Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 465
Filtrar
1.
J Dairy Sci ; 106(10): 6789-6797, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37500432

RESUMO

We evaluated the effects of infusing an exogenous emulsifier (polysorbates-C18:1) either into the rumen or abomasum on fatty acid (FA) digestibility and production responses of lactating dairy cows. Nine ruminally cannulated multiparous Holstein cows (170 ± 13.6 d in milk) were assigned to a treatment sequence in replicated 3 × 3 Latin squares with 18-d periods consisting of 7 d of washout and 11 d of infusion. Treatments were abomasal infusions of water carrier only into the rumen and abomasum (control, CON), 30 g/d polysorbate-C18:1 (T80) infused into the rumen (RUM), or 30 g/d T80 infused into the abomasum (ABO). Emulsifiers were dissolved in water and delivered at 6-h intervals (total daily infusion was divided into 4 equal infusions per day). Cows were fed the same diet that contained [% diet dry matter (DM)] 32.2% neutral detergent fiber (NDF), 16.1% crude protein, 26.5% starch, and 3.41% FA (including 1.96% FA from a saturated FA supplement containing 28.0% C16:0 and 54.6% C18:0). Two orthogonal contrasts were evaluated: (1) the overall effect of T80 {CON vs. average of the T80 infusions [1/2 (ABO + RUM)]}, and (2) the effect of ABO versus RUM infusion. Compared with CON, infusing T80 increased the digestibilities of NDF (2.85 percentage units), total (4.35 percentage units), 16-carbon (3.25 percentage units), and 18-carbon FA (4.60 percentage units), and tended to increase DM digestibility and total and 18-carbon FA absorption. Compared with RUM, ABO decreased the intakes of total (28 g/d), 16-carbon (7 g/d), and 18-carbon FA (19 g/d); tended to increase the digestibility of total and 18-carbon FA; and had no effect on the absorption of total, 16-carbon, or 18-carbon FA. Production responses did not change among our treatments. In conclusion, infusing 30 g/d polysorbates-C18:1 increased NDF and total, 16-carbon, and 18-carbon FA digestibility. Compared with RUM, ABO tended to increase the digestibilities of total and 18-carbon FA; however, this may be related to the fact that ABO reduced the intakes of total, 16-carbon, and 18-carbon FA, not necessarily due to better emulsifying action per se. In summary, ABO and RUM both improved FA absorption.


Assuntos
Ácidos Graxos , Lactação , Feminino , Bovinos , Animais , Ácidos Graxos/metabolismo , Lactação/fisiologia , Abomaso/metabolismo , Rúmen/metabolismo , Polissorbatos/metabolismo , Polissorbatos/farmacologia , Digestão , Ração Animal/análise , Dieta/veterinária , Leite/metabolismo , Emulsificantes/metabolismo
2.
Ann Anat ; 247: 152069, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36754242

RESUMO

The growing summer drought stress is affecting the nutritional value of pastures, no longer sufficient to support the nutritional status of sheep in extensive rearing. Adipokines affect organ and tissue functionality can be useful to evaluate animal welfare and prompt an improvement in the management of the grazing animals. Leptin (Lep) is an adipokine mainly produced by adipose tissue that regulates food intake by an anorexigenic action. Lep has also been detected in the human and rat gastrointestinal tract, where it regulates the rate of gastric emptying. In this study, Lep system was evaluated in the abomasum of 15 adult sheep reared on Apennine pastures and subjected to different diets. Until the maximum pasture flowering (MxF group), the sheep fed on fresh forage; from that moment until the maximum pasture dryness (MxD group), the experimental group (Exp group) received a feed supplementation in addition to MxD group feeding. The Lep system was investigated in the abomasum samples by immunohistochemistry (IHC) and RT-qPCR. Double-label localisation of Lep and leptin receptor (LepR) with neuroendocrine hormones was conducted to distinguish the gland cell types. The analysis performed revealed the presence of Lep and LepR in the chief and neuroendocrine cells of the fundic glands of the abomasum. RT-qPCR evidenced the transcript for Lep and LepR also identifying the long isoform (LepRb). No significant differences were observed among the three groups of sheep subjected to different diets. The abundant immunostaining observed in the fundic glands suggests that the Lep intervenes in the regulation of abomasum in sheep with a similar pattern to monogastric species while long term food supplementation seems do not influence the local function of the Lep system. A better understanding of the gastrointestinal system can contribute to improving sheep management and optimising the sustainability of livestock production.


Assuntos
Abomaso , Leptina , Adulto , Animais , Humanos , Ratos , Ovinos , Leptina/metabolismo , Abomaso/metabolismo , Tecido Adiposo , Dieta
3.
J Dairy Sci ; 106(2): 1453-1463, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36526457

RESUMO

Intestinal hyperpermeability and subsequent immune activation alters nutrient partitioning and thus, decreases productivity. Developing experimental models of intestinal barrier dysfunction in heathy cows is a prerequisite in identifying nutritional strategies to mitigate it. Six cannulated Holstein cows (mean ± standard deviation, 37 ± 10 kg/d milk yield; 219 ± 97 d in milk; 691 ± 70 kg body weight) were used in a replicated 3 × 3 Latin square design experiment with 21-d periods (16-d wash-out and 5-d challenge) to evaluate either feed restriction or hindgut acidosis as potential models for inducing intestinal hyperpermeability. Cows were randomly assigned to treatment sequence within square and treatment sequences were balanced for carryover effects. Treatments during the challenge were (1) control (CTR; ad libitum feeding); (2) feed restriction (FR; total mixed ration fed at 50% of ad libitum feed intake); and (3) resistant starch (RS; 500 g of resistant starch infused in abomasum once a day as a pulse-dose 30 min before morning feeding). The RS (ActiStar RT 75330, Cargill Inc.) was tapioca starch that was expected to be resistant to enzymatic digestion in the small intestine and highly fermentable in the hindgut. Blood samples were collected 4 h after feeding on d 13 and 14 of the wash-out periods (baseline data used as covariate), and on d 1, 3, and 5 of the challenge periods. Fecal samples were collected 4 and 8 h after the morning feeding on d 14 of the wash-out periods and d 5 of the challenge periods. By design, FR decreased dry matter intake (48%) relative to CTR and RS, and this resulted in marked reductions in milk and 3.5% FCM yields over time, with the most pronounced decrease occurring on d 5 of the challenge (34 and 27%, respectively). Further, FR increased somatic cell count by 115% on d 5 of the challenge relative to CTR and RS. Overall, FR increased nonesterified fatty acids (159 vs. 79 mEq/L) and decreased BHB (8.5 vs. 11.2 mg/dL), but did not change circulating glucose relative to CTR. However, RS had no effect on production or metabolism metrics. Resistant starch decreased fecal pH 8 h after the morning feeding (6.26 vs. 6.81) relative to CTR and FR. Further, RS increased circulating lipopolysaccharide binding protein (4.26 vs. 2.74 µg/mL) compared with FR only on d 1 of the challenge. Resistant starch also increased Hp (1.52 vs. 0.48 µg/mL) compared with CTR, but only on d 5 of the challenge. However, neither RS or FR affected concentrations of serum amyloid A, IL1ß, or circulating endotoxin compared with CTR. The lack of consistent responses in inflammatory biomarkers suggests that FR and RS did not meaningfully affect intestinal barrier function. Thus, future research evaluating the effects of hindgut acidosis and FR using more intense insults and direct metrics of intestinal barrier function is warranted.


Assuntos
Lactação , Amido Resistente , Feminino , Bovinos , Animais , Amido Resistente/metabolismo , Amido Resistente/farmacologia , Dieta/veterinária , Abomaso/metabolismo , Leite/metabolismo , Ração Animal/análise , Rúmen/metabolismo , Amido/metabolismo
4.
Domest Anim Endocrinol ; 76: 106627, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33882449

RESUMO

Studies of serotonin in animal husbandry has received growing interest. However, there is limited information about serotonin manipulation using 5-HTP administered postruminally and its residual effects in cattle. The objective of this study was to evaluate the effectiveness of 5-HTP infused into the abomasum for enhancing circulating serotonin in cattle. Four Holstein steers (487 ± 7.6 kg) fitted with ruminal cannulas were used in a 4 × 4 Latin Square design experiment. The treatments were intra-abomasal infusion of 5-HTP at 0, 0.25, 0.5, and 1 mg/kg BW. Blood was collected from the jugular vein of each steer at -60, -30, 0, 30, 60, 120, 240, and 480 min from 5-HTP infusion for basal and short term evaluation and, at 1, 2, 4, and 7 d after 5-HTP infusion for long term evaluation. Dry matter intake was not affected (P > 0.05) by intra-abomasal infusions. The half-life of 5-HTP was dose-independent (128 min). The serum 5-HTP, serotonin, and 5-hydroxyindoleacetic acid area under the curve increased (P < 0.05) linearly with an increased dose of 5-HTP. Serum 5-HTP reached peak concentration in approximately 30 min after dosing while serum and plasma serotonin peaked after 240 min postinfusion. Serotonin was greater than control for all 5-HTP doses 1 d and 2 d after infusion in serum and plasma, respectively. Intra-abomasal infusion of 5-HTP at doses up to 1 mg/ kg BW increases circulating serotonin for up 2 days.


Assuntos
5-Hidroxitriptofano , Abomaso , 5-Hidroxitriptofano/farmacologia , Abomaso/metabolismo , Animais , Bovinos , Serotonina
5.
Genes (Basel) ; 12(3)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809523

RESUMO

This study aimed to investigate the changes in abomasum transcriptome and the associated microbial community structure in young calves with artificially dosed, adult rumen contents. Eight young bull calves were randomly dosed with freshly extracted rumen contents from an adult cow (high efficiency (HE), n = 4), or sterilized rumen content (Con, n = 4). The dosing was administered within 3 days of birth, then at 2, 4, and 6 weeks following the initial dosing. Abomasum tissues were collected immediately after sacrifice at 8 weeks of age. Five genera (Tannerella, Desulfovibrio, Deinococcus, Leptotrichia, and Eubacterium; p < 0.05) showed significant difference in abundance between the treatments. A total of 975 differentially expressed genes were identified (p < 0.05, fold-change > 1.5, mean read-counts > 5). Pathway analysis indicated that up-regulated genes were involved in immune system process and defense response to virus, while the down-regulated genes involved in ion transport, ATP biosynthetic process, and mitochondrial electron transport. Positive correlation (r > 0.7, p < 0.05) was observed between TRPM4 gene and Desulfovibrio, which was significantly higher in the HE group. TRPM4 had a reported role in the immune system process. In conclusion, the dosing of adult rumen contents to calves can alter not only the composition of active microorganisms in the abomasum but also the molecular mechanisms in the abomasum tissue, including reduced protease secretion and decreased hydrochloric acid secretion.


Assuntos
Abomaso/metabolismo , Abomaso/microbiologia , Microbiota/fisiologia , Rúmen/metabolismo , Rúmen/microbiologia , Transcriptoma/fisiologia , Ração Animal , Animais , Bovinos , Regulação para Baixo/fisiologia , Ácido Clorídrico/metabolismo , Sistema Imunitário/metabolismo , Regulação para Cima/fisiologia
6.
Res Vet Sci ; 134: 181-185, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33388615

RESUMO

Abomasal hypomotility is one of the important causes of neonatal mortality in small ruminants. Various pharmaceutical agents have been studied to address this problem in large ruminants. The aim of this study was to determine the effect of parenteral administration of tylosin and ivermectin on abomasal emptying rate in neonatal suckling lambs. Abomasal emptying rate was assessed using nuclear scintigraphic method in 10 healthy female Iranian fat tailed Ghezel lambs. Each lamb was tested three times, once as a control (1 ml of saline 0.9%, IM) and twice after the injection of tylosin (17.6 mg/kg, IM) and ivermectin (200 µg/kg, SC) in a crossover study. Based on radiopharmaceutical counts, remnant activity in abomasums at 90 min were 48.3 ± 3.5, 45.6 ± 7.5 and 41.6 ± 2.9% in control, tylosin and ivermectin groups, respectively. Administration of tylosin (p = 0.049) and ivermectin (p = 0.045) to lambs, significantly caused faster abomasal emptying rate compared to control. Evaluating the ROIs revealed that the half emptying time (T1/2) in control, tylosin and ivermectin groups were 67.1 ± 8.6, 62.6 ± 14.2 and 54.3 ± 9.9 min, respectively. These difference between all groups, statistically were significant (p = 0.026). However, the clinical efficacy of abomasal emptying rate facilitating by tylosin or ivermectin administration in lambs remains to be determined.


Assuntos
Abomaso/efeitos dos fármacos , Antibacterianos/farmacologia , Antiparasitários/farmacologia , Esvaziamento Gástrico/efeitos dos fármacos , Ivermectina/farmacologia , Tilosina/farmacologia , Abomaso/diagnóstico por imagem , Abomaso/metabolismo , Animais , Animais Lactentes , Estudos Cross-Over , Feminino , Cintilografia/veterinária , Ovinos , Carneiro Doméstico , Fatores de Tempo
7.
J Dairy Sci ; 104(2): 1759-1776, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33453803

RESUMO

Two His deletion studies were conducted to examine the mechanisms used by dairy cows to support milk true protein yield (MTPY) when His supply is altered. The potential mechanisms involved in how the efficiency of utilization of His varied included reduced catabolism, more efficient mammary usage, and use of His labile pools. For the first study, 5 multicatheterized cows were used in a 4 × 4 Latin square plus 1 cow with 14-d periods. Treatments were abomasal infusion of increasing doses of His (0, 7.6, 15.2, and 20.8 g/d) in addition to a mixture of AA (595 g/d; casein profile excluding His). Cows were fed the same protein-deficient diet throughout the study. The MTPY increased linearly with a quadratic tendency with increasing doses of His. Muscle concentrations of carnosine, a His-based dipeptide, tended to increase in a quadratic manner with increasing His supply, suggesting that the 0- and 7.6-g doses were insufficient to cover His requirement. Liver catabolism of His decreased as His supply decreased. Mammary fractional removal of His was considerably greater at low His supply, but the ratio of His mammary net uptake to milk output was not affected by the rate of His infusion, averaging 1.02. The mechanisms to face a reduced His supply included reduced His hepatic catabolism, more efficient His mammary use of lowered arterial supply, and, to a lesser extent, use of His labile pools. Two independent estimates of His efficiency were calculated, one based on the sum of exported proteins (measured MTPY plus estimated metabolic fecal protein and scurf; i.e., the anabolic component, EffMTPY) and the other based on liver removal (i.e., the catabolic component). These 2 estimates followed the same pattern of response to His supply, decreasing with increasing His supply. The EffMTPY at which MTPY peaked was 0.785. For the second study, 6 cows were used in a 6 × 6 Latin square with 7-d periods. Two greater doses of His (30.4 and 38.0 g/d) were added; otherwise, the nutritional design was similar to the first study. In this second study, the indicator AA oxidation technique was used instead of the multiorgan approach, with labeled Leu as the indicator of His utilization. The MTPY peaked and Leu oxidation reached the nadir at an average EffMTPY of 0.763. Combined across both studies, the data indicate that optimal usage of His would occur at a threshold EffMTPY of 0.77. The agreement between experimental approaches across both studies indicates that the biological optimal supply of His expressed in grams per day could be calculated as the sum of exported proteins divided by this EffMTPY plus estimated endogenous urinary excretion.


Assuntos
Bovinos/metabolismo , Histidina/metabolismo , Lactação/fisiologia , Proteínas do Leite/metabolismo , Leite/metabolismo , Abomaso/efeitos dos fármacos , Abomaso/metabolismo , Aminoácidos/metabolismo , Animais , Caseínas/metabolismo , Dieta/veterinária , Feminino , Histidina/administração & dosagem , Fígado/metabolismo , Glândulas Mamárias Animais/metabolismo
8.
J Dairy Sci ; 104(2): 2384-2395, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33246605

RESUMO

The objective of the current study was first to characterize lipid raft microdomains isolated as detergent-resistant membranes (DRM) from mammary gland tissue, and second to determine how dietary fatty acids (FA) such as conjugated linoleic acid (CLA), 19:1 cyclo, and long-chain n-3 polyunsaturated FA affect lipid raft markers of mammary cells, and to finally establish relationships between these markers and lactation performance in dairy cows. Eight Holstein cows were used in a replicated 4 × 4 Latin square design with periods of 28 d. For the first 14 d, cows received daily an abomasal infusion of (1) 406 g of a saturated FA supplement (112 g of 16:0 + 230 g of 18:0) used as a control; (2) 36 g of a CLA supplement (13.9 g of trans-10,cis-12 18:2) + 370 g of saturated FA; (3) 7 g of Sterculia fetida oil (3.1 g of 19:1 cyclo, STO) + 399 g of saturated FA; or (4) 406 g of fish oil (55.2 g of cis-5,cis-8,cis-11,cis-14,cis-17 20:5 + 59.3 g of cis-4,cis-7,cis-10,cis-13,cis-16,cis-19 22:6, FO). Mammary biopsies were harvested on d 14 of each infusion period and were followed by a 14-d washout interval. Cholera toxin subunit B, which specifically binds to ganglioside M-1 (GM-1), a lipid raft marker, was used to assess its distribution in DRM. Infusions of CLA, STO, and FO were individually compared with the control, and significance was declared at P ≤ 0.05. Milk fat yield was decreased with CLA and FO, but was not affected by STO. Milk lactose yield was decreased with CLA and STO, but was not affected by FO. Mammary tissue shows a strong GM-1-signal enrichment in isolated DRM from mammary gland tissue. Caveolin (CAV) and flotillin (FLOT) are 2 proteins considered as lipid raft markers and they are present in DRM from mammary gland tissue. Distributions of GM-1, CAV-1, and FLOT-1 showed an effect of treatments determined by their subcellular distributions in sucrose gradient fractions. Regardless of treatments, data showed positive relationships between the yield of milk fat, protein, and lactose, and the abundance GM-1 in DRM fraction. Milk protein yield was positively correlated with relative proportion of FLOT-1 in the soluble fraction, whereas lactose yield was positively correlated with relative proportion of CAV-1 in the DRM fractions. Infusion of CLA decreased mRNA abundance of CAV-1, FLOT-1, and FLOT-2. Regardless of treatments, a positive relationship was observed between fat yield and mRNA abundance of FLOT-2. In conclusion, although limited to a few markers, results of the current experiment raised potential links between variation in specific biologically active component of raft microdomains in bovine mammary gland and lactation performances in dairy cows.


Assuntos
Ração Animal , Gorduras na Dieta/farmacologia , Suplementos Nutricionais , Ácidos Graxos/farmacologia , Glândulas Mamárias Animais/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Abomaso/metabolismo , Animais , Bovinos , Dieta/veterinária , Feminino , Óleos de Peixe/administração & dosagem , Lactação/efeitos dos fármacos , Ácidos Linoleicos Conjugados/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Leite/metabolismo , Proteínas do Leite/metabolismo , Sterculia
9.
J Dairy Sci ; 104(1): 1164-1174, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33131822

RESUMO

Colostrum is a unique resource that contributes to the passive transfer of immunity and plays a central role in the health status of neonatal ruminants. However, digestion and absorption of colostral proteins in the gut remain incompletely understood. Therefore, this study aimed to investigate the effect of bovine colostrum feeding on blood metabolic traits and to quantify colostral bioactive proteins in the gastrointestinal digesta and blood to evaluate intestinal transfer in neonatal lambs in the first 24 h of life. Fifty-four newborn lambs were used in this study, including 27 lambs fed pooled bovine colostrum and slaughtered at 6 (C6h), 12 (C12h), or 24 h (C24h) after birth; 18 lambs not fed any colostrum or milk and slaughtered at birth (N0h) or 24 h (N24h) after birth; and 9 milk-fed lambs slaughtered at 24 h (M24h) after birth. Lambs receiving colostrum or milk were bottle-fed within the first 2 h to obtain intakes of 8% of body weight at birth. Samples of blood and digesta from the abomasum, jejunum, and ileum were collected after slaughter. Serum concentrations of glucose, insulin, total protein, and aspartate aminotransferase were higher in colostrum-fed lambs than in N0h lambs. Serum concentrations of insulin, total protein, insulin-like growth factor 1, and γ-glutamyl transpeptidase were higher in C24h lambs than in N24h or M24h lambs. Apparent efficiencies of IgG absorption in C6h, C12h, and C24h lambs were 14.4, 26.8, and 17.2%, respectively, whereas apparent efficiencies of lactoferrin (LF), α-lactalbumin (α-LA), and ß-lactoglobulin (ß-LG) absorption were very low in colostrum-fed lambs, with mean values of 0.06, 0.002, and 0.003%, respectively. Concentrations of IgG, LF, α-LA, and ß-LG in the digesta of the abomasum, jejunum, and ileum rapidly decreased from C6h to C24h lambs, and the disappearance rates of IgG, LF, α-LA, and ß-LG were higher in lambs from C6h to C12h (62.1, 75.7, 91.3, and 95.0% for IgG, LF, α-LA, and ß-LG, respectively) than from C12h to C24h (34.6, 22.5, 7.5, and 2.2% for IgG, LF, α-LA, and ß-LG, respectively). These results indicated that bovine colostrum feeding improved the metabolic and immunological status of lambs, and that ingested colostral IgG was prone to intact uptake into the blood, whereas almost all ingested LF, α-LA, and ß-LG disappeared in the lumen of the gastrointestinal tract in a time-dependent manner. The findings provide novel information for exploring selective absorption of colostral compounds in the small intestine of lambs.


Assuntos
Ração Animal , Colostro , Trato Gastrointestinal/metabolismo , Ovinos/metabolismo , Abomaso/metabolismo , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/metabolismo , Peso Corporal , Bovinos , Colostro/imunologia , Feminino , Íleo/metabolismo , Jejuno/metabolismo , Lactalbumina/metabolismo , Lactoglobulinas/metabolismo , Leite/metabolismo , Gravidez , Ovinos/crescimento & desenvolvimento , Carneiro Doméstico/metabolismo
10.
J Dairy Sci ; 103(12): 12069-12082, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32981718

RESUMO

The objective of this study was to test the effects of essential fatty acids (EFA), particularly α-linolenic acid (ALA), and conjugated linoleic acid (CLA) supplementation on metabolic and endocrine traits related to energy metabolism, including the somatotropic axis, in mid-lactation dairy cows. Four cows (126 ± 4 d in milk) were used in a dose-escalation study design and were abomasally infused with coconut oil (CTRL; 38.3 g/d; providing saturated fatty acids), linseed and safflower oils (EFA; 39.1 and 1.6 g/d; n-6:n-3 FA ratio = 1:3), Lutalin (CLA; cis-9,trans-11 and trans-10,cis-12 CLA, 4.6 g/d of each), or EFA and CLA (EFA+CLA) for 6 wk. The initial dosage was doubled twice after 2 wk, resulting in 3 dosages (dosages 1, 2, and 3). Each cow received each fat treatment at different times. Cows were fed with a corn silage-based total mixed ration providing a low-fat content and a high n-6:n-3 fatty acid ratio. Plasma concentrations of metabolites and hormones (insulin-like growth factor-binding proteins only on wk 0 and 6) were analyzed at wk 0, 2, 4, and 6 of each treatment period. Liver biopsies were taken before starting the trial and at wk 6 of each treatment period to measure hepatic mRNA abundance of genes linked to glucose, cholesterol and lipid metabolism, and the somatotropic axis. The changes in the milk and blood fatty acid patterns and lactation performance of these cows have already been published in a companion paper. The plasma concentration of total cholesterol increased with dosage in all groups, except CLA, reaching the highest levels in EFA+CLA and CTRL compared with CLA. The high-density lipoprotein cholesterol plasma concentration increased in CTRL and was higher than that in EFA and CLA, whereas the concentration of low-density lipoprotein cholesterol increased in a dose-dependent manner in EFA and EFA+CLA, and was higher than that in CLA. Hepatic mRNA expression of 3-hydroxy-3-methyl-glutaryl-CoA synthase 1 was upregulated in all groups but was highest in EFA+CLA. Expression of sterol regulatory element-binding factor 1 tended to be lowest due to EFA treatment, whereas expression of long chain acyl-CoA-synthetase was lower in EFA than in CTRL. Hepatic mRNA expression of GHR1A tended to be higher in EFA+CLA than in CTRL. The plasma concentration of insulin-like growth factor I increased in CLA, and the plasma IGFBP-2 concentration was lower in EFA+CLA than in CTRL at wk 6. The plasma concentration of adiponectin decreased in EFA+CLA up to dosage 2. Plasma concentrations of albumin and urea were lower in CLA than in CTRL throughout the experimental period. Supplementation with EFA and CLA affected cholesterol and lipid metabolism and their regulation differently, indicating distinct stimulation after the combined EFA and CLA treatment. The decreased IGFBP-2 plasma concentration and upregulated hepatic mRNA abundance of GHR1A in EFA+CLA-supplemented cows indicated the beneficial effect of the combined EFA and CLA treatment on the somatotropic axis in mid-lactation dairy cows. Moreover, supplementation with CLA might affect protein metabolism in dairy cows.


Assuntos
Abomaso/efeitos dos fármacos , Bovinos/metabolismo , Ácidos Graxos Essenciais/farmacologia , Ácidos Linoleicos Conjugados/farmacologia , Fígado/metabolismo , Abomaso/metabolismo , Animais , Suplementos Nutricionais , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/análise , Feminino , Glucose/metabolismo , Lactação/fisiologia , Óleo de Semente do Linho/metabolismo , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Leite/química
11.
J Dairy Sci ; 103(12): 11889-11910, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32981719

RESUMO

Dairy cows are exposed to increased inflammatory processes in the transition period from late pregnancy to early lactation. Essential fatty acids (EFA) and conjugated linoleic acid (CLA) are thought to modulate the inflammatory response in dairy cows. The present study investigated the effects of a combined EFA and CLA infusion on the fatty acid (FA) status in plasma lipids, and whether changes in the FA pattern were associated with the acute phase and inflammatory response during late pregnancy and early lactation. Rumen-cannulated Holstein cows (n = 40) were assigned from wk 9 antepartum to wk 9 postpartum to 1 of 4 treatment groups. Cows were abomasally supplemented with coconut oil (CTRL, 76 g/d), linseed and safflower oil (EFA, 78 g/d of linseed oil and 4 g/d of safflower oil; ratio of oils = 19.5:1; n-6:n-3 FA ratio = 1:3), Lutalin (CLA, 38 g/d; isomers cis-9,trans-11 and trans-10,cis-12; each 10 g/d), or both (EFA+CLA). Blood samples were taken to measure changes in FA in blood plasma on d -63, -42, 1, 28, and 56, and in plasma lipid fractions (cholesterol esters, free fatty acids, phospholipids, and triglycerides) on d -42, 1, and 56 relative to calving, and in erythrocyte membrane (EM) on d 56 after calving. Traits related to the acute phase response and inflammation were measured in blood throughout the study. Liver samples were obtained for biopsy on d -63, -21, 1, 28, and 63 relative to calving to measure the mRNA abundance of genes related to the inflammatory response. The concentrations of α-linolenic acid and n-3 FA metabolites increased in lipid fractions (especially phospholipids) and EM due to EFA supplementation with higher α-linolenic acid but lower n-3 metabolite concentrations in EFA+CLA than in EFA treatment only. Concentration of linoleic acid decreased in plasma fat toward calving and increased during early lactation in all groups. Concentration of plasma arachidonic acid was lower in EFA- than in non-EFA-treated groups in lipid fractions and EM. The cis-9,trans-11 CLA increased in all lipid fractions and EM after both CLA treatments. Plasma haptoglobin was lowered by EFA treatment before calving. Plasma bilirubin was lower in EFA and CLA than in CTRL at calving. Plasma concentration of IL-1ß was higher in EFA than in CTRL and EFA+CLA at certain time points before and after calving. Plasma fibrinogen dropped faster in CLA than in EFA and EFA+CLA on d 14 postpartum. Plasma paraoxonase tended to be elevated by EFA treatment, and was higher in EFA+CLA than in CTRL on d 49. Hepatic mRNA abundance revealed time changes but no treatment effects with respect to the inflammatory response. Our data confirmed the enrichment of n-3 FA in EM by EFA treatment and the inhibition of n-3 FA desaturation by CLA treatment. The elevated n-3 FA status and reduced n-6:n-3 ratio by EFA treatment indicated a more distinct effect on the inflammatory response during the transition period than the single CLA treatment, and the combined EFA+CLA treatment caused minor additional changes on the anti-inflammatory response.


Assuntos
Bovinos/fisiologia , Suplementos Nutricionais/análise , Ácidos Graxos Essenciais/administração & dosagem , Ácidos Graxos/sangue , Ácidos Linoleicos Conjugados/administração & dosagem , Lipídeos/sangue , Abomaso/metabolismo , Animais , Bovinos/sangue , Ácidos Graxos não Esterificados/sangue , Feminino , Inflamação/veterinária , Lactação , Ácido Linoleico/sangue , Período Pós-Parto , Gravidez
12.
J Anim Sci ; 98(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32845973

RESUMO

This study assessed the relative bioavailability of guanidinoacetic acid (GAA) in cattle. Seven ruminally cannulated Holstein steers (initial body weight of 280 kg) were used in an experiment with a 5 × 5 Latin square design; the two additional steers received a treatment sequence identical to two steers in the Latin square. Treatments were: control (no GAA, water infusion), ruminal infusion of 10 or 20 g/d GAA, and abomasal infusion of 10 or 20 g/d GAA, with all infusions delivered continuously. Periods were 7 d in length, and on day 7, blood and urine samples were collected to determine the concentrations of GAA and its associated metabolites. Plasma creatine concentrations increased linearly (P < 0.01) with GAA infusion to the abomasum and tended to increase linearly (P = 0.06) when GAA was infused ruminally. Urinary creatine concentrations increased linearly with increasing amounts of GAA infused in the abomasum (P < 0.01) and the rumen (P < 0.05). There were no significant effects of GAA infusion to either the abomasum or rumen on plasma or urinary concentrations of GAA. Plasma creatinine concentrations were not affected by GAA infusion to the abomasum or rumen. Urinary creatinine concentrations decreased when GAA was infused abomasally (P < 0.05). Because plasma and urinary creatine concentrations yielded the statistically strongest linear responses, they were selected as the primary response criteria for quantifying ruminal escape of GAA. Calculated by slope-ratio methodology, estimates for the ruminal escape of GAA based on plasma creatine and urinary creatine concentrations were 47% and 49%, respectively. Ruminally infused GAA was about half as effective as abomasally infused GAA in elevating plasma and urinary concentrations of creatine.


Assuntos
Bovinos/fisiologia , Glicina/análogos & derivados , Abomaso/metabolismo , Animais , Disponibilidade Biológica , Creatina/sangue , Glicina/administração & dosagem , Rúmen/metabolismo
13.
J Dairy Sci ; 103(9): 7998-8019, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32622603

RESUMO

The objectives of this study were to assess the effect of using heat-treated canola meal (CM) and glycerol inclusion in starter mixtures on starter intake, growth, and gastrointestinal tract development in Holstein bull calves. In the first study, a protocol for the heat treatment of CM was evaluated by comparing commercial CM that was exposed to 0, 100, 110, or 120°C of heat treatment for 10 min. Following heat treatment, in situ crude protein (CP) ruminal degradability and estimated intestinal CP digestibility were assessed. It was observed that the degradable fractions of dry matter and CP in CM decreased linearly with increasing temperature of heat treatment. The estimated intestinal CP digestibility was greatest when CM was heated to 110°C. In the second study, 28 bull calves were used in a randomized complete block design. Calves were fed pelleted starters containing CM or CM that was heat-treated to 110°C for 10 min. Diets also contained 0 or 5% glycerol on a dry matter basis. The study lasted 51 d, ending on the first day of weaning. Starter intake, average daily gain (ADG), ruminal short-chain fatty acid concentrations, morphology of the rumen and small intestine, gene expression (MCT1, GPR41, GPR43, UTB, AQP3, PEPT1, PEPT2, ATB0+, and EAAC1) in the ruminal, jejunal, and ileal epithelium, and brush border enzyme activities in the duodenum, jejunum, and ileum were investigated. Few interactions between heat-treated CM and glycerol inclusion were observed. Feeding heat-treated CM did not affect starter intake. However, feeding heat-treated CM to calves tended to reduce ADG and decreased the weight of ruminal and jejunal tissue. Heat treatment did not affect gene expression or brush border enzyme activities in the small intestine. Glycerol inclusion tended to increase cumulative starter intake and increased cumulative body weight gain. Use of glycerol reduced ruminal pH and increased the concentration of ruminal short-chain fatty acids. Additionally, glycerol inclusion increased abomasal, duodenal, jejunal, and cecal digesta weights and tended to increase the weight of the jejunal tissue. Glycerol supplementation tended to downregulate the expression of MCT1 in the ruminal epithelium, and upregulated the expression of MCT1 in the epithelium of proximal jejunum. In conclusion, heat treatment of CM may negatively affect calf growth and gastrointestinal tract development. Glycerol inclusion may increase starter intake, ADG, ruminal fermentation, and intestinal development in calves when CM is used as a main source of protein in pelleted starter mixture.


Assuntos
Ração Animal , Brassica napus/metabolismo , Bovinos/metabolismo , Trato Gastrointestinal/crescimento & desenvolvimento , Trato Gastrointestinal/metabolismo , Glicerol/farmacologia , Abomaso/metabolismo , Ração Animal/análise , Animais , Peso Corporal , Bovinos/crescimento & desenvolvimento , Dieta/veterinária , Digestão , Ácidos Graxos Voláteis/metabolismo , Fermentação , Manipulação de Alimentos , Glicerol/metabolismo , Masculino , Rúmen/metabolismo , Desmame
14.
J Dairy Sci ; 103(7): 6218-6232, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32418692

RESUMO

Amino acids and glucose have been shown to regulate protein synthesis in the mammary gland through their effects on cellular signaling pathways. Acetate might also have an effect on protein synthesis via the AMP-activated kinase signaling pathway, because it is the main energy source for the mammary secretory cell. Thus, the objective of this experiment was to evaluate the effects of casein and energy-yielding nutrients (acetate and glucose), and their combination, on performance and mammary metabolism. Six multiparous Holstein cows, averaging 49 kg of milk/d, were used in a 6 × 6 Latin square design with 14-d periods. Cows were fed to 100% National Research Council requirements for metabolizable protein (MP) and energy (ME) for 9 d, after which they were feed-restricted for 5 d to 85% of their individual ad libitum intake and then abomasally infused with 1 of 6 treatments. Treatments were acetate (A), glucose (G), each at 5% of ad libitum ME intake, casein (C) at 15% of ad libitum MP intake, A + C, G + C, or a saline solution (negative control). Casein infused alone increased milk protein yield numerically, with 25% recovery of the infused casein in milk protein. Glucose infused alone increased milk and milk protein yield and promoted the highest efficiency of nitrogen utilization (37%), with an efficiency of MP use for milk protein of 58%. We discovered no effect of treatment on mammary plasma flow, and the increase in milk protein yield with glucose infusion was brought about by greater mammary AA clearance rate. Infusion of casein and glucose together further increased milk protein yield in an additive fashion, and 47% of the infused casein was recovered in milk protein. Acetate infused alone had no effect on milk protein yield but increased milk fat yield numerically, suggesting that the greater amount of acetate taken up by the mammary gland was used for milk fat synthesis. Infusion of acetate and casein together yielded responses similar to those of casein alone. In conclusion, glucose has a major effect on stimulating milk protein synthesis, and the mammary gland has the ability to increase its supply of nutrients to match its synthetic capacity.


Assuntos
Caseínas/administração & dosagem , Bovinos , Glucose/administração & dosagem , Glândulas Mamárias Animais/metabolismo , Proteínas do Leite/biossíntese , Abomaso/metabolismo , Acetatos/análise , Aminoácidos/metabolismo , Animais , Caseínas/metabolismo , Feminino , Hipersensibilidade Alimentar , Trato Gastrointestinal , Glucose/metabolismo , Lactação/fisiologia , Glândulas Mamárias Animais/efeitos dos fármacos , Leite/química , Proteínas do Leite/análise , Biossíntese de Proteínas
15.
J Anim Sci ; 98(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32152623

RESUMO

Creatine stores high-energy phosphate bonds in muscle, which is critical for muscle activity. In animals, creatine is synthesized in the liver from guanidinoacetic acid (GAA) with methylation by S-adenosylmethionine. Because methyl groups are used for the conversion of GAA to creatine, methyl group deficiency may occur as a result of GAA supplementation. With this study, the metabolic responses of cattle to post-ruminal supplementation of GAA were evaluated with and without methionine (Met) supplementation as a source of methyl groups. Six ruminally cannulated Holstein heifers (520 kg) were used in a split-plot design with treatments arranged as a 2 × 5 factorial. The main plot treatments were 0 or 12 g/d of l-Met arranged in a completely randomized design; three heifers received each main plot treatment throughout the entire experiment. Subplot treatments were 0, 10, 20, 30, and 40 g/d of GAA, with GAA treatments provided in sequence from lowest to highest over five 6-d periods. Treatments were infused continuously to the abomasum. Heifers were limit-fed twice daily a diet consisting of (dry matter basis) 5.3 kg/d rolled corn, 3.6 kg/d alfalfa hay, and 50 g/d trace-mineralized salt. Plasma Met increased (P < 0.01) when Met was supplemented, but it was not affected by supplemental GAA. Supplementing GAA linearly increased plasma arginine (% of total amino acids) and plasma concentrations of GAA and creatinine (P < 0.001). Plasma creatine was increased at all levels of GAA except when 40 g/d of GAA was supplemented with no Met (GAA-quadratic × Met, P = 0.07). Plasma homocysteine was not affected by GAA supplementation when heifers received 12 g/d Met, but it was increased when 30 or 40 g/d of GAA was supplemented without Met (GAA-linear × Met, P = 0.003); increases were modest and did not suggest a dangerous hyperhomocysteinemia. Urinary concentrations of GAA and creatine were increased by all levels of GAA when 12 g/d Met was supplemented; increasing GAA supplementation up to 30 g/d without Met increased urinary GAA and creatine concentrations, but 40 g/d GAA did not affect urine concentrations of GAA and creatine when no Met was supplemented. Overall, post-ruminal GAA supplementation increased creatine supply to cattle. A methyl group deficiency, demonstrated by modest increases in plasma homocysteine, became apparent when 30 or 40 g/d of GAA was supplemented, but it was ameliorated by 12 g/d Met.


Assuntos
Bovinos/metabolismo , Creatina/metabolismo , Suplementos Nutricionais/análise , Glicina/análogos & derivados , Homocisteína/sangue , Metionina/farmacologia , Abomaso/metabolismo , Ração Animal/análise , Animais , Arginina/sangue , Bovinos/sangue , Dieta/veterinária , Feminino , Glicina/farmacologia , Medicago sativa , Distribuição Aleatória , Zea mays
16.
J Dairy Sci ; 103(5): 4218-4235, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32113753

RESUMO

Starch digestion in the small intestine in ruminants is relatively lower compared with that in monogastric animals, likely due to low pancreatic α-amylase secretion. Previous studies suggested that leucine could increase pancreatic α-amylase secretion in the small intestine of heifers cannulated with abomasal, duodenal, and ileal catheters. However, the surgical procedures probably have an effect on pancreatic function. Thus, we used rumen-protected leucine (RP-Leu) to explore its effect on small intestinal digestion of starch in calves without any surgery in 3 experiments. The first experiment was to explore whether RP-Leu could improve post-ruminal starch digestion in 5-mo-old calves (158 ± 19 kg body weight ± standard deviation). We found that RP-Leu did not affect rumen fermentation profile or whole-tract starch digestibility, but it increased blood glucose concentration and fecal pH and decreased fecal propionate molar proportion. Additionally, RP-Leu increased fibrolytic genera Ruminiclostridium and Pseudobutyrivibrio and decreased the amylolytic genus of Faecalibacterium. The second experiment compared RP-Leu and rumen-protected lysine (RP-Lys) for their effects on post-ruminal starch digestion in 6-mo-old calves (201 ± 24 kg body weight). The responses of blood glucose concentration, fecal pH, fecal propionate proportion, and starch digestibility to RP-Leu supplementation were similar to those observed in experiment 1. Cellulolytic family Ruminococcaceae and Bacteroidales BS11 gut group tended to be increased by RP-Leu. In contrast, RP-Lys showed no significant influence on the above measurements. The third experiment determined the interaction between RP-Leu and rumen-escape starch (RES) on the small intestinal digestion of starch in 8-mo-old calves (289 ± 26 kg body weight). An interaction between RP-Leu and RES levels was observed in fecal butyrate concentration and the relative abundance of family Bacteroidaceae, and genera Ruminococcaceae UCG-005 and Bacteroides. We found that RP-Leu tended to increase the abundance of fecal Firmicutes and decrease Spirochaetae. In conclusion, RP-Leu, but not RP-Lys, increased blood glucose concentration and decreased the amount of starch fermented in the hindgut in a RES dose-dependent manner, suggesting that RP-Leu might stimulate starch digestion in the small intestine.


Assuntos
Ração Animal , Glicemia/metabolismo , Bovinos , Intestino Delgado/metabolismo , Leucina/farmacologia , Amido/metabolismo , Abomaso/metabolismo , Animais , Animais Recém-Nascidos , Dieta/veterinária , Digestão , Fezes/microbiologia , Fermentação , Leucina/metabolismo , Masculino , Nitrogênio/metabolismo , Rúmen/metabolismo
17.
Br J Nutr ; 124(4): 386-395, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32008585

RESUMO

The aim of the present study was to compare the effects of post-ruminally infused fat supplements, varying in fatty acid (FA) chain length, on animal performance, metabolism and milk FA. Eleven multiparous Holstein dairy cows were used in a replicated incomplete 3 × 3 Latin square design with 7-d periods, separated by 7-d washouts. Treatments were administered as abomasal infusions of enrichments providing 280 g/d of FA: (1) palmitic acid (98·4 % 16 : 0; PA), (2) caprylic and capric acids (56·2 % 8 : 0, 43·8 % 10 : 0; medium-chain TAG (MCT)) and (3) stearic acid (99·0 % 18 : 0; SA). Relative to PA, SA decreased the efficiency of fat-corrected milk production, which was associated with a tendency for higher DM intake and lower FA absorption with SA, whereas MCT was not different from PA for these variables. Milk fat concentration and yield were increased by PA relative to SA, but only fat yield tended to be greater relative to MCT. Relative to PA, MCT increased milk fat concentration of FA < 16 C, whereas SA increased FA > 16 C. Expression of mammary stearoyl-coA desaturase 1 was lower with SA than with PA. Relative to PA, liver expression of adenosine monophosphate-activated protein kinase-1 and pyruvate kinase was increased with MCT, whereas expression of these genes tended to be increased by SA. The mechanism of increased fat secretion with PA does not seem to be related to a modulation of the expression of lipogenesis-related genes, but rather to increased substrate availability as reflected by milk FA profile.


Assuntos
Ácidos Graxos/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Lactação/efeitos dos fármacos , Leite/química , Abomaso/metabolismo , Animais , Bovinos , Feminino , Fígado/metabolismo , Glândulas Mamárias Animais/metabolismo
18.
J Dairy Sci ; 103(3): 2233-2254, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31954566

RESUMO

Effects of AA and glucose infusions on efficiency of use of essential AA (EAA) were studied according to a 2 × 2 factorial using 5 multicatheterized cows in a 4 × 4 Latin square plus one cow, with 2-wk periods. The diet provided 87% of energy and 70% of metabolizable protein requirements, and the 4 treatments were abomasal infusions of (1) water, (2) an AA mixture with a casein profile (695 g/d), (3) glucose (1,454 g/d), or (4) a combination of AA and glucose infusions. Milk samples were collected on the last 6 milkings. On d 14, 6 blood samples were collected from arterial, and portal, hepatic, and mammary venous vessels. Splanchnic plasma flow was calculated by dilution of p-aminohippurate and mammary flow by the Fick principle using Phe + Tyr. The net flux of AA across tissues [splanchnic, i.e., portal-drained viscera (PDV) + liver, and mammary gland] was calculated as the efflux minus the influx across that tissue. The efficiency of EAA was calculated as the sum of exported true proteins [milk protein yield (MPY), scurf, and metabolic fecal protein] multiplied by their respective AA profile and divided by the predicted AA supply minus AA endogenous urinary loss. In addition, catabolism was estimated for each tissue: AA supply - (portal net flux + metabolic fecal protein) for the PDV; -hepatic net flux for the liver; splanchnic net flux - (-mammary net flux + scurf) for the other peripheral tissues; and -mammary net flux - milk for the mammary gland. The MIXED procedure (SAS Institute Inc., Cary, NC) was used with cow as a random effect. No AA × glucose interaction existed for most of the measured parameters. With infusions of AA and glucose, MPY increased by 17 and 14%, respectively. The decreased efficiency of EAA-N with AA infusion resulted from increased EAA-N in MPY smaller than the increased EAA-N supply and was accompanied by increased liver catabolism of His + Met + Phe (representing group 1 AA) and increased mammary and PDV catabolisms of group 2 AA-N (Ile, Leu, Lys, and Val). In contrast, the increased efficiency of EAA-N with glucose infusion, resulting from increased EAA-N in MPY with no change in EAA-N supply, was accompanied by decreased mammary catabolism of group 2 AA-N and hepatic catabolism of His + Met + Phe. No mammary catabolism of His, Met, and Phe existed in all treatments, as indicated by the mammary uptake to milk output ratio close to one for these EAA. Therefore, the mammary gland contributes significantly to variations of efficiency of group 2 AA-N through variations of AA catabolism, in response to both AA and glucose supplies, whereas additional PDV catabolism was observed with increased AA supply. Partition of AA use between tissues allows to delineate their anabolic or catabolic fate across tissues and better understand changes of efficiency of EAA in response to protein and energy supplies.


Assuntos
Aminoácidos/administração & dosagem , Bovinos/metabolismo , Glucose/administração & dosagem , Leite/química , Abomaso/efeitos dos fármacos , Abomaso/metabolismo , Aminoácidos/metabolismo , Animais , Caseínas/análise , Dieta/veterinária , Feminino , Lactação , Fígado/efeitos dos fármacos , Fígado/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Proteínas do Leite/análise , Vísceras/efeitos dos fármacos , Vísceras/metabolismo
19.
J Dairy Sci ; 103(1): 972-991, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31704022

RESUMO

The objective of this study was to test the effects of essential fatty acids (EFA), particularly α-linolenic acid, and conjugated linoleic acid (CLA) supplementation on fatty acid (FA) composition, performance, and systemic and hepatic antioxidative and inflammatory responses in dairy cows. Four cows (126 ± 4 d in milk) were investigated in a 4 × 4 Latin square and were abomasally infused with 1 of the following for 6 wk: (1) coconut oil (control treatment, CTRL; 38.3 g/d; providing saturated FA), (2) linseed and safflower oil (EFA treatment; 39.1 and 1.6 g/d, respectively; providing mainly α-linolenic acid), (3) Lutalin (BASF, Ludwigshafen, Germany; CLA treatment; cis-9,trans-11 and trans-10,cis-12 CLA, 4.6 g/d each), (4) or EFA+CLA. The initial dosage was doubled every 2 wk, resulting in 3 dosages (dosage 1, 2, and 3). Cows were fed a corn silage-based total mixed ration with a high n-6/n-3 FA ratio. Dry matter intake and milk yield were recorded daily, and milk composition was measured weekly. The FA compositions of milk fat and blood plasma were analyzed at wk 0, 2, 4, and 6. The plasma concentration and hepatic mRNA abundance of parameters linked to the antioxidative and inflammatory response were analyzed at wk 0 and 6 of each treatment period. Infused FA increased in blood plasma and milk of the respective treatment groups in a dose-dependent manner. The n-6/n-3 FA ratio in milk fat was higher in CTRL and CLA than in EFA and EFA+CLA. The sum of FA

Assuntos
Antioxidantes/metabolismo , Bovinos , Ácidos Graxos/administração & dosagem , Inflamação/veterinária , Ácidos Linoleicos Conjugados/administração & dosagem , Abomaso/metabolismo , Animais , Dieta/veterinária , Suplementos Nutricionais , Vias de Administração de Medicamentos , Metabolismo Energético , Ácidos Graxos/metabolismo , Feminino , Inflamação/prevenção & controle , Injeções , Lactação/fisiologia , Ácidos Linoleicos Conjugados/farmacologia , Leite/metabolismo
20.
J Dairy Sci ; 102(10): 8963-8976, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31378498

RESUMO

Amino acid composition of metabolizable protein (MP) is important in dairy cattle diets, but effects of AA imbalances on energy and N utilization are unclear. This study determined the effect of different AA profiles within a constant supplemental MP level on whole-body energy and N partitioning in dairy cattle. Five rumen-fistulated Holstein-Friesian dairy cows (2.8 ± 0.4 lactations; 81 ± 11 d in milk; mean ± standard deviation) were randomly assigned to a 5 × 5 Latin square design in which each experimental period consisted of 5 d of continuous abomasal infusion followed by 2 d of rest. A total mixed ration consisting of 58% corn silage, 16% alfalfa hay, and 26% concentrate (dry matter basis) was formulated to meet 100 and 83% of net energy and MP requirements, respectively, and was fed at 90% of ad libitum intake by individual cow. Abomasal infusion treatments were saline (SAL) or 562 g/d of essential AA delivered in 4 profiles where individual AA content corresponded to their relative content in casein. The profiles were (1) a complete essential amino acid mixture (EAAC), (2) Ile, Leu, and Val (ILV), (3) His, Ile, Leu, Met, Phe, Trp, Val (GR1+ILV), and (4) Arg, His, Lys, Met, Phe, Thr, Trp (GR1+ALT). The experiment was conducted in climate respiration chambers to determine energy and N balance in conjunction with milk production and composition, digestibility, and plasma constituents. Compared with SAL, infusion of EAAC increased milk, protein, and lactose yield, increased energy retained as body protein, and did not affect milk N efficiency. Total N intake and urine N output was higher with all AA infusions relative to SAL. Compared with EAAC, infusions of GR1+ILV and GR1+ALT produced the same milk yield and the same yield and content of milk fat, protein, and lactose, and had similar energy and N retention. Milk N efficiency was not different between EAAC and GR1+ILV, but was lower with GR1+ALT compared with EAAC, and tended to be lower with GR1+ALT compared with GR1+ILV. Infusion of ILV tended to decrease dry matter intake compared with the other AA infusions. Milk production and composition was not different between ILV and SAL. Compared with EAAC, infusion of ILV decreased or tended to decrease milk, protein, and lactose yields and milk protein content, and increased milk fat and lactose content. Milk N efficiency decreased with ILV compared with SAL, EAAC, and GR1+ILV. Milk urea concentration was not affected by essential amino acid (EAA) infusions. Plasma urea concentration did not differ between EAAC and SAL, tended to increase with ILV and GR1+ILV over SAL, and increased with GR1+ALT compared with EAAC and SAL. In conclusion, removing Arg, Lys, and Thr or removing Ile, Leu, and Val from a complete EAA profile when the total amount of EAA infused remained constant did not impair milk production, but milk N efficiency decreased when Ile, Leu, and Val were absent. Infusion of only Ile, Leu, and Val decreased milk protein yield and content and reduced milk N efficiency compared with a complete EAA profile.


Assuntos
Aminoácidos Essenciais/análise , Bovinos/fisiologia , Metabolismo Energético , Proteínas do Leite/metabolismo , Leite/química , Nitrogênio/metabolismo , Abomaso/metabolismo , Animais , Dieta/veterinária , Feminino , Lactação , Lactose/metabolismo , Rúmen/metabolismo , Silagem/análise , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...