Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 724
Filtrar
1.
Pest Manag Sci ; 80(6): 2920-2928, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38288907

RESUMO

BACKGROUND: Pollen is a common plant-derived food source for predatory ladybird beetles under field conditions, yet the potential for pollen to improve the quality of artificial diets remains largely unexplored. In this study, we developed three pollen diets by incorporating varying proportions of canola bee pollen (7.5%, 15.0% and 22.5% with 2.5%, 5.0%, and 7.5% of water, respectively) into a conventional diet. The feeding efficiency of Harmonia axyridis, an omnivorous predator, was evaluated and compared on three pollen diets, a conventional nonpollen diet and pea aphids. RESULTS: The larvae fed a medium or high pollen diet exhibited significantly higher survival in the 4th instar, pupa and adult stages than those fed a nonpollen diet. These larvae also developed into significantly heavier adults, and their survival rates in adulthood were comparable to those fed pea aphids. Specifically, we revealed the underlying mechanisms through which a high pollen diet enhances pupal development. Consumption of high pollen diet versus nonpollen diet resulted not only in a significant decrease in pupal glycogen content, but also an increase in adult lipid content. Both diet treatments induced similar changes in carbohydrate and glycogen content compared to the aphid diet while exhibiting different alterations in pupal protein content and adult lipid content. Furthermore, the transcriptome analysis revealed that the nutrient metabolism, immune response, and cuticle development pathways were predominantly enriched among the differentially expressed genes (DEGs). CONCLUSION: Canola bee pollen offers diverse advantages in terms of rearing H. axyridis larvae with an artificial diet, which will advance the development of effective diets for predaceous coccinellids. © 2024 Society of Chemical Industry.


Assuntos
Besouros , Dieta , Larva , Pólen , Animais , Larva/crescimento & desenvolvimento , Besouros/crescimento & desenvolvimento , Besouros/fisiologia , Pupa/crescimento & desenvolvimento , Comportamento Predatório , Abelhas/crescimento & desenvolvimento , Abelhas/fisiologia , Ração Animal/análise , Controle Biológico de Vetores/métodos , Afídeos/crescimento & desenvolvimento , Afídeos/fisiologia
2.
J Exp Biol ; 226(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36995273

RESUMO

The impact of global warming on wild bee decline threatens the pollination services they provide. Exposure to temperatures above optimal during development is known to reduce adult body size but how it affects the development and scaling of body parts remains unclear. In bees, a reduction in body size and/or a reduction in body parts, such as the antennae, tongue and wings, and how they scale with body size (i.e. their allometry) could severely affect their fitness. To date, it remains unclear how temperature affects body size and the scaling of morphological traits in bees. To address this knowledge gap, we exposed both males and workers of Bombus terrestris to elevated temperature during development and assessed the effects on (i) the size of morphological traits and (ii) the allometry between these traits. Colonies were exposed to optimal (25°C) or stressful (33°C) temperatures. We then measured the body size, wing size, antenna and tongue length, as well as the allometry between these traits. We found that workers were smaller and the antennae of both castes were reduced at the higher temperature. However, tongue length and wing size were not affected by developmental temperature. The allometric scaling of the tongue was also affected by developmental temperature. Smaller body size and antennae could impair both individual and colony fitness, by affecting foraging efficiency and, consequently, colony development. Our results encourage further exploration of how the temperature-induced changes in morphology affect functional traits and pollination efficiency.


Assuntos
Abelhas , Animais , Abelhas/crescimento & desenvolvimento , Tamanho do Órgão , Tamanho Corporal , Polinização , Asas de Animais/crescimento & desenvolvimento , Língua/crescimento & desenvolvimento
3.
J Insect Sci ; 22(4)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35924428

RESUMO

The alfalfa leafcutting bee Megachile rotundata Fabricius (HYMENOPTERA: Megachilidae) is an important pollinator for multiple agricultural seed commodities in the United States. M. rotundata is a solitary cavity nesting bee that forms brood nests where its larvae can develop. During the developmental stages of growth, brood can be preyed upon by multiple different fungal pathogens and insect predators and parasitoids, resulting in the loss of the developing larvae. Larval loss is a major concern for alfalfa (Medicago sativa L.) seed producers because they rely on pollination services provided by M. rotundata. Reduced pollination rates result in lower yields and increased production costs. In the present study, we examined the taxonomic composition of organisms found within M. rotundata brood cells using a multiplex PCR assay which was developed for the detection of bacterial, fungal, and invertebrate pests and pathogens of M. rotundata larvae. Known pests of M. rotundata were detected, including members of the fungal genus Ascosphaera, the causative agent of chalkbrood. The presence of multiple Ascosphaera species in a single brood cell was observed, with potential implications for chalkbrood disease management. The multiplex assay also identified DNA from more than 2,400 total species, including multiple predators and pathogenetic species not previously documented in association with M. rotundata brood cells.


Assuntos
Abelhas/parasitologia , Medicago sativa , Reação em Cadeia da Polimerase Multiplex , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/microbiologia , Abelhas/fisiologia , Larva , Medicago sativa/parasitologia , Polinização , Sementes
4.
J Therm Biol ; 104: 103196, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35180973

RESUMO

Bumble bees thrive in cold climates including high latitude and high altitude regions around the world, yet cold tolerance strategies are largely unknown for most species. To determine bumble bee cold tolerance strategy, we exposed bumble bees to a range of low temperatures and measured survival 72 h post-exposure. All bees that froze died within 72 h while only one bee died without freezing, suggesting that bumble bees are generally freeze-avoiding insects and may be slightly chill susceptible. We then assessed whether temperatures that cause internal ice formation (supercooling points, SCP) varied among bumble bee castes (drones, workers, and queens), or across queen life stages, collection elevation, species, or season. Males froze at significantly lower temperatures than workers or queens. Queens in pre-overwintering or overwintering states froze at significantly lower temperatures than queens stimulated to initiate ovary development by CO2 narcosis (i.e., "spring" queens). We also tested whether the presence of water (i.e., wet or dry) or ramping rate affected SCP. As expected, queens inoculated with water froze at significantly higher temperatures than dry queens. SCP tended to be lower, but not significantly so, at faster ramping rates (0.5 °C/min vs 0.25 °C/min). We also found no differences in SCP between queen bumble bees collected in spring and fall, between queens collected at two sites differing in elevation by 1100 m, or between three field-caught bumble bee species. Bumble bees appear to have relatively high, invariable SCPs, likely making them highly susceptible to freezing across all seasons. As bumble bees are not freeze-tolerant and appear to lack the ability to prevent freezing at temperatures much below 0 °C, they may rely on season- and caste-specific micro-habitat selection to thrive in cold climates.


Assuntos
Abelhas , Animais , Feminino , Masculino , Abelhas/crescimento & desenvolvimento , Abelhas/fisiologia , Ecossistema , Congelamento , Estações do Ano , Temperatura
5.
Environ Toxicol Pharmacol ; 90: 103792, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34971799

RESUMO

Honeybees show an important pollination ability and play vital roles in improving crop yields and increasing plant genetic diversity, thereby generating tremendous economic benefits for humans. However, honeybee survival is affected by a number of biological and abiotic stresses, including the effects of fungi, bacteria, viruses, parasites, and especially agrochemicals. Glyphosate, a broad-spectrum herbicide that is primarily used for weed control in agriculture, has been reported to have lethal and sublethal effects on honeybees. Here, we summarize recent advances in research on the effects of glyphosate on honeybees, including effects on their behaviors, growth and development, metabolic processes, and immune defense, providing a detailed reference for studying the mechanism of action of pesticides. Furthermore, we provide possible directions for future research on glyphosate toxicity to honeybees.


Assuntos
Abelhas/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/fisiologia , Comportamento Animal/efeitos dos fármacos , Glicina/toxicidade , Glifosato
6.
mBio ; 12(6): e0296621, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34933445

RESUMO

Microbiomes provide a range of benefits to their hosts which can lead to the coevolution of a joint ecological niche. However, holometabolous insects, some of the most successful organisms on Earth, occupy different niches throughout development, with larvae and adults being physiologically and morphologically highly distinct. Furthermore, transition between the stages usually involves the loss of the gut microbiome since the gut is remodeled during pupation. Most eusocial organisms appear to have evolved a workaround to this problem by sharing their communal microbiome across generations. However, whether this vertical microbiome transmission can overcome perturbations of the larval microbiome remains untested. Honey bees have a relatively simple, conserved, coevolved adult microbiome which is socially transmitted and affects many aspects of their biology. In contrast, larval microbiomes are more variable, with less clear roles. Here, we manipulated the gut microbiome of in vitro-reared larvae, and after pupation of the larvae, we inoculated the emerged bees with adult microbiome to test whether adult and larval microbiome stages may be coupled (e.g., through immune priming). Larval treatments differed in bacterial composition and abundance, depending on diet, which also drove larval gene expression. Nonetheless, adults converged on the typical core taxa and showed limited gene expression variation. This work demonstrates that honey bee adult and larval stages are effectively microbiologically decoupled, and the core adult microbiome is remarkably stable to early developmental perturbations. Combined with the transmission of the microbiome in early adulthood, this allows the formation of long-term host-microbiome associations. IMPORTANCE This work investigated host-microbiome interactions during a crucial developmental stage-the transition from larvae to adults, which is a challenge to both, the insect host and its microbiome. Using the honey bee as a tractable model system, we showed that microbiome transfer after emergence overrides any variation in the larvae, indicating that larval and adult microbiome stages are effectively decoupled. Together with the reliable vertical transfer in the eusocial system, this decoupling ensures that the adults are colonized with a consistent and derived microbiome after eclosion. Taken all together, our data provide additional support that the evolution of sociality, at least in the honey bee system tested here, is linked with host-microbiome relationships.


Assuntos
Abelhas/microbiologia , Microbioma Gastrointestinal , Larva/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Abelhas/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Pupa/crescimento & desenvolvimento , Pupa/microbiologia , Reprodução
7.
Sci Rep ; 11(1): 22233, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782655

RESUMO

Honeybee is an important pollinator for maintaining ecological balance. However, scientist found the bizarre mass death of bees in winter. Meanwhile, some reported that the differences composed of intestinal bacteria between healthy honeybees and CCD honeybees. It is essential that explored dynamic changes to the intestinal bacteria in overwintering honeybees. We collected bee samples before overwintering, during prophase of overwintering, metaphase of overwintering, anaphase of overwintering, telophase of overwintering, and after overwintering. By using high-throughput sequencing targeting the V3-V4 regions of the 16S rDNA, the abundance of the intestinal bacteria were analyzed in overwintering honeybees. A total of 1,373,886 high-quality sequences were acquired and Proteobacteria (85.69%), Firmicutes (10.40%), Actinobacteria (3.66%), and Cyanobacteria (1.87%) were identified as major components of the intestinal bacteria. All core honeybee intestinal bacteria genera, such as Gilliamella, Bartonella, Snodgrassella, Lactobacillus, Frischella, Commensalibacter, and Bifidobacterium were detected. The abundance of Actinobacteria, Bartonella, and Bifidobacterium increased initially and then decreased in winter honeybees. There were no significant differences in the richness and evenness of the microbiota in overwintering honeybees; however, there was a statistically significant difference in the beta diversity of the intestinal bacteria after overwintering compared with that in other groups. Our results suggested that honeybees maintained their intestinal ecosystem balance, and increased the abundance of gut probiotics in response to environmental and nutrition pressures in winter.


Assuntos
Bactérias/patogenicidade , Abelhas/crescimento & desenvolvimento , Abelhas/microbiologia , Microbioma Gastrointestinal , Estações do Ano , Animais
8.
J Invertebr Pathol ; 186: 107686, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780719

RESUMO

Melissococcus plutonius is a pathogenic bacterium that affects honeybee brood triggering colony collapse in severe cases. The bacterium causes a European foulbrood (EFB) disease in the honeybee populations, impacting beekeeping and agricultural industries. The pathogenesis, epidemiology, and variants of M. plutonius have been studied, but the virulence factors involved in larval infection are still unknown. Recently, an in-silico study suggested putative genes that might play a role in the pathogenesis of EFB. However, studies are required to determine their function as virulence factors. In addition, the few studies of clonal complexes (CCs), virulence factors, and variation in the honeybee larvae mortality have interfered with the development of more efficient control methods. The research, development, and differences in virulence between genetic variants (CCs) of M. plutonius and potential virulence factors implicated in honeybee larval mortality are discussed in this review.


Assuntos
Abelhas/microbiologia , Enterococcaceae/fisiologia , Enterococcaceae/patogenicidade , Animais , Criação de Abelhas , Abelhas/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/microbiologia , Virulência , Fatores de Virulência/genética
9.
PLoS One ; 16(10): e0258801, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34695141

RESUMO

The epidemiology of Nosema spp. in honey bees, Apis mellifera, may be affected by winter conditions as cold temperatures and differing wintering methods (indoor and outdoor) provide varying levels of temperature stress and defecation flight opportunities. Across the Canadian Prairies, including Alberta, the length and severity of winter vary among geographic locations. This study investigates the seasonal pattern of Nosema abundance in two Alberta locations using indoor and outdoor wintering methods and its impact on bee population, survival, and commercial viability. This study found that N. ceranae had a distinct seasonal pattern in Alberta, with high spore abundance in spring, declining to low levels in the summer and fall. The results showed that fall Nosema monitoring might not be the best indicator of treatment needs or future colony health outcomes. There was no clear pattern for differences in N. ceranae abundance by location or wintering method. However, wintering method affected survival with colonies wintered indoors having lower mortality and more rapid spring population build-up than outdoor-wintered colonies. The results suggest that the existing Nosema threshold should be reinvestigated with wintering method in mind to provide more favorable outcomes for beekeepers. Average Nosema abundance in the spring was a significant predictor of end-of-study winter colony mortality, highlighting the importance of spring Nosema monitoring and treatments.


Assuntos
Criação de Abelhas/métodos , Abelhas/crescimento & desenvolvimento , Micoses/epidemiologia , Nosema/patogenicidade , Estações do Ano , Temperatura , Alberta/epidemiologia , Animais , Abelhas/microbiologia , Micoses/microbiologia , Nosema/isolamento & purificação
10.
J Insect Sci ; 21(5)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34636890

RESUMO

Hexamerins are members of the hemocyanin superfamily and play essential roles in providing amino acids and energy for the nonfeeding stages of insects. In this study, we cloned and analyzed the expression patterns of four hexamerin genes (hex 70a, hex 70b, hex 70c, and hex 110) at different worker development stages and queen diapause statuses in the bumble bee, Bombus terrestris. The results of this study showed that hex 110 has the longest open reading frame (ORF; 3,297 bp) compared to the ORFs of hex 70a (2,034 bp), hex 70b (2,067 bp), and hex 70c (2,055 bp). The putative translation product of Hex 70a, Hex 70b, Hex70c, and Hex 110 has 677, 688, 684, and 1,098aa with predicted molecular mass of 81.13, 79.69, 81.58, and 119 kDa. In the development stages of workers, the expression levels of hex 70a, hex 70b, and hex 70c increased gradually from the larval stage and exhibited high expression levels at the pink eyed and brown eyed pupae stage, whereas hex 110 exhibited the highest expression level at the larval period. Four hexamerin genes were highly expressed at the prediapause status of queen (P < 0.05), and compared to the eclosion queen, the lowest upregulation was 3.7-fold, and the highest upregulation was 1,742-fold. The expression levels of hex 70b, hex 70c, and hex 110 at diapause were significantly higher than those at postdiapause (P < 0.05). In conclusion, hexamerins may play important roles in queen diapause and metamorphosis of larval and pupal stages.


Assuntos
Abelhas , Proteínas de Insetos/genética , Animais , Abelhas/genética , Abelhas/crescimento & desenvolvimento , Abelhas/fisiologia , Diapausa/genética , Diapausa/fisiologia , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Metamorfose Biológica/genética , Metamorfose Biológica/fisiologia , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/fisiologia
11.
J Chem Ecol ; 47(8-9): 777-787, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34287796

RESUMO

The "River Disease" (RD), a disorder impacting honeybee colonies located close to waterways with abundant riparian vegetation (including Sebastiania schottiana, Euphorbiaceae), kills newly hatched larvae. Forager bees from RD-affected colonies collect honeydew excretions from Epormenis cestri (Hemiptera: Flatidae), a planthopper feeding on trees of S. schottiana. First-instar honeybee larvae fed with this honeydew died. Thus, we postulated that the nectars of RD-affected colonies had a natural toxin coming from either E. cestri or S. schottiana. An untargeted metabolomics characterization of fresh nectars extracts from colonies with and without RD allowed to pinpoint xanthoxylin as one of the chemicals present in higher amounts in nectar from RD-affected colonies than in nectars from healthy colonies. Besides, xanthoxylin was also found in the aerial parts of S. schottiana and the honeydew excreted by E. cestri feeding on this tree. A larva feeding assay where xanthoxylin-enriched diets were offered to 1st instar larvae showed that larvae died in the same proportion as larvae did when offered enriched diets with nectars from RD-colonies. These findings demonstrate that a xenobiotic can mimic the RD syndrome in honeybee larvae and provide evidence of an interspecific flow of xanthoxylin among three trophic levels. Further, our results give information that can be considered when implementing measures to control this honeybee disease.


Assuntos
Acetofenonas/análise , Abelhas/fisiologia , Euphorbiaceae/química , Acetofenonas/farmacologia , Animais , Abelhas/crescimento & desenvolvimento , Dieta/veterinária , Análise Discriminante , Euphorbiaceae/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Larva/efeitos dos fármacos , Larva/fisiologia , Análise dos Mínimos Quadrados , Espectroscopia de Ressonância Magnética , Metabolômica/métodos , Componentes Aéreos da Planta/química , Componentes Aéreos da Planta/metabolismo , Néctar de Plantas/química
12.
Biochim Biophys Acta Gene Regul Mech ; 1864(9): 194732, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34242825

RESUMO

Brain differential morphogenesis in females is one of the major phenotypic manifestations of caste development in honey bees. Brain diphenism appears at the fourth larval phase as a result of the differential feeding regime developing females are submitted during early phases of larval development. Here, we used a forward genetics approach to test the early brain molecular response to differential feeding leading to the brain diphenism observed at later developmental phases. Using RNA sequencing analysis, we identified 53 differentially expressed genes (DEGs) between the brains of queens and workers at the third larval phase. Since miRNAs have been suggested to play a role in caste differentiation after horizontal and vertical transmission, we tested their potential participation in regulating the DEGs. The miRNA-mRNA interaction network, including the DEGs and the royal- and worker-jelly enriched miRNA populations, revealed a subset of miRNAs potentially involved in regulating the expression of DEGs. The interaction of miR-34, miR-210, and miR-317 with Takeout, Neurotrophin-1, Forked, and Masquerade genes was experimentally confirmed using a luciferase reporter system. Taken together, our results reconstruct the regulatory network that governs the development of the early brain diphenism in honey bees.


Assuntos
Ração Animal/análise , Abelhas/crescimento & desenvolvimento , Perfilação da Expressão Gênica/veterinária , Redes Reguladoras de Genes , Animais , Abelhas/genética , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Larva/genética , Larva/crescimento & desenvolvimento , MicroRNAs/genética , Análise de Sequência de RNA
13.
Insect Mol Biol ; 30(6): 594-604, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34309096

RESUMO

During the honeybee larval stage, queens develop larger brains than workers, with morphological differentiation appearing at the fourth larval phase (L4), just after a boost in nutritional difference both prospective females experience. The molecular promoters of this caste-specific brain development are already ongoing in previous larval phases. Transcriptomic analyses revealed a set of differentially expressed genes in the L3 brains of queens and workers, which represents the early molecular response to differential feeding females receive during larval development. Three genes of this set, hex70b, hex70c and hex110, are more highly transcribed in the brain of workers than in queens. The microRNAs miR-34, miR-210 and miR-317 are in higher levels in the queens' brain at the same phase of larval development. Here, we tested the hypothesis that the brain of workers expresses higher levels of hexamerins than that of queens during key phases of larval development and that this differential hexamerin genes expression is further enhanced by the repressing activity of miR-34, miR-210 and miR-317. Our transcriptional analyses showed that hex70b, hex70c and hex110 genes are differentially expressed in the brain of L3 and L4 larval phases of honeybee queens and workers. In silico reconstructed miRNA-mRNA interaction networks were validated using luciferase assays, which showed miR-34 and miR-210 negatively regulate hex70b and hex110 genes by directly and redundantly binding their 3'UTR (untranslated region) sequences. Taken together, our results suggest that miR-34 and miR-210 act together promoting differential brain development in honeybee castes by downregulating the expression of the putative antineurogenic hexamerin genes hex70b and hex110.


Assuntos
Abelhas , Encéfalo/crescimento & desenvolvimento , Proteínas de Insetos/genética , MicroRNAs , Animais , Abelhas/genética , Abelhas/crescimento & desenvolvimento , Feminino , Larva/genética , Larva/crescimento & desenvolvimento , MicroRNAs/genética , Estudos Prospectivos
14.
Sci Rep ; 11(1): 15306, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34316010

RESUMO

Invasive species are one of the main biodiversity loss drivers. Some species can establish and thrive in novel habitats, impacting local communities, as is the case of managed pollinators. In this regard, an invasive species' expansion process over time is critical for its control and management. A good example is the European bumblebee Bombus terrestris, which has rapidly invaded the southern part of South America after being repeatedly introduced in Chile for crop pollination since 1997. We assessed the temporal dynamics of B. terrestris invasion in Argentina and Chile by compiling 562 occurrence points from 2000 to 2019. We used two estimators (minimum convex polygon and 95% fixed kernel) to estimate the increase of the invaded area over time. We found that the area invaded by B. terrestris in the southern part of South America presents a linear increase over time, which was consistent for both estimators. In this scenario, species traits, environmental characteristics, and introduction dynamics facilitate a rapid invasion process that will continue to expand, reaching other South American countries in the near future. As this bumblebee is a super-generalist, it probably will expand across South America, as climate niche modelling predicts, if no actions were taken.


Assuntos
Abelhas/crescimento & desenvolvimento , Espécies Introduzidas , Animais , Argentina , Chile , Clima , Ecossistema , Polinização
15.
J Environ Sci Health B ; 56(6): 594-605, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34082650

RESUMO

The health and safety of the honeybees are seriously threatened due to the abuse of chemical pesticides in modern agriculture and apiculture. In this study, the RNA Seq approach was used to assess the effects of the honeybees treated with benomyl. The results showed that there were a total of 11,902 differentially expressed genes (DEGs). Among them, 5,759 DEGs were up-regulated and involved in the functions of immunity, detoxification, biological metabolism, and regulation. The DEGs were clustered in the GO terms of epidermal structure and response to external stimuli, and most of the DEGs were enriched in 15 pathways, such as light conduction, MAPK, calcium ion pathway, and so on. Moreover, the pathway of the toll signal transduction was activated. The data investigated that the expression of functional genes involved in the growth, development, foraging, and immunity of honeybees were significantly affected by benomyl stress, which would seriously threaten the health of the honeybees. This study provided a theoretical basis for revealing the response mechanism of honeybees to pesticides stress.


Assuntos
Abelhas/efeitos dos fármacos , Benomilo/toxicidade , Fungicidas Industriais/toxicidade , Sistema Imunitário/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Abelhas/genética , Abelhas/crescimento & desenvolvimento , Abelhas/imunologia , Feminino , Perfilação da Expressão Gênica
16.
Sci Rep ; 11(1): 10087, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980970

RESUMO

Social insect colonies exhibit a variety of life history strategies, from the annual, semelparous colonies of temperate bees and wasps to the long-lived colonies of many ants and honeybees. Species introduced to novel habitats may exhibit plasticity in life history strategies as a result of the introduction, but the factors governing these changes often remain obscure. Vespula pensylvanica, a yellowjacket wasp, exhibits such plasticity in colony longevity. Multi-year (perennial) colonies are relatively common in introduced populations in Hawaii, while source populations in the western United States are typically on an annual cycle. Here, we use experiments and observational data to examine how diet, disease, nest thermal environment, and nest location influence colony longevity in a population with both annual and perennial colonies. Counter to our predictions, experimental feeding and warming did not increase colony survival in the winter in the introduced range. However, Moku Virus load and wasp colony density predicted colony survival in one year, suggesting a potential role for disease in modulating colony phenology. We also found that local V. pensylvanica colony density was positively correlated with Moku Virus loads, and that Arsenophonus sp. bacterial loads in V. pensylvanica colonies were positively associated with proximity to feral honeybee (Apis mellifera) hives, suggesting potential transmission routes for these poorly understood symbionts. The factors influencing colony longevity in this population are likely multiple and interactive. More important than food availability, we propose winter precipitation as a critical factor that may explain temporal and spatial variation in colony longevity in these invasive wasps.


Assuntos
Vírus de RNA/fisiologia , Vespas/crescimento & desenvolvimento , Vespas/virologia , Animais , Abelhas/crescimento & desenvolvimento , Ecossistema , Comportamento Alimentar , Havaí , Densidade Demográfica , Vírus de RNA/genética , Estações do Ano , Temperatura , Carga Viral , Vespas/fisiologia
17.
Sci Rep ; 11(1): 9133, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911144

RESUMO

Cell recapping is a behavioural trait of honeybees (Apis mellifera) where cells with developing pupae are uncapped, inspected, and then recapped, without removing the pupae. The ectoparasitic mite Varroa destructor, unarguably the most destructive pest in apiculture world-wide, invades the cells of developing pupae to feed and reproduce. Honeybees that target mite infested cells with this behaviour may disrupt the reproductive cycle of the mite. Hence, cell recapping has been associated with colony-level declines in mite reproduction. In this study we compared the colony-level efficacy of cell recapping (how often infested cells are recapped) to the average mite fecundity in A. mellifera. Our study populations, known to be adapted to V. destructor, were from Avignon, France, Gotland, Sweden, and Oslo, Norway, and were compared to geographically similar, treated control colonies. The results show that colonies with a higher recapping efficacy also have a lower average mite reproductive success. This pattern was likely driven by the adapted populations as they had the largest proportion of highly-targeted cell recapping. The consistent presence of this trait in mite-resistant and mite-susceptible colonies with varying degrees of expression may make it a good proxy trait for selective breeding on a large scale.


Assuntos
Abelhas/parasitologia , Varroidae/crescimento & desenvolvimento , Animais , Abelhas/crescimento & desenvolvimento , Feminino , Interações Hospedeiro-Parasita , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Reprodução , Varroidae/fisiologia
18.
Sci Rep ; 11(1): 6852, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767244

RESUMO

In the course of a screen designed to produce antibodies (ABs) with affinity to proteins in the honey bee brain we found an interesting AB that detects a highly specific epitope predominantly in the nuclei of Kenyon cells (KCs). The observed staining pattern is unique, and its unfamiliarity indicates a novel previously unseen nuclear structure that does not colocalize with the cytoskeletal protein f-actin. A single rod-like assembly, 3.7-4.1 µm long, is present in each nucleus of KCs in adult brains of worker bees and drones with the strongest immuno-labelling found in foraging bees. In brains of young queens, the labelling is more sporadic, and the rod-like structure appears to be shorter (~ 2.1 µm). No immunostaining is detectable in worker larvae. In pupal stage 5 during a peak of brain development only some occasional staining was identified. Although the cellular function of this unexpected structure has not been determined, the unusual distinctiveness of the revealed pattern suggests an unknown and potentially important protein assembly. One possibility is that this nuclear assembly is part of the KCs plasticity underlying the brain maturation in adult honey bees. Because no labelling with this AB is detectable in brains of the fly Drosophila melanogaster and the ant Camponotus floridanus, we tentatively named this antibody AmBNSab (Apis mellifera Brain Neurons Specific antibody). Here we report our results to make them accessible to a broader community and invite further research to unravel the biological role of this curious nuclear structure in the honey bee central brain.


Assuntos
Abelhas/crescimento & desenvolvimento , Encéfalo/citologia , Núcleo Celular/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Larva/citologia , Neurônios/citologia , Pupa/citologia , Animais , Abelhas/imunologia , Abelhas/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Imuno-Histoquímica , Larva/imunologia , Larva/metabolismo , Neurônios/imunologia , Neurônios/metabolismo , Pupa/imunologia , Pupa/metabolismo
19.
Ecotoxicol Environ Saf ; 212: 112015, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33561775

RESUMO

Osmia excavata is an important pollinator in commercial fruit orchards. Little information has been published about ecotoxicity to O. excavata, especially the larvae. To clarify the risk of commonly used insecticides with different modes of action to the larvae of O. excavata, six insecticides (clothianidin, acetamiprid, sulfoxaflor, lambda-cyhalothrin, chlorfenapyr and abamectin) were selected for evaluation of their acute lethal toxicity and sublethal effects. Clothianidin and abamectin were the two most toxic insecticides to the larvae of O. excavata with LD50 values of 0.007 (0.006-0.008) and 0.0004 (0.0003-0.0006) µg active ingredient (a.i.) bee-1, respectively. And their ecological risks were high according to the hazard quotient values (HQ > 2500). Sulfoxaflor was identified as the only safe insecticide for O. excavata (HQ < 50) under field conditions. Sublethal toxicity tests showed that larval weight was significantly decreased by ingesting food treated with clothianidin, lambda-cyhalothrin and abamectin (less than the maximum field registered concentrations on fruit trees) due to interference with consumption per larva and reduction of the efficiency of conversion of ingested food. Additionally, above three insecticides significantly prolonged larval developmental duration before cocooning and decreased eclosion rate. Overall, there results suggested that clothianidin and abamectin should not be applied, especially during the flowering phase, the application frequency of lambda-cyhalothrin should be minimized for the purpose of conserving O. excavata. Our results provided important evidences for selecting appropriate insecticides for use in fruit orchards.


Assuntos
Abelhas/efeitos dos fármacos , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Animais , Abelhas/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Ecotoxicologia , Guanidinas/toxicidade , Dose Letal Mediana , Neonicotinoides/toxicidade , Nitrilas/toxicidade , Polinização , Piretrinas/toxicidade , Piridinas/toxicidade , Medição de Risco , Compostos de Enxofre/toxicidade , Tiazóis/toxicidade
20.
Sci Rep ; 11(1): 3755, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580131

RESUMO

Wild bees are in decline on a local to global scale. The presence of managed honey bees can lead to competition for resources with wild bee species, which has not been investigated so far for human-modified landscapes. In this study we assess if managed honey bee hive density influence nest development (biomass) of bumble bees, an important trait affecting fitness. We hypothesize that domesticated honey bees can negatively affect Bombus terrestris nest development in human-modified landscapes. In Flanders, Belgium, where such landscapes are dominantly present, we selected 11 locations with landscape metrics ranging from urban to agricultural. The bee hive locations were mapped and each location contained one apiary dense (AD) and one apiary sparse (AS) study site (mean density of 7.6 ± 5.7 managed honey bee hives per km2 in AD sites). We assessed the effect of apiary density on the reproduction of reared B. terrestris nests. Reared B. terrestris nests had more biomass increase over 8 weeks in apiary sparse (AS) sites compared to nests located in apiary dense (AD) sites. This effect was mainly visible in urban locations, where nest in AS sites have 99.25 ± 60.99 g more biomass increase compared to nest in urban AD sites. Additionally, we found that managed bumble bee nests had higher biomass increase in urban locations. We conclude that the density of bee hives is a factor to consider in regard to interspecific competition between domesticated honey bees and bumble bees.


Assuntos
Criação de Animais Domésticos/métodos , Abelhas/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Agricultura , Animais , Animais Domésticos , Abelhas/metabolismo , Comportamento Animal , Bélgica , Comportamento Competitivo , Demografia/métodos , Humanos , Polinização , Densidade Demográfica , Dinâmica Populacional/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...