhibition of the CD38 ecto-enzymatic activity using a heavy-chain monoclonal antibody Ab68 will, via augmenting organismal NAD+, prevent fibrosis in a mouse model of SSc characterized by NAD+ depletion. Here we show that treatment of mice with a non-cytotoxic heavy-chain antibody that selectively inhibits CD38 ectoenzyme resulted in NAD+ boosting that was associated with significant protection from fibrosis in multiple organs. These findings suggest that targeted inhibition of CD38 ecto-enzymatic activity could be a potential pharmacological approach for SSc fibrosis treatment.


Assuntos
Antígenos CD , Antígenos de Diferenciação , Camundongos , Animais , ADP-Ribosil Ciclase 1/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação/metabolismo , NAD+ Nucleosidase/metabolismo , NAD/metabolismo , ADP-Ribosil Ciclase , Glicoproteínas de Membrana/metabolismo , Glicosídeo Hidrolases , Fibrose
4.
Front Immunol ; 14: 1166609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215105

RESUMO

Nicotinamide adenine dinucleotide (NAD) is a substrate of adenosine diphosphate (ADP)-ribosyl cyclase and is catalyzed to cyclic ADP-ribose (cADPR) by CD38 and/or CD157. cADPR, a Ca2+ mobilizing second messenger, is critical in releasing oxytocin from the hypothalamus into the brain. Although NAD precursors effectively play a role in neurodegenerative disorders, muscular dystrophy, and senescence, the beneficial effects of elevating NAD by NAD precursor supplementation on brain function, especially social interaction, and whether CD38 is required in this response, has not been intensely studied. Here, we report that oral gavage administration of nicotinamide riboside, a perspective NAD precursor with high bioavailability, for 12 days did not show any suppressive or increasing effects on sociability (mouse's interest in social targets compared to non-social targets) in both CD157KO and CD38KO male mice models in a three-chamber test. CD157KO and CD38KO mice displayed no social preference (that is, more interest towards a novel mouse than a familiar one) behavior. This defect was rescued after oral gavage administration of nicotinamide riboside for 12 days in CD157KO mice, but not in CD38KO mice. Social memory was not observed in CD157KO and CD38KO mice; subsequently, nicotinamide riboside administration had no effect on social memory. Together with the results that nicotinamide riboside had essentially no or little effect on body weight during treatment in CD157KO mice, nicotinamide riboside is less harmful and has beneficial effect on defects in recovery from social behavioral, for which CD38 is required in mice.


Assuntos
ADP-Ribose Cíclica , NAD , Masculino , Camundongos , Animais , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase , Camundongos Knockout , Comportamento Social
5.
Front Immunol ; 14: 1119315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926335

RESUMO

Background: The dysfunction of immune system and inflammation contribute to the Parkinson's disease (PD) pathogenesis. Cytokines, oxidative stress, neurotoxin and metabolism associated enzymes participate in neuroinflammation in PD and the genes involved in them have been reported to be associated with the risk of PD. In our study, we performed a quantitative and causal analysis of the relationship between inflammatory genes and PD risk. Methods: Standard process was performed for quantitative analysis. Allele model (AM) was used as primary outcome analysis and dominant model (DM) and recessive model (RM) were applied to do the secondary analysis. Then, for those genes significantly associated with the risk of PD, we used the published GWAS summary statistics for Mendelian Randomization (MR) to test the causal analysis between them. Results: We included 36 variants in 18 genes for final pooled analysis. As a result, IL-6 rs1800795, TNF-α rs1799964, PON1 rs854560, CYP2D6 rs3892097, HLA-DRB rs660895, BST1 rs11931532, CCDC62 rs12817488 polymorphisms were associated with the risk of PD statistically with the ORs ranged from 0.66 to 3.19 while variants in IL-1α, IL-1ß, IL-10, MnSOD, NFE2L2, CYP2E1, NOS1, NAT2, ABCB1, HFE and MTHFR were not related to the risk of PD. Besides, we observed that increasing ADP-ribosyl cyclase (coded by BST1) had causal effect on higher PD risk (OR[95%CI] =1.16[1.10-1.22]) while PON1(coded by PON1) shown probably protective effect on PD risk (OR[95%CI] =0.81[0.66-0.99]). Conclusion: Several polymorphisms from inflammatory genes of IL-6, TNF-α, PON1, CYP2D6, HLA-DRB, BST1, CCDC62 were statistically associated with the susceptibility of PD, and with evidence of causal relationships for ADP-ribosyl cyclase and PON1 on PD risk, which may help understand the mechanisms and pathways underlying PD pathogenesis.


Assuntos
Arilamina N-Acetiltransferase , Doença de Parkinson , Humanos , Predisposição Genética para Doença , Doença de Parkinson/genética , Citocromo P-450 CYP2D6 , Fator de Necrose Tumoral alfa/genética , ADP-Ribosil Ciclase , Interleucina-6/genética , Arildialquilfosfatase/genética , Arilamina N-Acetiltransferase/genética
6.
Science ; 377(6614): eadc8969, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36048923

RESUMO

Cyclic adenosine diphosphate (ADP)-ribose (cADPR) isomers are signaling molecules produced by bacterial and plant Toll/interleukin-1 receptor (TIR) domains via nicotinamide adenine dinucleotide (oxidized form) (NAD+) hydrolysis. We show that v-cADPR (2'cADPR) and v2-cADPR (3'cADPR) isomers are cyclized by O-glycosidic bond formation between the ribose moieties in ADPR. Structures of 2'cADPR-producing TIR domains reveal conformational changes that lead to an active assembly that resembles those of Toll-like receptor adaptor TIR domains. Mutagenesis reveals a conserved tryptophan that is essential for cyclization. We show that 3'cADPR is an activator of ThsA effector proteins from the bacterial antiphage defense system termed Thoeris and a suppressor of plant immunity when produced by the effector HopAM1. Collectively, our results reveal the molecular basis of cADPR isomer production and establish 3'cADPR in bacteria as an antiviral and plant immunity-suppressing signaling molecule.


Assuntos
ADP-Ribosil Ciclase , Proteínas Adaptadoras de Transporte Vesicular , Bactérias , Proteínas de Bactérias , ADP-Ribose Cíclica , Imunidade Vegetal , Receptores Toll-Like , ADP-Ribosil Ciclase/química , ADP-Ribosil Ciclase/genética , ADP-Ribosil Ciclase/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Bactérias/imunologia , Bactérias/virologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , ADP-Ribose Cíclica/biossíntese , ADP-Ribose Cíclica/química , Isomerismo , NAD/metabolismo , Domínios Proteicos , Receptores de Interleucina-1/química , Transdução de Sinais , Receptores Toll-Like/química , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Triptofano/química , Triptofano/genética
7.
Cells ; 11(17)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36078044

RESUMO

ADP-ribosyl cyclases (ADPRCs) catalyze the synthesis of the Ca2+-active second messengers Cyclic ADP-ribose (cADPR) and ADP-ribose (ADPR) from NAD+ as well as nicotinic acid adenine dinucleotide phosphate (NAADP+) from NADP+. The best characterized ADPRC in mammals is CD38, a single-pass transmembrane protein with two opposite membrane orientations. The first identified form, type II CD38, is a glycosylated ectoenzyme, while type III CD38 has its active site in the cytosol. The ectoenzymatic nature of type II CD38 raised long ago the question of a topological paradox concerning the access of the intracellular NAD+ substrate to the extracellular active site and of extracellular cADPR product to its intracellular receptors, ryanodine (RyR) channels. Two different transporters, equilibrative connexin 43 (Cx43) hemichannels for NAD+ and concentrative nucleoside transporters (CNTs) for cADPR, proved to mediate cell-autonomous trafficking of both nucleotides. Here, we discussed how type II CD38, Cx43 and CNTs also play a role in mediating several paracrine processes where an ADPRC+ cell supplies a neighboring CNT-and RyR-expressing cell with cADPR. Recently, type II CD38 was shown to start an ectoenzymatic sequence of reactions from NAD+/ADPR to the strong immunosuppressant adenosine; this paracrine effect represents a major mechanism of acquired resistance of several tumors to immune checkpoint therapy.


Assuntos
Fenômenos Biológicos , ADP-Ribose Cíclica , ADP-Ribosil Ciclase/metabolismo , ADP-Ribosil Ciclase 1/metabolismo , Animais , Antígenos CD/metabolismo , Conexina 43/metabolismo , ADP-Ribose Cíclica/metabolismo , Mamíferos/metabolismo , Glicoproteínas de Membrana/metabolismo , NAD/metabolismo
8.
Int J Mol Sci ; 23(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35955916

RESUMO

Sleep apnea syndrome (SAS) is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia, IH), and it is a risk factor for cardiovascular disease (CVD) and insulin resistance/type 2 diabetes. However, the mechanisms linking IH stress and CVD remain elusive. We exposed rat H9c2 and mouse P19.CL6 cardiomyocytes to experimental IH or normoxia for 24 h to analyze the mRNA expression of the components of Cd38-cyclic ADP-ribose (cADPR) signaling. We found that the mRNA levels of cluster of differentiation 38 (Cd38), type 2 ryanodine receptor (Ryr2), and FK506-binding protein 12.6 (Fkbp12.6) in H9c2 and P19.CL6 cardiomyocytes were significantly decreased by IH, whereas the promoter activities of these genes were not decreased. By contrast, the expression of phosphatase and tensin homolog deleted from chromosome 10 (Pten) was upregulated in IH-treated cells. The small interfering RNA for Pten (siPten) and a non-specific control RNA were introduced into the H9c2 cells. The IH-induced downregulation of Cd38, Ryr2, and Fkbp12.6 was abolished by the introduction of the siPten, but not by the control RNA. These results indicate that IH stress upregulated the Pten in cardiomyocytes, resulting in the decreased mRNA levels of Cd38, Ryr2, and Fkbp12.6, leading to the inhibition of cardiomyocyte functions in SAS patients.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , ADP-Ribosil Ciclase/genética , ADP-Ribosil Ciclase 1 , Animais , Sinalização do Cálcio , Doenças Cardiovasculares/metabolismo , ADP-Ribose Cíclica/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Regulação para Baixo , Hipóxia/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Regulação para Cima
9.
Invest Ophthalmol Vis Sci ; 63(4): 5, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35394492

RESUMO

Purpose: CD157 (also known as Bst1) positive vascular endothelial stem cells (VESCs), which contribute to vascular regeneration, have been recently identified in mouse organs, including the retinas, brain, liver, lungs, heart, and skin. However, VESCs have not been identified in the choroid. The purpose of this study was to identify VESCs in choroidal vessels and to establish the protocol to isolate retinal and choroidal VESCs. Methods: We established an efficient protocol to create single-cell suspensions from freshly isolated mouse retina and choroid by enzymatic digestion using dispase, collagenase, and type II collagenase. CD157-positive VESCs, defined as CD31+CD45-CD157+ cells, were sorted using fluorescence-activated cell sorting (FACS). Results: In mouse retina, among CD31+CD45- endothelial cells (ECs), 1.6 ± 0.2% were CD157-positive VESCs, based on FACS analysis. In mouse choroid, among CD31+CD45- ECs, 4.5 ± 0.4% were VESCs. The CD157-positive VESCs generated a higher number of EC networks compared with CD157-negative non-VESCs under vascular endothelial growth factor (VEGF) in vitro cultures. The EC network area, defined as the ratio of the CD31-positive area to the total area in each field, was 4.21 ± 0.39% (retinal VESCs) and 0.27 ± 0.12% (retinal non-VESCs), respectively (P < 0.01). The EC network area was 8.59 ± 0.78% (choroidal VESCs) and 0.14 ± 0.04% (choroidal non-VESCs), respectively (P < 0.01). The VESCs were located in large blood vessels but not in the capillaries. Conclusions: We confirmed distinct populations of CD157-positive VESCs in both mouse retina and choroid. VESCs are located in large vessels and have the proliferative potential. The current results may open new avenues for the research and treatment of ocular vascular diseases.


Assuntos
Células Progenitoras Endoteliais , Fator A de Crescimento do Endotélio Vascular , ADP-Ribosil Ciclase/metabolismo , Animais , Antígenos CD/metabolismo , Corioide/irrigação sanguínea , Citometria de Fluxo , Proteínas Ligadas por GPI/metabolismo , Camundongos , Retina , Vasos Retinianos/metabolismo , Células-Tronco , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
J Cell Physiol ; 237(4): 2064-2077, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35098541

RESUMO

Adenosine diphosphate ribose cyclase (ADPRC) exists widely in eukaryotes and lower metazoans cells. It can degrade nicotinamide adenine dinucleotide (NAD) into cyclic ADP ribose (cADPR) and nicotinamide, and subsequently hydrolyses cADPR to ADP ribose (ADPR). In this paper, we have summarized the relative subcellular localization of ADPRC and enzymes with ADPRC activity in organisms, related enzyme family members of ADPRC are also described. In addition, we discussed the main biological functions of ADPRC, the regulation of Ca2+ signal, the regulation of insulin and glucagon secretion, oxytocin secretion, and the effects of renal and pulmonary vasomotor tension. Finally, we expounded the relationship between ADPRC and human health and disease occurrence. It provides a theoretical basis for the targeted treatment of ADPRC as a pharmacological tool for related diseases, and has important significance in clinical diagnosis and disease intervention.


Assuntos
ADP-Ribosil Ciclase/metabolismo , Sinalização do Cálcio , ADP-Ribosil Ciclase/análise , ADP-Ribosil Ciclase 1 , ADP-Ribose Cíclica/metabolismo , Humanos , NAD/metabolismo , Fenômenos Fisiológicos
11.
J Innate Immun ; 14(2): 148-166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34428762

RESUMO

BACKGROUND: CD38+ NK (CD3- CD16+ CD38+ CD56+) cells were increased in rheumatoid arthritis (RA), which suppressed Treg cell differentiation. This study explored how CD38+ NK cells regulated CD4+ T-cell differentiation into Treg cells in RA. METHODS: Proportions of CD38+ NK cells and their counterpart CD38+ NK-like T (CD3+ CD16+ CD38+ CD56+) cells were measured in RA and rats with collagen-induced arthritis (CIA). CD38+ NK cells and CD38+ NK-like T cells were cocultured with CD4+ T cells, respectively. RESULTS: A significantly increased proportion of CD38+ NK cells and a decreased proportion of CD38+ NK-like T cells were detected in RA and CIA blood and synovial fluids. When CD4+ T cells were cocultured with CD38+ NK cells, mammalian target of rapamycin (mTOR) signaling was activated, and Th1/Th2 and Th17/Treg ratios were increased. When CD38+ NK cells were pretreated with anti-CD38 antibody, Treg cell proportion was increased, and Th1/Th2 and Th17/Treg ratios were decreased. CD38+ NK-like T cells showed the opposite results. CD38+ NK cells and CD38+ NK-like-T cells activated differential gene expressions and pathways in CD4+ T cells and initiated Th1 and Th2 cell differentiation by differential gene nodes. CONCLUSIONS: This study suggest that the high CD38+ NK cell proportion and low CD38+ NK-like T cell proportion in RA suppress Treg cell differentiation by stimulating mTOR signaling in CD4+ T cells, which consequentially disturbs the immune tolerance.


Assuntos
Artrite Experimental , Artrite Reumatoide , ADP-Ribosil Ciclase/metabolismo , ADP-Ribosil Ciclase 1/metabolismo , Animais , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Células Matadoras Naturais , Glicoproteínas de Membrana/metabolismo , Ratos , Linfócitos T Reguladores , Células Th17
12.
J Diabetes Investig ; 13(1): 34-41, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34523242

RESUMO

AIMS/INTRODUCTION: Imeglimin is a novel oral hypoglycemic agent that improves blood glucose levels through multiple mechanisms of action including the enhancement of glucose-stimulated insulin secretion (GSIS), however, the details of this mechanism have not been clarified. In the process of GSIS, activation of the transient receptor potential melastatin 2 (TRPM2) channel, a type of non-selective cation channel (NSCCs) in ß-cells, promotes plasma membrane depolarization. The present study aimed to examine whether imeglimin potentiates GSIS via the TRPM2 channel in ß-cells. MATERIALS AND METHODS: Pancreatic islets were isolated by collagenase digestion from male wild-type and TRPM2-knockout (KO) mice. Insulin release and nicotinamide adenine dinucleotide (NAD+ ) production in islets were measured under static incubation. NSCC currents in mouse single ß-cells were measured by patch-clamp experiments. RESULTS: Batch-incubation studies showed that imeglimin enhanced GSIS at stimulatory 16.6 mM glucose, whereas it did not affect basal insulin levels at 2.8 mM glucose. Imeglimin increased the glucose-induced production of NAD+ , a precursor of cADPR, in islets and the insulinotropic effects of imeglimin were attenuated by a cADPR inhibitor 8-Br-cADPR. Furthermore, imeglimin increased NSCC current in ß-cells, and abolished this current in TRPM2-KO mice. Imeglimin did not potentiate GSIS in the TRPM2-KO islets, suggesting that imeglimin's increase of NSCC currents through the TRPM2 channel is causally implicated in its insulin releasing effects. CONCLUSIONS: Imeglimin may activate TRPM2 channels in ß-cells via the production of NAD+ /cADPR, leading to the potentiation of GSIS. Developing approaches to stimulate cADPR-TRPM2 signaling provides a potential therapeutic tool to treat type 2 diabetes.


Assuntos
ADP-Ribosil Ciclase/metabolismo , Hipoglicemiantes/farmacologia , Secreção de Insulina/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Triazinas/farmacologia , Animais , Glicemia/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Camundongos , Transdução de Sinais/efeitos dos fármacos
13.
World J Biol Psychiatry ; 23(7): 537-547, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34870552

RESUMO

OBJECTIVES: Schizophrenia is a serious mental illness. The serum protein biomarkers of schizophrenia were explored using isobaric tags for relative and absolute quantitation (iTRAQ) technology. The underlying function of the identified protein biomarker was also investigated. METHODS: We first collected serum samples from 12 schizophrenia patients and 12 healthy control (HC) subjects, followed by global screening with iTRAQ and tandem mass spectrometry (LC-MS/MS). In total, 691 serum proteins were detected and eight proteins, including ZYX, OSCAR, TPM4, SDPR, BST1, ARGHDB, ITIH5 and SH3BGRL3, were selected for further specific validation with enzyme-linked immunosorbent assay (ELISA) on the serum samples from 52 schizophrenia patients and 50 HC subjects. RESULTS: Schizophrenia patients had significantly lower serum level of BST1 and higher ITIH5 level than the HC subjects did. Using the levels of BST1, ITIH5 and OSCAR combined with machine learning algorithm, we developed a prediction model of schizophrenia with an auROC value 0.78. Moreover, in vitro cell assay confirmed that BST1 significantly repressed neutrophil infiltration through endothelial layer, highlighted the anti-inflammation nature of BST1. CONCLUSIONS: Four novel protein markers (BST1, ITIH5, SDPR, and OSCAR) of schizophrenia were identified, and BST-1 could serve as a serum protein biomarker involved in neutrophil infiltration in schizophrenia.


Assuntos
ADP-Ribosil Ciclase , Esquizofrenia , Espectrometria de Massas em Tandem , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores/sangue , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Cromatografia Líquida/métodos , Infiltração de Neutrófilos , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , ADP-Ribosil Ciclase/sangue
14.
Front Immunol ; 12: 742292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887854

RESUMO

For a long time, proteins with enzymatic activity have not been usually considered to carry out other functions different from catalyzing chemical reactions within or outside the cell. Nevertheless, in the last few years several reports have uncovered the participation of numerous enzymes in other processes, placing them in the category of moonlighting proteins. Some moonlighting enzymes have been shown to participate in complex processes such as cell adhesion. Cell adhesion plays a physiological role in multiple processes: it enables cells to establish close contact with one another, allowing communication; it is a key step during cell migration; it is also involved in tightly binding neighboring cells in tissues, etc. Importantly, cell adhesion is also of great importance in pathophysiological scenarios like migration and metastasis establishment of cancer cells. Cell adhesion is strictly regulated through numerous switches: proteins, glycoproteins and other components of the cell membrane. Recently, several cell membrane enzymes have been reported to participate in distinct steps of the cell adhesion process. Here, we review a variety of examples of membrane bound enzymes participating in adhesion of immune cells.


Assuntos
Adesão Celular/fisiologia , Leucócitos/enzimologia , 5'-Nucleotidase/imunologia , 5'-Nucleotidase/fisiologia , Proteínas ADAM/imunologia , Proteínas ADAM/fisiologia , ADP-Ribosil Ciclase/imunologia , ADP-Ribosil Ciclase/fisiologia , ADP-Ribosil Ciclase 1/imunologia , ADP-Ribosil Ciclase 1/fisiologia , Antígenos CD/imunologia , Antígenos CD/fisiologia , Antígenos CD13/imunologia , Antígenos CD13/fisiologia , Adesão Celular/imunologia , Membrana Celular/enzimologia , Membrana Celular/imunologia , Dipeptidil Peptidase 4/imunologia , Dipeptidil Peptidase 4/fisiologia , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/fisiologia , Humanos , Leucócitos/imunologia , Leucócitos/fisiologia , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana/imunologia , Proteínas de Membrana/fisiologia , Modelos Biológicos
15.
Nat Commun ; 12(1): 6767, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799586

RESUMO

Nicotinamide riboside (NR) is one of the orally bioavailable NAD+ precursors and has been demonstrated to exhibit beneficial effects against aging and aging-associated diseases. However, the metabolic pathway of NR in vivo is not yet fully understood. Here, we demonstrate that orally administered NR increases NAD+ level via two different pathways. In the early phase, NR was directly absorbed and contributed to NAD+ generation through the NR salvage pathway, while in the late phase, NR was hydrolyzed to nicotinamide (NAM) by bone marrow stromal cell antigen 1 (BST1), and was further metabolized by the gut microbiota to nicotinic acid, contributing to generate NAD+ through the Preiss-Handler pathway. Furthermore, we report BST1 has a base-exchange activity against both NR and nicotinic acid riboside (NAR) to generate NAR and NR, respectively, connecting amidated and deamidated pathways. Thus, we conclude that BST1 plays a dual role as glycohydrolase and base-exchange enzyme during oral NR supplementation.


Assuntos
ADP-Ribosil Ciclase/metabolismo , Antígenos CD/metabolismo , Glicosídeo Hidrolases/metabolismo , Niacinamida/análogos & derivados , Compostos de Piridínio/farmacocinética , Células A549 , ADP-Ribosil Ciclase/genética , Administração Oral , Envelhecimento/efeitos dos fármacos , Animais , Antígenos CD/genética , Suplementos Nutricionais , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Microbioma Gastrointestinal , Glicosídeo Hidrolases/genética , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Camundongos , Camundongos Knockout , Niacina/metabolismo , Niacinamida/administração & dosagem , Niacinamida/metabolismo , Niacinamida/farmacocinética , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Compostos de Piridínio/administração & dosagem
16.
Clin. transl. oncol. (Print) ; 23(11): 2309-2322, nov. 2021. graf
Artigo em Inglês | IBECS | ID: ibc-223425

RESUMO

PurposeThe PD-1 (programmed cell death-1) receptor is expressed on the surface of activated T cells. Its ligand, programmed cell death ligand-1 (PD-L1), is expressed on the surface of dendritic cells or macrophages. The PD-1/PD-L1 interaction ensures prevention of autoimmunity by activating the immune system only when needed. In cancers, PD-L1 expressed on the tumour cells binds to PD-1 receptors on the activated T cells, leading to inhibition of the cytotoxic T cells and immunosuppression. PD-1/PD-L1 pathway is upregulated in EBV infection that is known to worsen the CLL prognosis. Therefore, we aimed to study the association between PD-1 and PD-L1 expressions, EBV status and the CLL prognosis.Methods and patientsThe study was conducted on 80 newly diagnosed CLL patients and 80 controls. We analyzed PD-1 and PD-L1 expressions and EBV-DNA load by real-time PCR. The cytogenetic abnormalities and expression of ZAP70 and CD38 were detected by FISH and Flow cytometry, respectively.ResultsPD-1/PD-L1 expressions were significantly upregulated in CLL patients compared to controls. In addition, their mRNA levels were significantly higher in EBV( +) versus EBV( −) patients. High expression of PD-1/PD-L1 was associated with poor prognostic markers (RAI stages of CLL, del 17p13, ZAP70, and CD38 expression), failure of complete remission, shorter progression-free survival, and overall survival.ConclusionHigh expression of PD-1 and PD-L1, together with high EBD-DNA load were linked to worse prognosis in CLL. In addition, PD-1 and PD-L1 might represent suitable therapeutic targets for patients suffering from aggressive CLL. (AU)


Assuntos
Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Antígeno B7-H1/genética , Infecções por Vírus Epstein-Barr/imunologia , Expressão Gênica , Leucemia Linfocítica Crônica de Células B/virologia , Receptor de Morte Celular Programada 1/genética , ADP-Ribosil Ciclase/análise , Antígeno B7-H1/metabolismo , Estudos de Casos e Controles , DNA Viral/sangue , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/mortalidade , Prognóstico , Receptor de Morte Celular Programada 1/metabolismo , Análise de Sobrevida
17.
Sci Rep ; 11(1): 21230, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707185

RESUMO

CD157/BST-1 (a member of the ADP-ribosyl cyclase family) is expressed at variable levels in 97% of patients with acute myeloid leukemia (AML), and is currently under investigation as a target for antibody-based immunotherapy. We used peripheral blood and bone marrow samples from patients with AML to analyse the impact of CD157-directed antibodies in AML survival and in response to cytarabine (AraC) ex vivo. The study was extended to the U937, THP1 and OCI-AML3 AML cell lines of which we engineered CD157-low versions by shRNA knockdown. CD157-targeting antibodies enhanced survival, decreased apoptosis and reduced AraC toxicity in AML blasts and cell lines. CD157 signaling activated the PI3K/AKT/mTOR and MAPK/ERK pathways and increased expression of Mcl-1 and Bcl-XL anti-apoptotic proteins, while decreasing expression of Bax pro-apoptotic protein, thus preventing Caspase-3 activation. The primary CD157-mediated anti-apoptotic mechanism was Bak sequestration by Mcl-1. Indeed, the Mcl-1-specific inhibitor S63845 restored apoptosis by disrupting the interaction of Mcl-1 with Bim and Bak and significantly increased AraC toxicity in CD157-high but not in CD157-low AML cells. This study provides a new role for CD157 in AML cell survival, and indicates a potential role of CD157 as a predictive marker of response to therapies exploiting Mcl-1 pharmacological inhibition.


Assuntos
ADP-Ribosil Ciclase/metabolismo , Antígenos CD/metabolismo , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , ADP-Ribosil Ciclase/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/genética , Antimetabólitos Antineoplásicos/toxicidade , Apoptose , Células Cultivadas , Citarabina/toxicidade , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Pessoa de Meia-Idade , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Células THP-1 , Tiofenos/farmacologia
18.
Biomolecules ; 11(7)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34356669

RESUMO

It has recently been demonstrated that the rat poison vacor interferes with mammalian NAD metabolism, because it acts as a nicotinamide analog and is converted by enzymes of the NAD salvage pathway. Thereby, vacor is transformed into the NAD analog vacor adenine dinucleotide (VAD), a molecule that causes cell toxicity. Therefore, vacor may potentially be exploited to kill cancer cells. In this study, we have developed efficient enzymatic and chemical procedures to produce vacor analogs of NAD and nicotinamide riboside (NR). VAD was readily generated by a base-exchange reaction, replacing the nicotinamide moiety of NAD by vacor, catalyzed by Aplysia californica ADP ribosyl cyclase. Additionally, we present the chemical synthesis of the nucleoside version of vacor, vacor riboside (VR). Similar to the physiological NAD precursor, NR, VR was converted to the corresponding mononucleotide (VMN) by nicotinamide riboside kinases (NRKs). This conversion is quantitative and very efficient. Consequently, phosphorylation of VR by NRKs represents a valuable alternative to produce the vacor analog of NMN, compared to its generation from vacor by nicotinamide phosphoribosyltransferase (NamPT).


Assuntos
Antineoplásicos/síntese química , NAD/química , Niacinamida/análogos & derivados , Compostos de Fenilureia/química , Compostos de Piridínio/síntese química , ADP-Ribosil Ciclase/química , ADP-Ribosil Ciclase/metabolismo , Animais , Antineoplásicos/farmacologia , Aplysia/enzimologia , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Humanos , Niacinamida/síntese química , Compostos de Fenilureia/síntese química , Compostos de Fenilureia/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
19.
Sci Rep ; 11(1): 16185, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376746

RESUMO

Converging evidence suggests that oxytocin (OT) is associated with creative thinking (CT) and that release of OT depends on ADP ribosyl-cyclases (CD38 and CD157). Neural mechanisms of CT and OT show a strong association with dopaminergic (DA) pathways, yet the link between CT and CD38, CD157, dopamine receptor D2 (DRD2) and catechol-O-methyltransferase (COMT) peripheral gene expression remain inconclusive, thus limiting our understanding of the neurobiology of CT. To address this issue, two principal domains of CT, divergent thinking (AUT), were assessed. In men, both AUT is associated with gene expression of CD38, CD157, and their interaction CD38 × CD157. There were no significant associations for DA expression (DRD2, COMT, DRD2 × COMT) on both CT measures. However, analysis of the interactions of OT and DA systems reveal significant interactions for AUT in men. The full model explained a sizable 39% of the variance in females for the total CT score. The current findings suggest that OT and DA gene expression contributed significantly to cognition and CT phenotype. This provides the first empirical foundation of a more refined understanding of the molecular landscape of CT.


Assuntos
Cognição/efeitos dos fármacos , Criatividade , Dopamina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ocitocina/farmacologia , Saliva/metabolismo , ADP-Ribosil Ciclase/genética , ADP-Ribosil Ciclase/metabolismo , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Adulto , Antígenos CD/genética , Antígenos CD/metabolismo , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Dopaminérgicos/farmacologia , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Interação Gene-Ambiente , Humanos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ocitócicos/farmacologia , Polimorfismo de Nucleotídeo Único , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Saliva/efeitos dos fármacos , Fatores Sexuais , Adulto Jovem
20.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924478

RESUMO

The encoding genes of plant intracellular nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain receptors (NLRs) often exist in the form of a gene cluster. Several recent studies demonstrated that the truncated Toll/interleukin-1 receptor-NBS (TIR-NBS) proteins play important roles in immunity. In this study, we identified a large TN gene cluster on Arabidopsis ecotype Col-0 chromosome 1, which included nine TN genes, TN4 to TN12. Interestingly, this cluster also contained two typical TIR-NBS-LRR genes: At1g72840 and At1g72860 (hereinafter referred to as TNL40 and TNL60, respectively), which formed head-to-head genomic arrangement with TN4 to TN12. However, the functions of these TN and TNL genes in this cluster are still unknown. Here, we showed that the TIR domains of both TNL40 and TNL60 associated with TN10 specifically. Furthermore, both TNL40TIR and TNL60TIR induced cell death in Nicotiana tabacum leaves. Subcellular localization showed that TNL40 mainly localized in the cytoplasm, whereas TNL60 and TN10 localized in both the cytoplasm and nucleus. Additionally, the expression of TNL40, TNL60, and TN10 were co-regulated after inoculated with bacterial pathogens. Taken together, our study indicates that the truncated TIR-NBS protein TN10 associates with two clustered TNL immune receptors, and may work together in plant disease resistance.


Assuntos
ADP-Ribosil Ciclase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas NLR/metabolismo , Imunidade Vegetal , Receptores Imunológicos/metabolismo , ADP-Ribosil Ciclase/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Morte Celular , Genes de Plantas , Modelos Biológicos , Família Multigênica , Folhas de Planta/metabolismo , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Pseudomonas syringae/fisiologia , Frações Subcelulares/metabolismo , Nicotiana/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...