Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884801

RESUMO

As climate changes increase, drought stress is becoming a problem for all major horticultural crops; among them is okra (Abelmoschus esculentus). Despite its superior resilience to heat stress and high nutritional content, it is still underutilized in contrast to other vegetable crops. Moreover, the drought-resistant and drought-sensitive genotypes of okra are also not well known and require further exploration to improve their productivity. To investigate this in more detail, we performed comparative physiological and large-scale chloroplast proteomics on drought-stressed genotypes of okra. We evaluated four major genotypes of okra, viz., NS7774, NS7772, Green Gold, and OH3312 for drought resilient rootstock. The physiological modulations demonstrated a significant change by 50-76% in biomass, net-photosynthetic machinery, water transport, and absorption both in early and late stages of drought stress compared to well-watered crops in all genotypes. Maximum oxidative damage due to drought stress was observed for the genotypes NS7772, Green Gold and OH3312 as depicted by H2O2 and O2- determination. Greater oxidative stress was correlated to lesser antioxidant activity and expression of antioxidant enzymes, such as catalase and ascorbate peroxidase under stress in okra genotypes. The overall photosynthetic pigments, such as total chlorophyll, and total carotenoid content, were also decreased, and stomatal guard cells were disrupted and appeared closed compared to the control for the above three mentioned genotypes, except NS7774. A subsequent tissue-specific proteome analysis of chloroplasts and thylakoids analyzed by BN-PAGE (blue native polyacrylamide gel electrophoresis) revealed either over or under expression of specific proteins, such as ATPase, PSI, PSII core dimer, PSII monomer and ATP synthase. The expression of multiprotein complex proteins, including PSII-core dimer and PSII-core monomer, was slightly higher for the genotype NS7774 when compared to three other genotypes for both 5 and 10 days of drought stress. Further identification of specific proteins obtained in second dimension BN-PAGE provided descriptive detail of seven proteins involved in drought resistance across all genotypes. The identified proteins are majorly involved in photosynthesis under drought stress, suggesting NS7774 as a drought tolerant genotype. Further, the proteomic results were confirmed using Immunoblot by selecting specific protein such as PsaA. Overall, from our physiological modulations and chloroplast proteomics in all genotypes, we summarized NS7774 as a resilient rootstock and the other three genotypes (NS7772, OH3312, and Green Gold) as sensitive ones.


Assuntos
Abelmoschus/crescimento & desenvolvimento , Adaptação Fisiológica/fisiologia , Secas , Proteoma/metabolismo , Estresse Fisiológico/fisiologia , Abelmoschus/genética , Abelmoschus/metabolismo , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Carotenoides/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Mudança Climática , Perfilação da Expressão Gênica , Estresse Oxidativo/fisiologia , Proteoma/genética
2.
Microbiol Res ; 246: 126721, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33581445

RESUMO

Microbial volatile organic compounds (mVOCs) have great potential in plant ecophysiology, yet the role of belowground VOCs in plant stress management remains largely obscure. Analysis of biocontrol producing VOCs into the soil allow detailed insight into their interaction with soil borne pathogens for plant disease management. A root interaction trial was set up to evaluate the effects of VOCs released from Trichoderma viride BHU-V2 on soil-inhabiting fungal pathogen and okra plant growth. VOCs released into soil by T. viride BHU-V2 inhibited the growth of collar rot pathogen, Sclerotium rolfsii. Okra plants responded to VOCs by increasing the root growth (lateral roots) and total biomass content. VOCs exposure increased defense mechanism in okra plants by inducing different enzyme activities i.e. chitinase (0.89 fold), ß-1,3-glucanase (0.42 fold), peroxidase (0.29 fold), polyphenol oxidase (0.33 fold) and phenylalanine lyase (0.7 fold) when inoculated with S. rolfsii. In addition, T. viride BHU-V2 secreted VOCs reduced lipid peroxidation and cell death in okra plants under pathogen inoculated condition. GC/MS analysis of VOCs blend revealed that T. viride BHU-V2 produced more number of antifungal compounds in soil medium as compared to standard medium. Based on the above observations it is concluded that okra plant roots perceive VOCs secreted by T. viride BHU-V2 into soil that involved in induction of plant defense system against S. rolfsii. In an ecological context, the findings reveal that belowground microbial VOCs may play an important role in stress signaling mechanism to interact with plants.


Assuntos
Abelmoschus/efeitos dos fármacos , Abelmoschus/crescimento & desenvolvimento , Basidiomycota/efeitos dos fármacos , Hypocreales/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia , Abelmoschus/enzimologia , Agentes de Controle Biológico/farmacologia , Morte Celular/efeitos dos fármacos , Hypocreales/isolamento & purificação , Peroxidação de Lipídeos/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do Solo , Estresse Fisiológico/efeitos dos fármacos
3.
Ecotoxicol Environ Saf ; 208: 111607, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396127

RESUMO

The present study aimed to explore the effect of synthetic and naturally occurring chelators, EDTA and citric acid (CA), respectively, on changes in physiological and biochemical factors including cell death, level of mercury ions accumulation, malondialdehyde (MDA) content, total phenol and total flavonoids, anthocyanins and DPPH free radical scavenging activity, in the leaves of okra (Abelmoschus esculentus L.) plants exposed to mercury stress. In addition, polyphenolic compounds profile was assessed by high-performance liquid chromatography. The okras were planted in completely controlled hydroponic conditions (Hoagland solution). After they reached the four-leaf stage, they were treated simultaneously with different concentrations of HgCl2, EDTA and CA chelators, and their combination for one month. At the stage of maturity, the physiological and biochemical factors of the plant leaves were measured. The results showed that with the application of higher concentration of HgCl2, cell death, level of shoot and root Hg2+ content and root MDA, total phenols and total flavonoids, anthocyanin content, and DPPH free radical scavenging activity were increased. Also, the results indicated that okra plants have high biomass and a high rate of Hg mobilization and accumulation in the shoot versus the roots (TF=2.152 for the plants treated with 60 mg L-1 Hg2+), hence, can be considered as Hg hyperaccumulator plant for the phytoremediation of Hg-polluted soils and waters. In the Hg-treated plants changes in their phenolic profile were induced, and the increase of chlorogenic acid, rosmaric acid, apigenin, quercetin and rutin content was observed. The application of EDTA and CA improved the toxic effects of Hg2+, by modifying phenolic compounds, chelating Hg2+, and its proper compartmentation, while EDTA outperformed CA in this respect. Based on the results, it could be concluded that due to the high biomass and growth of okra in the presence of Hg2+, this plant is suitable for phytoremediation of soil and water contaminated with mercury. In addition, EDTA and CA can play a significant role in removing this toxic metal through transferring it from the culture medium to the plant.


Assuntos
Abelmoschus/efeitos dos fármacos , Ácido Cítrico/farmacologia , Ácido Edético/farmacologia , Mercúrio/toxicidade , Fenóis/metabolismo , Poluentes do Solo/toxicidade , Abelmoschus/crescimento & desenvolvimento , Abelmoschus/metabolismo , Fenômenos Bioquímicos/efeitos dos fármacos , Biodegradação Ambiental , Biomassa , Malondialdeído/metabolismo , Mercúrio/análise , Fenóis/análise , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Solo/química , Poluentes do Solo/análise
5.
Chemosphere ; 262: 127865, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32791369

RESUMO

Chromium is a toxic heavy metal. Plants, animals and human metabolic processes are disturbed due to higher levels of chromium. PGPR are involved in seed germination, growth improvement, metabolic process and in most of the physiological processes of plants. Press mud in soil provides substrate to the microbes. PGPR can convert the more toxic form of Cr (VI) into less toxic form Cr (III). This study was conducted to find out the reduction potential of pre-isolated rhizobacteria and their role in strengthening of plant growth and physiological attributes. Soil collected from the research area was spiked with 20 mg kg-1 of Cr (VI) by using potassium dichromate (K2Cr2O7) salt before sowing. Results revealed that Cr (VI) significantly suppressed the shoot length, root length and photosynthetic rate of okra up to 19, 37 and 31%, respectively. However, inoculation decreases the uptake of Cr (VI) in root and shoot up to 37 and 31% and by press mud 33 and 20%, respectively. Combined application of inoculation and press mud significantly recovered the negative impact of chromium and plant growth was almost at par compared with contaminated treatment without inoculation.


Assuntos
Abelmoschus/crescimento & desenvolvimento , Cromo/análise , Poluentes do Solo/análise , Abelmoschus/metabolismo , Fotossíntese , Desenvolvimento Vegetal , Solo , Microbiologia do Solo
6.
J Appl Microbiol ; 130(2): 604-616, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33053259

RESUMO

AIMS: The efficacy of three isolates of endophytic Penicillium species that have shown significant suppressive effect on root rotting fungi in our previous study were further evaluated in pots and field plot experiments for their effect on root diseases of okra, induction of systemic resistance and physiochemical properties of okra fruit. METHODS AND RESULTS: Aqueous suspensions of endophytic Penicillium and Pseudomonas monteilii were applied in pots and field plots using okra as test plant. Data on the fungal infection of roots, plant growth, plant resistance markers like polyphenol, salicylic acid and antioxidant status of plant were determined. These isolates significantly suppressed root diseases and induced systemic resistance via increasing level of resistance markers, polyphenol and salicylic acid besides improving antioxidant activity of Penicillium and P. monteilii-treated plants as compared to control plants. GC-MS analysis of n-hexane extract of mycelium of P. nigricans revealed the presence of 15 different volatile compounds. CONCLUSIONS: Endophytic Penicillium and P. monteilii have potential against root-infecting fungi of okra and can improve plant growth and yield. SIGNIFICANCE AND IMPACT OF THE STUDY: Endophytic Penicillium species and P. monteilii can suppress root rotting fungi by direct mechanism or induction of systemic resistance in plants.


Assuntos
Abelmoschus/microbiologia , Resistência à Doença , Endófitos/fisiologia , Penicillium/fisiologia , Pseudomonas/fisiologia , Abelmoschus/crescimento & desenvolvimento , Abelmoschus/imunologia , Endófitos/química , Endófitos/isolamento & purificação , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Frutas/microbiologia , Penicillium/química , Penicillium/isolamento & purificação , Compostos Fitoquímicos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Pseudomonas/química , Pseudomonas/isolamento & purificação , Compostos Orgânicos Voláteis/análise
7.
PLoS One ; 15(7): e0232860, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32645001

RESUMO

Limited information is available that seed biopriming with plant growth-promoting Enterobacter spp. play a prominent role to enhance vegetative growth of plants. Contrary to Enterobacter cloacae, Enterobacter hormaechei is a less-studied counterpart despite its vast potential in plant growth-promotion mainly through the inorganic phosphorus (P) and potassium (K) solubilization abilities. To this end, 18 locally isolated bacterial pure cultures were screened and three strains showed high P- and K-solubilizing capabilities. Light microscopy, biochemical tests and 16S rRNA gene sequencing revealed that strains 15a1 and 40a were closely related to Enterobacter hormaechei while strain 38 was closely related to Enterobacter cloacae (Accession number: MN294583; MN294585; MN294584). All Enterobacter spp. shared common plant growth-promoting traits, namely nitrogen (N2) fixation, indole-3-acetic acid production and siderophore production. The strains 38 and 40a were able to produce gibberellic acid, while only strain 38 was able to secrete exopolysaccharide on agar. Under in vitro germination assay of okra (Abelmoschus esculentus) seeds, Enterobacter spp. significantly improved overall germination parameters and vigor index (19.6%) of seedlings. The efficacy of root colonization of Enterobacter spp. on the pre-treated seedling root tips was confirmed using Scanning Electron Microscopy (SEM). The pot experiment of bioprimed seeds of okra seedling showed significant improvement of the plant growth (> 28%) which corresponded to the increase of P and K uptakes (> 89%) as compared to the uninoculated control plants. The leaf surface area and the SPAD chlorophyll index of bioprimed plants were increased by up to 29% and 9% respectively. This report revealed that the under-explored species of P- and K-solubilizing Enterobacter hormaechei sp. with multiple plant beneficial traits presents a great potential sustainable approach for enhancement of soil fertility and P and K uptakes of plants.


Assuntos
Abelmoschus/crescimento & desenvolvimento , Enterobacter/fisiologia , Fósforo/metabolismo , Potássio/metabolismo , Sementes/microbiologia , Abelmoschus/classificação , Abelmoschus/metabolismo , Abelmoschus/microbiologia , Contenção de Riscos Biológicos , Enterobacter/isolamento & purificação , Germinação , Tipagem Molecular , Desenvolvimento Vegetal , RNA Ribossômico 16S , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento
8.
BMC Genomics ; 20(1): 381, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31096913

RESUMO

BACKGROUND: Salinization seriously threatens land use efficiency and crop yields across the world. Understanding the mechanisms plants use to protect against salt stress will help breeders develop salt-tolerant vegetable crops. Okra (Abelmoschus esculentus L.) is an important vegetable crop of the mallow family, which is now cultivated in warm regions worldwide. To understand the effects of salt stress on the protein level of okra, a comparative proteomic analysis of okra seedlings grown in the presence of 0 or 300 mmol L- 1 NaCl treatment was performed using an integrated approach of Tandem Mass Tag labeling and LC-MS/MS integrated approach. RESULTS: A total of 7179 proteins were identified in this study, for which quantitative information was available for 5774 proteins. In the NaCl/control comparison group, there were 317 differentially expressed proteins (DEPs), of which 165 proteins were upregulated and 152 proteins downregulated in the presence of NaCl. Based on the above data, we carried out a systematic bioinformatics analysis of proteins with information, including protein annotation, domain characteristics, functional classification, and pathway enrichment. Enriched gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the DEPs were most strongly associated with "response to stress" and "protein processing in endoplasmic reticulum". Furthermore, several heat shock proteins were identified as DEPs. CONCLUSIONS: This information provides a reference direction for further research on the okra proteome in the downstream of the salt stress response, with our data revealing that the responses of okra to salt stress involves by various pathways.


Assuntos
Abelmoschus/metabolismo , Biologia Computacional/métodos , Proteínas de Plantas/metabolismo , Proteômica/métodos , Estresse Salino , Plântula/metabolismo , Abelmoschus/crescimento & desenvolvimento , Mapas de Interação de Proteínas , Plântula/crescimento & desenvolvimento
9.
Probiotics Antimicrob Proteins ; 11(1): 256-263, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29372539

RESUMO

Endophytic bacteria are considered to have a plethora of plant growth promoting and anti-phytopathogenic traits to live within the plants. Hence, they have immense promises for plant probiotic development. In the current study, plant probiotic endophytic Bacillus sp. CaB5 which has been previously isolated from Capsicum annuum was investigated for its performance in talc-based formulation. For this, CaB5 was made into formulation with sterile talc, calcium carbonate, and carboxymethyl cellulose. The viability analysis of the formulation by standard plate count and fluorescence methods has confirmed the stable microbial count up to 45 days. Plant probiotic performance of the prepared formulation was analyzed on cowpea (Vigna unguiculata) and lady's finger (Abelmoschus esculentus). The results showed the formulation treatment to have enhancement effect on seed germination as well as plant growth in both selected plants. The results highlight the potential of CaB5-based formulation for field application to enhance growth of economically important plants.


Assuntos
Abelmoschus/crescimento & desenvolvimento , Inoculantes Agrícolas/química , Bacillus/química , Composição de Medicamentos/métodos , Endófitos/química , Probióticos/química , Talco/química , Vigna/crescimento & desenvolvimento , Abelmoschus/microbiologia , Inoculantes Agrícolas/isolamento & purificação , Bacillus/isolamento & purificação , Capsicum/microbiologia , Endófitos/isolamento & purificação , Viabilidade Microbiana , Probióticos/isolamento & purificação , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Vigna/microbiologia
10.
J Hazard Mater ; 360: 604-614, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30149347

RESUMO

Menadione sodium bisulphite (MSB) mediates plant defense responses under abiotic stresses. In present experiment, Cd stress (1 mM) resulted in significant reduction in growth, relative water contents, chlorophyll and uptake of essential nutrients in two okra cultivars (Shabnum and Arka Anamika). Cd-induced reduction in these variables was more in cv. Arka Anamika compared with cv. Shabnum 786. Cd caused oxidative damage in the form of higher cellular levels of MDA and H2O2. MSB applications (0, 50, 100, 150 and 200 µM) had differential effect on growth and key physio-biochemical attributes. Higher MSB dose (200 µM) was lethal as it further aggravated damages under Cd toxicity. However, plants treated with 100 µM MSB exhibited lesser oxidative damage due to better oxidative defense in the form of stimulated activities of antioxidant enzymes (SOD, POD, CAT and APX) and increased concentration of non-enzymatic antioxidants (phenolics, flavonoids and ascorbic acid). Moreover, 100 µM MSB mitigated Cd effect on the uptake of Ca, K, and Mg. MSB also reduced the uptake and transport of Cd to aerial parts of plants. The results of present study revealed MSB-induced slight oxidative burst that induced the accumulation of reactive oxygen species (ROS) scavenging defense proteins under Cd stress.


Assuntos
Abelmoschus/efeitos dos fármacos , Vitamina K 3/farmacologia , Abelmoschus/crescimento & desenvolvimento , Abelmoschus/metabolismo , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Metais/metabolismo , Estresse Oxidativo , Metabolismo Secundário/efeitos dos fármacos
11.
Food Chem ; 242: 466-474, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29037716

RESUMO

The aim of the present study was to determine the effect of fruit size on nutritional value, chemical composition and antioxidant properties of Mediterranean okra genotypes. For this purpose, pods from four okra cultivars and local landraces commonly cultivated in Greece, as well as pods from four commercial cultivars from North America were collected at two sizes (3-5 and>7cm). Significant differences were observed between the studied genotypes for both nutritional value and chemical composition parameters. Small fruit had a higher nutritional value, whereas chemical composition differed in a genotype dependent manner with most of the studied cultivars showing better results when harvested in small size. In conclusion, fruit size has a genotype dependent impact on chemical composition and nutritional value of okra pods and the common practice of harvesting okra fruit while they still have a small size helps to increase nutritional value for most of the studied genotypes.


Assuntos
Abelmoschus/química , Antioxidantes/análise , Abelmoschus/classificação , Abelmoschus/genética , Abelmoschus/crescimento & desenvolvimento , Frutas/química , Frutas/classificação , Frutas/genética , Frutas/crescimento & desenvolvimento , Genótipo , Grécia , Valor Nutritivo
12.
Biosci. j. (Online) ; 33(5): 1219-1229, sept./oct. 2017. tab
Artigo em Inglês | LILACS | ID: biblio-966289

RESUMO

In this study, two okra cultivars, Chinese green and Chinese red were used to assess the water status and growth parameters subjected to salt stress by adding NaCl and CaCl2 with same proportion in Hoagland culture solution at levels of 0%, 0.6%, 1.2%, 1.8% and re-watering at levels of 0.6-0%, 1.2-0.6%, 1.8-1.2%. The measured water potential and physiological capacitance values were used to calculate leaf tensity. Salt stress significantly reduced growth and water status parameters. Chinese green showed more reduction as compared to Chinese red but at 1.8% salt stress reduction of both cultivars were almost same. Re-watering had given a positive response for both cultivars to recover from higher salt stress. Dry weight, physiological capacitance, leaf tensity and salts concentration levels models gave predicting re-watering levels in percentage, also gave values of dilute irrigation point for Chinese red 9.05 or 10.00 ds m-1 and Chinese green 6.67 or 5.66 ds m-1. At resulted dilution points, plants of both cultivars were under high salt stress, which emphasized the need to re-water or dilution of salts for the survival of plants. The most effective predicting re-watering level and dilute irrigation point of both cultivars were found in same regime, so these models findings were very credible and meaningful. Higher dilute irrigation value of Chinese red indicates its more tolerance ability than Chinese green. Model's equations also gave direct irrigation point of Chinese red 1.32 or 1.62 ds m-1 and Chinese green 2.07 or 0.38 ds m- 1. It was concluded that predicting re-watering levels, dilute and direct irrigation point help to get maximum production using saline water resources.


Neste estudo, foram utilizados dois cultivares de quiabo, verde chinês e vermelho chinês para avaliar o estado da água e parâmetros de crescimento submetidos a estresse salino, adicionando NaCl e CaCl2 com a mesma proporção em solução de cultura de Hoagland a níveis de 0%, 0,6%, 1,2% , 1,8% e re-irrigação a níveis de 0,6-0%, 1,2-0,6%, 1,8-1,2%. O potencial de água medido e os valores de capacitância fisiológica foram utilizados para calcular a tensão das folhas. O estresse com sal reduziu significativamente os parâmetros de crescimento e de estado da água. O verde chinês mostrou mais redução em comparação ao vermelho chinês, mas em 1,8% a redução do estresse salino de ambas as cultivares foi quase a mesma. Re-rega tinha dado uma resposta positiva para ambas as cultivares para recuperar de maior sal estresse. Os valores de peso seco, capacitância fisiológica, tensão da folha e níveis de concentração de sais mostraram predizer níveis de irrigação em porcentagem, também apresentaram valores de ponto de irrigação diluído para vermelho chinês 9,05 ou 10,00 ds m-1 e verde chinês 6,67 ou 5,66 ds m-1. Nos pontos de diluição resultantes, as plantas de ambas as cultivares estavam sob alto estresse salino, o que enfatizou a necessidade de re-água ou diluição de sais para a sobrevivência das plantas. O nível de irrigação mais eficiente e o ponto de irrigação diluído de ambas as cultivares foram encontrados no mesmo regime, portanto, esses resultados foram muito confiáveis e significativos. Maior valor de irrigação diluída de vermelho chinês indica a sua capacidade de tolerância mais do que verde chinês. As equações do modelo também deram ponto de irrigação direta de vermelho chinês 1,32 ou 1,62 ds m-1 e verde chinês 2,07 ou 0,38 ds m-1. Concluiu-se que a previsão dos níveis de rega, o ponto de irrigação diluído e direto ajudam a obter a máxima produção usando recursos hídricos salinos.


Assuntos
Produção Agrícola , Abelmoschus/crescimento & desenvolvimento
13.
Pest Manag Sci ; 73(10): 2017-2027, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28585376

RESUMO

BACKGROUND: Intercropping can help reduce insect pest populations. However, the results of intercropping can be pest- and crop-species specific, with varying effects on crop yield, and pest suppression success. In Cameroon, okra vegetable is often grown in intercropped fields and sown with large distances between planting rows (∼ 2 m). Dominant okra pests include cotton aphids, leaf beetles and whiteflies. In a field experiment, we intercropped okra with maize and bean in different combinations (okra monoculture, okra-bean, okra-maize and okra-bean-maize) and altered plant densities (high and low) to test for the effects of diversity, crop identity and planting distances on okra pests, their predators and yield. RESULTS: We found crop identity and plant density, but not crop diversity to influence okra pests, their predators and okra yield. Only leaf beetles decreased okra yield and their abundance reduced at high plant density. Overall, okra grown with bean at high density was the most economically profitable combination. CONCLUSIONS: We suggest that when okra is grown at higher densities, legumes (e.g. beans) should be included as an additional crop. Intercropping with a leguminous crop can enhance nitrogen in the soil, benefiting other crops, while also being harvested and sold at market for additional profit. Manipulating planting distances and selecting plants based on their beneficial traits may thus help to eliminate yield gaps in sustainable agriculture. © 2017 Society of Chemical Industry.


Assuntos
Abelmoschus/crescimento & desenvolvimento , Produção Agrícola/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Controle de Insetos/métodos , Phaseolus/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Animais , Camarões , Cadeia Alimentar , Insetos/fisiologia , Aranhas/fisiologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-28558340

RESUMO

Abelmoschus manihot (Linn.) Medicus has been clinically used to treat chronic kidney disease, oral ulcers, burns, and dysmenorrhea in China for many centuries. The major pharmacologically-active components of A. manihot are flavonoids. In this study, a rapid and highly sensitive UPLC-MS/MS analysis method was established and successfully applied to the simultaneous determination of five major flavonoids (rutin, hyperoside, isoquercitrin, quercetin, and myricetin) in different parts of A. manihot harvested at ten growth periods. Under the optimized chromatographic conditions, good separation for five target components was obtained on an Acquity UPLC BEH C18 column within 18min. The total contents of the five investigated flavonoids in A. manihot roots, stems, leaves and flowers ranged from 2.86 to 123.7µg/g, 46.39 to 141.0µg/g, 929.4 to 3096µg/g, and 10,150 to 19,390µg/g, respectively, indicating that the total flavonoids in the four parts could be mainly arranged in a decreasing order as flower>leaf>stem>root. The peak of total flavonoids in flowers and leaves appeared at G8 and G9, respectively. These results will be helpful for the determination of the suitable harvest time of A. manihot and the improvement of the utility value of the disused parts.


Assuntos
Abelmoschus/química , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/análise , Extratos Vegetais/análise , Estruturas Vegetais/química , Espectrometria de Massas em Tandem/métodos , Abelmoschus/crescimento & desenvolvimento , Flores/química , Cinética , Extratos Vegetais/química , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Reprodutibilidade dos Testes
15.
Int J Phytoremediation ; 19(5): 490-499, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27739866

RESUMO

The present study was carried out to probe the agronomic response of hybrid cultivar of okra (Hibiscus esculentus L. var. JK 7315) grown in secondary treated municipal wastewater irrigated soil with field investigations. The concentrations of the municipal wastewater viz., 10%, 20%, 40%, 60%, 80%, and 100% along with the control (groundwater) were used for the irrigation of the H. esculentus. The study revealed that the concentrations of the municipal wastewater showed significant (p < 0.05/p < 0.01) effect on the soil parameters after wastewater fertigation in comparison to groundwater in both the seasons. The maximum agronomic performance of the H. esculentus was recorded with 60% concentration of the municipal wastewater in both the seasons. The contamination factor of heavy metals varied in the H. esculentus plants and soils. In the H. esculentus plants, following fertigation with municipal wastewater, the contamination factor of manganese was the highest, while that of chromium was the lowest. Intermediate contamination factor were observed for zinc, copper, and cadmium. Therefore, secondary treated municipal wastewater can be used as an agro-fertigant after appropriate dilution (up to 60%) to achieve the maximum yield of the H. esculentus.


Assuntos
Abelmoschus/crescimento & desenvolvimento , Irrigação Agrícola , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Abelmoschus/metabolismo , Biodegradação Ambiental , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo
16.
Plant Physiol Biochem ; 109: 430-441, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27816824

RESUMO

Sclerotium rolfsii is a highly aggressive pathogen that causes huge economic losses, especially in temperate climates. Alcaligenes faecalis, particularly in endophytic form, has rarely been used to control this fungus. In this study, endophytic Alcaligenes sp. strain BHU 12, BHU 16 (isolated from Abelmoschus esculentus leaf) and BHU M7 (isolated from Andrographis paniculata leaf) were reported to trigger a wide range of host defenses in Okra plant against the collar-rot pathogen S. rolfsii. Endophytic colonization of the strains in ten days old plants was assessed through re-isolation of the rif-tagged strains on rifampicin augmented nutrient agar media. The ability of the endophytic strains to induce systemic defense responses in above-ground organs was assessed by collecting leaf tissues of the Okra plants grown under non-gnotobiotic conditions at different time intervals post seedling bacterization with the endophytic biocontrol agents. The pathogen challenged unprimed plants exhibited flaccidity of the stem and leaves at 48 h post infection (hpi) in contrast to the bioprimed and challenged plants. Biochemical and histochemical analyses explained the above phenomenon as activation of phyto-peroxidases leading to an increased metabolism of the reactive oxygen species (ROS), accompanied by activation of the phenylpropanoid network and a subsequent enhancement in plant phenolics. Interestingly, though the maximum increase in the defense pathways was observed in treatments with native endophytes of Okra plant, yet the enhancement in antioxidant pathway due to A. paniculata borne endophytes was also quite significant. Thus, this work clearly demonstrates how Okra plants respond to the "non-hostile" colonization of bacterial endophytes and how induced defense response can contribute to the biocontrol activity of the endophytic strains.


Assuntos
Abelmoschus/metabolismo , Abelmoschus/microbiologia , Alcaligenes faecalis/metabolismo , Ascomicetos/patogenicidade , Doenças das Plantas/microbiologia , Abelmoschus/crescimento & desenvolvimento , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Morte Celular , Endófitos/metabolismo , Interações Hospedeiro-Patógeno , Peróxido de Hidrogênio/metabolismo , Lignina/metabolismo , Peroxidação de Lipídeos , Estresse Oxidativo , Doenças das Plantas/prevenção & controle , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
17.
J Environ Manage ; 180: 180-9, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27233043

RESUMO

Vermicompost, which had been derived solely by the action of the epigeic earthworm Eisenia fetida on parthenium (Parthenium hysterophorus), was tested for its impact on the germination and early growth of green gram (Vigna radiata), ladies finger (Abelmoschus esculentus) and cucumber (Cucumis sativus). Seedlings were germinated and grown in soil amended with 0 (control), 0.75, 1.5, 2, 4, 8, 20 and 40% (by weight) parthenium vermicompost. Even though parthenium is known to possess strong negative allelopathy, as also plant/animal toxicity in other forms, its vermicompost (VC) manifested none of these attributes. Rather the VC enhanced germination success, introduced plant-friendly physical features in the container media, increased biomass carbon, and was seen to promote early growth as reflected in several morphological and biochemical characteristics in plants which had received parthenium VC in comparison to those which had not. All these effects were statistically significant. Fourier Transform Infrared (FTIR) Spectrometry revealed that the phenols and the sesquiterpene lactones that are responsible for the negative allelopathic impact of parthenium were largely destroyed in the course of vermicomposting. FTIR spectra also indicated that lignin content of parthenium was reduced during its vermicomposting. The findings open up the possibility that several other invasives known for their negative allelopathy and toxicity may also produce vermicompost which may be plant-friendly and soil-friendly. It also makes it appear possible that the huge quantities of phytomass that is generated annually by parthenium can be gainfully utilized in producing organic fertilizer via vermicomposting, thereby providing a means of exercising some control over parthenium's rampant growth and invasion.


Assuntos
Fertilizantes , Plântula/crescimento & desenvolvimento , Solo , Abelmoschus/crescimento & desenvolvimento , Alelopatia , Animais , Cucumis/crescimento & desenvolvimento , Oligoquetos , Partenogênese , Extratos Vegetais , Vigna/crescimento & desenvolvimento
18.
Environ Monit Assess ; 188(6): 328, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27149970

RESUMO

In developing countries like Pakistan, irrigation of crops with industrial and municipal wastewater is a common practice. However, the impact of wastewater irrigation on vegetables growth has rarely been studied. Therefore, the present study was conducted to determine the effect of industrial wastewater on the germination and seedling growth of some commonly grown vegetables in Pakistan. Wastewater samples were collected from two different industries (marble industry and match alam factory) at Hayatabad Industrial Estate (HIE) in Peshawar, Pakistan, and their effect on different growth parameters of four vegetables including Hibiscus esculentus, Lactuca sativa, Cucumis sativus, and Cucumis melo was investigated. The obtained results revealed that wastewater from marble industry did not affect seed germination except a minor inhibition in H. esculentus. Effluents from match alam factory stimulated seed germination in C. melo and C. sativus but had no effect on seed germination in the other two vegetables. Wastewater increased root and shoot length in H. esculentus, L. sativa and C. melo, but decreased it in C. sativus. Similarly, differential effects of wastewater were observed on fresh and dry biomass of seedlings in all vegetables. It can be concluded that wastewater may have different effects on different crops, depending upon the nature of wastewater and sensitivity of a plant species to wastewater.


Assuntos
Irrigação Agrícola/métodos , Resíduos Industriais , Verduras/crescimento & desenvolvimento , Águas Residuárias , Abelmoschus/crescimento & desenvolvimento , Biomassa , Cucumis/crescimento & desenvolvimento , Germinação , Lactuca/crescimento & desenvolvimento , Paquistão , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento
19.
Biomed Res Int ; 2016: 6284547, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26951880

RESUMO

Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT) and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR) were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress.


Assuntos
Abelmoschus/microbiologia , Germinação/fisiologia , Rhizobiaceae/metabolismo , Estresse Fisiológico , Abelmoschus/crescimento & desenvolvimento , Clorofila/metabolismo , Desenvolvimento Vegetal/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Rhizobiaceae/química , Tolerância ao Sal/fisiologia , Cloreto de Sódio/toxicidade , Microbiologia do Solo
20.
Bull Environ Contam Toxicol ; 96(3): 395-400, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26679322

RESUMO

Experimental investigations were conducted to evaluate the toxic effects of different arsenic (As) species such as arsenite (As(III)), arsenate (As(V)) and dimethylarsinic acid (DMA) on the growth of okra (Abelmoschus esculentus). The present study describes the changes in the growth, yield and accumulation characteristics of okra plants spiked with 20 and 50 mg kg(-1) of As(III), As(V) and DMA. As species negatively affected the yield and growth of the plant.The availability of arsenic compounds in the aerial parts decreased in the order As(V) > As(III) > DMA and in the roots observed as As(III) > As(V) > DMA. The results showed that except As(V), okra accumulated As(III) and DMA mainly in its roots with limited transport to shoots. Thus the plant has the capacity to tolerate As stress and can be considered as a resistive variety. The study also reveals that removal of As by boiling the vegetables with excess of water is not possible.


Assuntos
Abelmoschus/efeitos dos fármacos , Abelmoschus/crescimento & desenvolvimento , Arseniatos/metabolismo , Arsenitos/metabolismo , Ácido Cacodílico/metabolismo , Abelmoschus/metabolismo , Arseniatos/toxicidade , Arsenitos/toxicidade , Biodegradação Ambiental , Biomassa , Ácido Cacodílico/toxicidade , Componentes Aéreos da Planta/efeitos dos fármacos , Componentes Aéreos da Planta/crescimento & desenvolvimento , Componentes Aéreos da Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...