Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.304
Filtrar
1.
Pharmacol Res Perspect ; 12(3): e1201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38775298

RESUMO

The toxicity of inhaled particulate air pollution perseveres even at lower concentrations than those of the existing air quality limit. Therefore, the identification of safe and effective measures against pollutant particles-induced vascular toxicity is warranted. Carnosol is a bioactive phenolic diterpene found in rosemary herb, with anti-inflammatory and antioxidant actions. However, its possible protective effect on the thrombotic and vascular injury induced by diesel exhaust particles (DEP) has not been studied before. We assessed here the potential alleviating effect of carnosol (20 mg/kg) administered intraperitoneally 1 h before intratracheal (i.t.) instillation of DEP (20 µg/mouse). Twenty-four hours after the administration of DEP, various parameters were assessed. Carnosol administration prevented the increase in the plasma concentrations of C-reactive protein, fibrinogen, and tissue factor induced by DEP exposure. Carnosol inhibited DEP-induced prothrombotic effects in pial microvessels in vivo and platelet aggregation in vitro. The shortening of activated partial thromboplastin time and prothrombin time induced by DEP was abated by carnosol administration. Carnosol inhibited the increase in pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor α) and adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, and P-selectin) in aortic tissue. Moreover, it averted the effects of DEP-induced increase of thiobarbituric acid reactive substances, depletion of antioxidants and DNA damage in the aortic tissue. Likewise, carnosol prevented the decrease in the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) caused by DEP. We conclude that carnosol alleviates DEP-induced thrombogenicity and vascular inflammation, oxidative damage, and DNA injury through Nrf2 and HO-1 activation.


Assuntos
Abietanos , Trombose , Emissões de Veículos , Animais , Abietanos/farmacologia , Camundongos , Masculino , Emissões de Veículos/toxicidade , Trombose/prevenção & controle , Trombose/tratamento farmacológico , Trombose/induzido quimicamente , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Lesões do Sistema Vascular/tratamento farmacológico , Antioxidantes/farmacologia , Material Particulado/toxicidade , Material Particulado/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Poluentes Atmosféricos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos
2.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731397

RESUMO

A chemical investigation of the arils of Torreya grandis led to the isolation of seven abietane-type diterpenoids (compounds 1-7) including three previously undescribed compounds, one unreported natural product, and three known analogs. The structures of these compounds were determined by means of spectroscopy, single-crystal X-ray diffraction, and ECD spectra. An antibacterial activity assay showed that compounds 5 and 6 had significant inhibitory effects on methicillin-resistant Staphylococcus aureus, with MIC values of 100 µM. Moreover, compounds 1, 3, 4, and 7 exhibited anti-neuroinflammatory activity in LPS-stimulated BV-2 microglia cells, with the IC50 values ranging from 38.4 to 67.9 µM.


Assuntos
Abietanos , Antibacterianos , Abietanos/química , Abietanos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Estrutura Molecular , Linhagem Celular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Diterpenos/farmacologia , Diterpenos/química , Diterpenos/isolamento & purificação , Lipopolissacarídeos/farmacologia
3.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732202

RESUMO

Acquiring resistance against antiviral drugs is a significant problem in antimicrobial therapy. In order to identify novel antiviral compounds, the antiviral activity of eight plants indigenous to the southern region of Hungary against herpes simplex virus-2 (HSV-2) was investigated. The plant extracts and the plant compound carnosic acid were tested for their effectiveness on both the extracellular and intracellular forms of HSV-2 on Vero and HeLa cells. HSV-2 replication was measured by a direct quantitative PCR (qPCR). Among the tested plant extracts, Salvia rosmarinus (S. rosmarinus) exhibited a 90.46% reduction in HSV-2 replication at the 0.47 µg/mL concentration. Carnosic acid, a major antimicrobial compound found in rosemary, also demonstrated a significant dose-dependent inhibition of both extracellular and intracellular forms of HSV-2. The 90% inhibitory concentration (IC90) of carnosic acid was between 25 and 6.25 µg/mL. Proteomics and high-resolution respirometry showed that carnosic acid suppressed key ATP synthesis pathways such as glycolysis, citrate cycle, and oxidative phosphorylation. Inhibition of oxidative phosphorylation also suppressed HSV-2 replication up to 39.94-fold. These results indicate that the antiviral action of carnosic acid includes the inhibition of ATP generation by suppressing key energy production pathways. Carnosic acid holds promise as a potential novel antiviral agent against HSV-2.


Assuntos
Abietanos , Trifosfato de Adenosina , Antivirais , Herpesvirus Humano 2 , Extratos Vegetais , Replicação Viral , Abietanos/farmacologia , Replicação Viral/efeitos dos fármacos , Chlorocebus aethiops , Células Vero , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Humanos , Animais , Herpesvirus Humano 2/efeitos dos fármacos , Herpesvirus Humano 2/fisiologia , Antivirais/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células HeLa
4.
Nutrients ; 16(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732504

RESUMO

Prostate cancer, accounting for 375,304 deaths in 2020, is the second most prevalent cancer in men worldwide. While many treatments exist for prostate cancer, novel therapeutic agents with higher efficacy are needed to target aggressive and hormone-resistant forms of prostate cancer, while sparing healthy cells. Plant-derived chemotherapy drugs such as docetaxel and paclitaxel have been established to treat cancers including prostate cancer. Carnosic acid (CA), a phenolic diterpene found in the herb rosemary (Rosmarinus officinalis) has been shown to have anticancer properties but its effects in prostate cancer and its mechanisms of action have not been examined. CA dose-dependently inhibited PC-3 and LNCaP prostate cancer cell survival and proliferation (IC50: 64, 21 µM, respectively). Furthermore, CA decreased phosphorylation/activation of Akt, mTOR, and p70 S6K. A notable increase in phosphorylation/activation of AMP-activated kinase (AMPK), acetyl-CoA carboxylase (ACC) and its upstream regulator sestrin-2 was seen with CA treatment. Our data indicate that CA inhibits AKT-mTORC1-p70S6K and activates Sestrin-2-AMPK signaling leading to a decrease in survival and proliferation. The use of inhibitors and small RNA interference (siRNA) approaches should be employed, in future studies, to elucidate the mechanisms involved in carnosic acid's inhibitory effects of prostate cancer.


Assuntos
Proteínas Quinases Ativadas por AMP , Abietanos , Proliferação de Células , Sobrevivência Celular , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Abietanos/farmacologia , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proliferação de Células/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fosforilação/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Células PC-3
5.
Zhonghua Yi Xue Za Zhi ; 104(17): 1514-1520, 2024 May 07.
Artigo em Chinês | MEDLINE | ID: mdl-38706059

RESUMO

Objective: To explore the effect and investigate the molecular mechanism of different concentrations of total tanshinones alone and in combination with tyrosine kinase inhibitors (TKIs) on the proliferation inhibition and apoptosis of human myeloid leukemia cell lines. Methods: K562 and Kasumi-1 cell lines were purchased from the Shanghai Cell Bank of the Chinese Academy of Sciences, and the TKIs-resistant strain K562/T315I cell line was constructed in Molecular Medicine Research Center, Beijing Lu Daopei Institute of Hematology. Logarithmic growth phase cells were taken and divided into intervention groups with total tanshinone of 0, 2.19, 4.38, 8.75, 17.50 and 35.00 µg/ml intervention groups, which were inoculated in 96-well plates at a density of 1×104 cells/well and exposed to the drug for 24 h, and a control group treated with dimethyl sulfoxide was also set up simultaneously. All experiments were repeated independently 3-5 times. The proliferative activity of the cells was assessed using the CCK-8 assay, the apoptotic rates were measured by flow cytometry, and the expression levels of apoptosis-regulating proteins Bcl-2 and Bax were analyzed by Western blotting. The cell lines treated and untreated with total tanshinone were subjected to transcriptome sequencing and gene set enrichment analysis to identify differentially expressed genes. Results: The half-inhibitory concentration (IC50) values of 8.75 µg/ml total tanshinone at 24 h for K562, K562/T315I and Kasumi-1 cells were (4.11±0.02), (4.95±0.04) and (3.98±0.01) µg/ml, respectively. When combined with 0.25 µmol/L imatinib, 8.75 µg/ml total tanshinone could enhance the induction of apoptosis effects on K562 and K562/T315I cell lines. After being treated with 4.38, 8.75, and 17.50 µg/ml of total tanshinone for 24 h, compared with the control group, total tanshinone upregulated the expression level of Bax protein, downregulated the expression level of Bcl-2 protein, and decreased the Bcl-2/Bax ratio (all P<0.05). Total tanshinone inhibited the proliferation-related signaling pathway and DNA damage repair pathway of myeloid leukemia cell lines, and activated the signaling pathway that induces apoptosis in leukemia cells. Conclusion: Different concentrations of total tanshinoneinhibites proliferation and promote apoptosis in K562, Kasumi-1 and TKIs-resistant K562/T315I cell lines, and further enhance the anti-leukemic effect when combined with TKIs.


Assuntos
Abietanos , Apoptose , Proliferação de Células , Leucemia Mieloide , Inibidores de Proteínas Quinases , Humanos , Abietanos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células K562 , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
6.
J Agric Food Chem ; 72(15): 8704-8714, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572931

RESUMO

Miltiradiene serves as a crucial precursor in the synthesis of various high-value abietane-type diterpenes, exhibiting diverse pharmacological activities. Previous efforts to enhance miltiradiene production have primarily focused on the mevalonate acetate (MVA) pathway. However, limited emphasis has been placed on optimizing the supply of acetyl-CoA and NADPH. In this study, we constructed a platform yeast strain for miltiradiene production by reinforcing the biosynthetic pathway of geranylgeranyl diphosphate (GGPP) and acetyl-CoA, and addressing the imbalance between the supply and demand of the redox cofactor NADPH within the cytoplasm, resulting in an increase in miltiradiene yield to 1.31 g/L. Furthermore, we conducted modifications to the miltiradiene synthase fusion protein tSmKSL1-CfTPS1. Finally, the comprehensive engineering strategies and protein modification strategies culminated in 1.43 g/L miltiradiene in the engineered yeast under shake flask culture conditions. Overall, our work established efficient yeast cell factories for miltiradiene production, providing a foothold for heterologous biosynthesis of abietane-type diterpenes.


Assuntos
Diterpenos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Abietanos , Acetilcoenzima A/metabolismo , NADP/metabolismo , Diterpenos/metabolismo , Engenharia Metabólica/métodos
7.
Chin J Nat Med ; 22(4): 356-364, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658098

RESUMO

A comprehensive chemical study of the endophytic fungus Arthrinium sp. ZS03, associated with Acorus tatarinowii Schott, yielded eleven pimarane diterpenoids (compounds 1-11), including seven novel compounds designated arthrinoids A-G (1-7). The determination of their structures and absolute configurations was achieved through extensive spectroscopic techniques, quantum chemical calculations of electronic circular dichroism (ECD), and single-crystal X-ray diffraction analysis. Furthermore, 7 demonstrated inhibitory activity against Klebsiella pneumoniae, comparable to the reference antibiotic amikacin, with a minimum inhibitory concentration (MIC) of 8 µg·mL-1.


Assuntos
Abietanos , Antibacterianos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Abietanos/farmacologia , Abietanos/química , Abietanos/isolamento & purificação , Estrutura Molecular , Ascomicetos/química , Klebsiella pneumoniae/efeitos dos fármacos , Diterpenos/farmacologia , Diterpenos/química , Cristalografia por Raios X
8.
Molecules ; 29(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611836

RESUMO

As a traditional Chinese medicine, Salvia miltiorrhiza Bunge was first recorded in the Shennong Materia Medica Classic and is widely used to treat "the accumulation of symptoms and masses". The main active ingredient of Salvia miltiorrhiza Bunge, Tanshinone IIA (TIIA), has shown anti-inflammatory, antitumor, antifibrosis, antibacterial, and antioxidative activities, etc. In this study, the results showed that TIIA could inhibit the proliferation and migration of HepG2 cells and downregulate glutathione (GSH) and Glutathione Peroxidase 4 (GPX4) levels; besides, TIIA induced the production of Reactive Oxygen Species (ROS), and upregulated the total iron content. Based on network pharmacology analysis, the antitumor effect of TIIA was found to be focused on the endoplasmic reticulum (ER)-mediated ferroptosis signaling pathway, with protein kinase R (PKR)-like ER kinase (PERK)-activating transcription factor 4 (ATF4)-heat shock 70 kDa protein 5 (HSPA5) as the main pathway. Herein, TIIA showed typical ferroptosis characteristics, and a ferroptosis inhibitor (ferrostatin-1) was used to verify the effect. The antitumor effects of TIIA, occurring through the inhibition of the PERK-ATF4-HSPA5 pathway, were further observed in vivo as significantly inhibited tumor growth and the improved pathological morphology of tumor tissue in H22-bearing mice. In summary, the antitumor mechanism of TIIA might be related to the downregulation of the activation of PERK-ATF4-HSPA5 pathway-mediated ferroptosis.


Assuntos
Fator 4 Ativador da Transcrição , Ferroptose , Animais , Camundongos , Fator 4 Ativador da Transcrição/genética , Chaperona BiP do Retículo Endoplasmático , Abietanos/farmacologia , Glutationa
9.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612919

RESUMO

Salvia miltiorrhiza is a prized traditional Chinese medicinal plant species. Its red storage roots are primarily used for the treatment of cardiovascular and cerebrovascular diseases. In this study, a transcription factor gene AtMYB2 was cloned and introduced into Salvia miltiorrhiza for ectopic expression. Overexpression of AtMYB2 enhanced salt stress resistance in S. miltiorrhiza, leading to a more resilient phenotype in transgenic plants exposed to high-salinity conditions. Physiological experiments have revealed that overexpression of AtMYB2 can decrease the accumulation of reactive oxygen species (ROS) during salt stress, boost the activity of antioxidant enzymes, and mitigate oxidative damage to cell membranes. In addition, overexpression of AtMYB2 promotes the synthesis of tanshinones and phenolic acids by upregulating the expression of biosynthetic pathway genes, resulting in increased levels of these secondary metabolites. In summary, our findings demonstrate that AtMYB2 not only enhances plant tolerance to salt stress, but also increases the accumulation of secondary metabolites in S. miltiorrhiza. Our study lays a solid foundation for uncovering the molecular mechanisms governed by AtMYB2 and holds significant implications for the molecular breeding of high-quality S. miltiorrhiza varieties.


Assuntos
Hidroxibenzoatos , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Abietanos , Antioxidantes
10.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675627

RESUMO

The abietane diterpenoid 7α-acetoxy-6ß-hydroxyroyleanone (Roy) isolated from Plectranthus grandidentatus demonstrates cytotoxicity across numerous cancer cell lines. To potentiate anticancer attributes, a series of semi-synthetic Roy derivatives were generated and examined computationally. ADMET predictions were used to evaluate drug-likeness and toxicity risks. The antineoplastic potential was quantified by PASS. The DFT models were used to assess their reactivity and stability. Molecular docking determined cancer-related protein binding. MS simulations examined ligand-protein stability. Additionally, network pharmacology was used to identify potential targets and signaling pathways. Favorable ADME attributes and acceptable toxicity profiles were determined for all compounds. Strong anticancer potential was shown across derivatives (Pa 0.819-0.879). Strategic modifications altered HOMO-LUMO gaps (3.39-3.79 eV) and global reactivity indices. Favorable binding was revealed against cyclin-dependent kinases, BCL-2, caspases, receptor tyrosine kinases, and p53. The ligand exhibited a stable binding pose in MD simulations. Network analysis revealed involvement in cancer-related pathways. In silico evaluations predicted Roy and derivatives as effective molecules with anticancer properties. Experimental progress is warranted to realize their chemotherapeutic potential.


Assuntos
Abietanos , Diterpenos , Simulação de Acoplamento Molecular , Plectranthus , Humanos , Abietanos/química , Abietanos/farmacologia , Plectranthus/química , Simulação por Computador , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Simulação de Dinâmica Molecular , Estrutura Molecular
11.
Bioorg Med Chem Lett ; 105: 129736, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599295

RESUMO

α-Glucosidase is one of the therapeutic approaches for treating type 2 diabetes mellitus. Almost 95 % of diabetes patients worldwide have been diagnosed with type 2 diabetes, resulting in 1.5 million fatalities each year. Newly synthesized oxazole-based tanshinone IIA derivatives (1a-n) were designed and evaluated for their inhibitory activity against α-glucosidase enzyme. Eight compounds (1a-d, 1f-g, 1j, and 1m) demonstrated excellent inhibition with IC50 values ranging from 0.73 ± 0.11 to 9.46 ± 0.57 µM as compared to tanshinone IIA (IC50 = 11.39 ± 0.77 µM) and standard acarbose (IC50 = 100.00 ± 0.95 µM). Among this series, 1j bearing two hydroxyls group over the phenyl ring was identified as the most potent α-glucosidase inhibitor with IC50 value of 0.73 ± 0.11 µM. Molecular docking simulations were done for the most active compound to identify important binding modes responsible for inhibition activity of α-glucosidase. In addition, the kinetic study was also performed to understand the mode of inhibition.


Assuntos
Abietanos , Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/síntese química , Abietanos/química , Abietanos/farmacologia , Abietanos/síntese química , alfa-Glucosidases/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Humanos , Relação Dose-Resposta a Droga
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124273, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38615417

RESUMO

Rosmarinic acid (RA), Tanshinone IIA (Tan IIA), and Salvianolic acid B (Sal B) are crucial compounds found in Salvia miltiorrhiza. Quickly predicting these components can aid in ensuring the quality of S. miltiorrhiza. Spectral preprocessing and variable selection are essential processes in quantitative analysis using near infrared spectroscopy (NIR). A novel hybrid variable selection approach utilizing iVISSA was employed in this study to enhance the quantitative measurement of RA, Tan IIA, and Sal B contents in S. miltiorrhiza. The spectra underwent 108 preprocessing approaches, with the optimal method being determined as orthogonal signal correction (OSC). iVISSA was utilized to identify the intervals (feature bands) that were most pertinent to the target chemical. Various methods such as bootstrapping soft shrinkage (BOSS), competitive adaptive reweighted sampling (CARS), genetic algorithm (GA), variable combination population analysis (VCPA), successive projections algorithm (SPA), iteratively variable subset optimization (IVSO), and iteratively retained informative variables (IRIV) were used to identify significant feature variables. PLSR models were created for comparison using the given variables. The results fully demonstrated that iVISSA-SPA calibration model had the best comprehensive performance for Tan IIA, and iVISSA-BOSS had the best comprehensive performance for RA and Sal B, and correlation coefficients of cross-validation (R2cv), root mean square errors of cross-validation (RMSECV), correlation coefficients of prediction (R2p), and root mean square errors of prediction (RMSEP) were 0.9970, 0.0054, 0.9990 and 0.0033, 0.9992, 0.0016, 0.9961 and 0.0034, 0.9998, 0.0138, 0.9875 and 0.1090, respectively. The results suggest that NIR spectroscopy, along with PLSR and a hybrid variable selection method using iVISSA, can be a valuable tool for quickly quantifying RA, Sal B, and Tan IIA in S. miltiorrhiza.


Assuntos
Abietanos , Algoritmos , Benzofuranos , Cinamatos , Depsídeos , Ácido Rosmarínico , Salvia miltiorrhiza , Espectroscopia de Luz Próxima ao Infravermelho , Salvia miltiorrhiza/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Depsídeos/análise , Abietanos/análise , Benzofuranos/análise , Cinamatos/análise , Análise dos Mínimos Quadrados
13.
Biochem Pharmacol ; 224: 116207, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621425

RESUMO

Osimertinib is a novel epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), acting as the first-line medicine for advanced EGFR-mutated NSCLC. Recently, the acquired resistance to osimertinib brings great challenges to the advanced treatment. Therefore, it is in urgent need to find effective strategy to overcome osimertinib acquired resistance. Here, we demonstrated that SREBP pathway-driven lipogenesis was a key mediator to promote osimertinib acquired resistance, and firstly found Tanshinone IIA (Tan IIA), a natural pharmacologically active constituent isolated from Salvia miltiorrhiza, could overcome osimertinib-acquired resistance in vitro and in vivo via inhibiting SREBP pathway-mediated lipid lipogenesis by using LC-MS based cellular lipidomics analysis, quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, flow cytometry, small interfering RNAs transfection, and membrane fluidity assay et al. The results showed that SREBP1/2-driven lipogenesis was highly activated in osimertinib acquired resistant NSCLC cells, while knockdown or inhibition of SREBP1/2 could restore the sensitivity of NSCLC to osimertinib via altered the proportion of saturated phospholipids and unsaturated phospholipids in osimertinib acquired-resistant cells. Furthermore, Tanshinone IIA (Tan IIA) could reverse the acquired resistance to osimertinib in lung cancer. Mechanically, Tan IIA inhibited SREBP signaling mediated lipogenesis, changed the profiles of saturated phospholipids and unsaturated phospholipids, and thus promoted osimertinib acquired resistant cancer cells to be attacked by oxidative stress-induced damage and reduce the cell membrane fluidity. The reversal effect of Tan IIA on osimertinib acquired resistant NSCLC cells was also confirmed in vivo, which is helpful for the development of strategies to reverse osimertinib acquired resistance.


Assuntos
Abietanos , Acrilamidas , Resistencia a Medicamentos Antineoplásicos , Lipogênese , Neoplasias Pulmonares , Camundongos Nus , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Abietanos/farmacologia , Animais , Acrilamidas/farmacologia , Lipogênese/efeitos dos fármacos , Camundongos , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Masculino , Feminino , Indóis , Pirimidinas
14.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1611-1620, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621946

RESUMO

This study investigated the protective effect of tanshinone Ⅱ_A(TSⅡ_A) on the liver in the rat model of non-alcoholic fatty liver disease(NAFLD) and the mechanism of TSⅡ_A in regulating ferroptosis via the nuclear factor E2-related factor 2(Nrf2) signaling pathway. The rat model of NAFLD was established with a high-fat diet for 12 weeks. The successfully modeled rats were assigned into model group, low-and high-dose TSⅡ_A groups, and inhibitor group, and normal control group was set. Enzyme-linked immunosorbent assay was employed to determine the content of superoxide dismutase(SOD) and malondialdehyde(MDA) in the serum of rats in each group. A biochemical analyzer was used to measure the content of aspartate aminotransferase(AST), alaninl aminotransferase(ALT), total cholesterol(TC), and triglycerides(TG). Hematoxylin-eosin(HE) staining was used to detect pathological damage in liver tissue. Terminal-deoxynucleoitidyl transferase-mediated nick end labeling(TUNEL) was employed to examine the apoptosis of the liver tissue. Oil red O staining, MitoSOX staining, and Prussian blue staining were conducted to reveal lipid deposition, the content of reactive oxygen species(ROS), and iron deposition in liver tissue. Western blot was employed to determine the expression of Nrf2, heme oxygenase-1(HO-1), glutathione peroxidase 4(GPX4), ferroptosis suppressor protein 1(FSP1), B cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) in the liver tissue. The result showed that TSⅡ_A significantly reduced the content of MDA, AST, ALT, TC, and TG in the serum, increased the activity of SOD, decreased the apoptosis rate, lipid deposition, ROS, and iron deposition in the liver tissue, up-regulated the expression of Nrf2, HO-1, FSP1, GPX, and Bcl-2, and inhibited the expression of Bax in the liver tissue of NAFLD rats. However, ML385 partially reversed the protective effect of TSⅡ_A on the liver tissue. In conclusion, TSⅡ_A could inhibit ferroptosis in the hepatocytes and decrease the ROS and lipid accumulation in the liver tissue of NAFLD rats by activating the Nrf2 signaling pathway.


Assuntos
Abietanos , Ferroptose , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fígado , Transdução de Sinais , Triglicerídeos/metabolismo , Superóxido Dismutase/metabolismo , Ferro/metabolismo
15.
Clinics (Sao Paulo) ; 79: 100365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38677194

RESUMO

OBJECTIVE: This study explored the pharmacological mechanism of Tanshinone IIA (TAN IIA) in the treatment of Osteoarthritis (OA), which provided a certain reference for further research and clinical application of Tan IIA in OA. METHODS: CHON-001 cells were stimulated with 10 µg/mL IL-1ß for 48 h and treated with 10 µM TAN IIA for 48 h. Cellular viability and apoptosis were evaluated by CCK-8 assay and flow cytometry, and Cleaved caspase-3 was measured by Immunoblot assay and RT-qPCR. TNF-α, IL-6, and iNOS in CHON-001 cells were determined by RT-qPCR and ELISA. To further verify the effect of TAN IIA on OA, a rat model of OA in vivo was established by right anterior cruciate ligament transection. TAN IIA was administered at 50 mg/kg or 150 mg/kg for 7 weeks. The degree of cartilage destruction in OA rats was observed by TUNEL and HE staining. Cleaved caspase-3 and FBXO11 were measured by immunohistochemical staining, RT-qPCR, and Immunoblot. TNF-α, IL-6, and iNOS in chondrocytes of OA rats were detected by ELISA. RESULTS: IL-1ß stimulated CHON-001 cell apoptosis and inflammation, and TAN IIA had anti-apoptosis and anti-inflammatory effects on IL-1ß-regulated CHON-001 cells. TAN IIA down-regulated FBXO11 and inhibited PI3K/AKT and NF-κB pathways, thereby alleviating apoptotic and inflammatory reactions in CHON-001 cells under IL-1ß treatment. Moreover, TAN IIA treatment improved chondrocyte apoptosis and inflammations in OA rats. CONCLUSION: TAN IIA inhibits PI3K/Akt and NF-κB pathways by down-regulating FBXO11 expression, alleviates chondrocyte apoptosis and inflammation, and delays the progression of OA.


Assuntos
Abietanos , Apoptose , Condrócitos , Interleucina-1beta , Osteoartrite , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Animais , Abietanos/farmacologia , Apoptose/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Masculino , Proteínas F-Box/metabolismo , Ratos Sprague-Dawley , Inflamação/tratamento farmacológico , Inflamação/metabolismo , NF-kappa B/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Caspase 3/metabolismo
16.
Artigo em Chinês | MEDLINE | ID: mdl-38433685

RESUMO

Objective:To investigate the effects and molecular mechanisms of abietic acid in the cell proliferation, invasion and migration of cisplatin-resistant nasopharyngeal carcinoma cells. Methods:①Cisplatin-resistant C666/DDP cell line was constructed by increasing drug concentration method. ②The effects of abietic acid on proliferation, invasion and migration of C666/DDP cells were investigated by CCK-8 method, reactive oxygen species(ROS) and mitochondrial membrane potential(MMP) level assay and subcutaneous tumorigenesis assay in nude mice to detect the effects of abietic acid on proliferation and apoptosis of C666/DDP cells in vitro and in vivo. The effect of abietic acid on the proliferation and apoptosis of C666/DDP cells in vitro and in vivo was measured by Transwell assay. ③Western blot and IHC method to detect the expression of PI3K/AKT/mTOR pathway related proteins. Results:①The IC50 of cisplatin cytotoxicity to C666-1 was about 25 µmol/L. RI=25 µmol/L /4 µmol/L=6.25, resistance was obtained, and the C666-1-DDP resistant strain was successfully constructed. ②Abietic acid promoted apoptosis and inhibited proliferation of C666/DDP cells, and showed G2/M phase block; transwell showed that abietic acid inhibited C666/DDP cell migration and invasion, increased ROS level of C666/DDP cells and decreased MMP. Transwell showed that abietic acid inhibited the migration and invasion ability of C666/DDP cells, increased the ROS level of C666/DDP cells and decreased MMP. ③Animal experiments showed that abietic acid inhibited the proliferation of cisplatin-resistant nasopharyngeal carcinoma in vivo in a concentration gradient and suppressed the expression of PI3K/AKT/mTOR signaling pathway-related proteins. Conclusion:Abietic acid inhibits proliferation, invasion and migration of cisplatin-resistant nasopharyngeal carcinoma cells by a mechanism related to inhibition of PI3K/AKT/mTOR signaling pathway.


Assuntos
Abietanos , Cisplatino , Neoplasias Nasofaríngeas , Animais , Camundongos , Cisplatino/farmacologia , Camundongos Nus , Carcinoma Nasofaríngeo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Proliferação de Células , Serina-Treonina Quinases TOR
17.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474596

RESUMO

Euphorbia is a large genus of the Euphorbiaceae family. Around 250 species of the Euphorbia genus have been studied chemically and pharmacologically; different compounds have been isolated from these species, especially diterpenes and triterpenes. Several reports show that several species have anti-inflammatory activity, which can be attributed to the presence of diterpenes, such as abietanes, ingenanes, and lathyranes. In addition, it was found that some diterpenes isolated from different Euphorbia species have anti-cancer activity. In this review, we included compounds isolated from species of the Euphorbia genus with anti-inflammatory or cytotoxic effects published from 2018 to September 2023. The databases used for this review were Science Direct, Scopus, PubMed, Springer, and Google Scholar, using the keywords Euphorbia with anti-inflammatory or cytotoxic activity. In this review, 68 studies were collected and analyzed regarding the anti-inflammatory and anti-cancer activities of 264 compounds obtained from 36 species of the Euphorbia genus. The compounds included in this review are terpenes (95%), of which 68% are diterpenes, especially of the types ingenanes, abietanes, and triterpenes (approximately 15%).


Assuntos
Antineoplásicos , Diterpenos , Euphorbia , Triterpenos , Euphorbia/química , Abietanos , Estrutura Molecular , Diterpenos/química , Triterpenos/química , Anti-Inflamatórios
18.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 257-263, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430013

RESUMO

Granulosa cells are somatic cells located inside follicles that play a crucial role in the growth and development of follicles. Quercetin and tanshinone are two key monomers in traditional Chinese medicine that have antioxidant and anti-aging properties. The KGN cell apoptosis model caused by triptolide (TP) was employed in this work to investigate granulosa cell death and medication rescue. Quercetin and tanshinone therapy suppressed KGN cell death and oxidation while also regulating the expression of critical apoptosis and oxidation-related markers such as B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax). Further research revealed that the effects of Quercetin and Tanshinone were accomplished via deacetylation of FOXO3A in the cytoplasm and mitochondria via the SIRT1/SIRT3-FOXO3a axis. In summary, Quercetin and tanshinone protect KGN cells from apoptosis by reducing mitochondrial apoptosis and oxidation via the SIRT1/SIRT3-FOXO3a axis.


Assuntos
Abietanos , Sirtuína 3 , Feminino , Humanos , Apoptose , Autofagia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Quercetina/farmacologia , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/metabolismo , Sirtuína 3/efeitos dos fármacos , Sirtuína 3/metabolismo , Proteína Forkhead Box O3/efeitos dos fármacos
19.
Chem Biodivers ; 21(4): e202400244, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38426640

RESUMO

Five new compounds (1, 2, 7, 12, and 16), along with fifteen known ones, were isolated from Ajuga lupulina Maxim. Their structures were revealed by analysing spectroscopic data (MS, NMR), and experimental and calculated ECD spectra was used to deduce the absolute configuration. Compound 16, with eight carbon atoms, was firstly isolated from the nature. All the isolates were evaluated for their inhibitory effect on RSL3-induced ferroptosis in HT22 mouse hippocampal neuronal cells. Among them, the abietane-type diterpenoids (7-11) significantly inhibited ferroptosis with EC50 values of 0.83 µM, 2.05 µM, 0.96 µM, 1.47 µM, and 1.19 µM, respectively.


Assuntos
Ajuga , Ferroptose , Animais , Camundongos , Estrutura Molecular , Ajuga/química , Abietanos/química , Espectroscopia de Ressonância Magnética
20.
DNA Cell Biol ; 43(4): 185-196, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38466945

RESUMO

Cisplatin (DDP) resistance frequently occurs in gastric cancer (GC) therapy. Tanshinone I is a liposoluble phenanthraquinone compound present in the roots of Salvia miltiorrhiza Bunge (Danshen). In this study, we aimed to explore the effects of tanshinone I on modulating DDP resistance of GC cells in vitro and in vivo. DDP-resistant GC cell models (BGC823/DDP and SGC7901/DDP) were established, and their viability, proliferation, migration, lactate dehydrogenase activity, reactive oxygen species (ROS) generation, and pyroptosis were assessed after DDP treatment with or without tanshinone I. In addition, a mouse model with subcutaneously transplanted GC tumors was established to confirm the effects of tanshinone I and DDP on tumor growth and cell pyroptosis. The results revealed that tanshinone I inhibited DDP-resistant GC cell proliferation and migration; increased intracellular ROS levels; and activated cell pyroptosis by enhancing the levels of cleaved caspase-8, cleaved caspase-3, GSDME-NT, phospho-IKK-α/ß, and nuclear factor kappa-B (NF-κB). GSDME knockdown weakened these effects of tanshinone I on DDP-resistant GC cells. Furthermore, DDP combined with tanshinone I inhibited the growth of subcutaneously transplanted GC tumors in mice by reducing cell proliferation and inducing pyroptosis. In conclusion, tanshinone I reversed DDP resistance of GC cells by stimulating pyroptosis, by activating NF-κB/caspase-3(8)/GSDME signaling pathway.


Assuntos
Abietanos , Cisplatino , Neoplasias Gástricas , Animais , Camundongos , Cisplatino/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Piroptose , NF-kappa B/metabolismo , Caspase 3/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Apoptose , Resistencia a Medicamentos Antineoplásicos , Transdução de Sinais , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...