Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Biophys J ; 122(14): 2921-2937, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-36461639

RESUMO

The actin filament network is in part remodeled by the action of a family of filament severing proteins that are responsible for modulating the ratio between monomeric and filamentous actin. Recent work on the protein actophorin from the amoeba Acanthamoeba castellani identified a series of site-directed mutations that increase the thermal stability of the protein by 22°C. Here, we expand this observation by showing that the mutant protein is also significantly stable to both equilibrium and kinetic chemical denaturation, and employ computer simulations to account for the increase in thermal or chemical stability through an accounting of atomic-level interactions. Specifically, the potential of mean force (PMF) can be obtained from steered molecular dynamics (SMD) simulations in which a protein is unfolded. However, SMD can be inefficient for large proteins as they require large solvent boxes, and computationally expensive as they require increasingly many SMD trajectories to converge the PMF. Adaptive steered molecular dynamics (ASMD) overcomes the second of these limitations by steering the particle in stages, which allows for convergence of the PMF using fewer trajectories compared with SMD. Use of the telescoping water scheme within ASMD partially overcomes the first of these limitations by reducing the number of waters at each stage to only those needed to solvate the structure within a given stage. In the PMFs obtained from ASMD, the work of unfolding Acto-2 was found to be higher than the Acto-WT by approximately 120 kCal/mol and reflects the increased stability seen in the chemical denaturation experiments. The evolution of the average number of hydrogen bonds and number of salt bridges during the pulling process provides a mechanistic view of the structural changes of the actophorin protein as it is unfolded, and how it is affected by the mutation in concert with the energetics reported through the PMF.


Assuntos
Acanthamoeba , Amoeba , Acanthamoeba/metabolismo , Actinas/metabolismo , Simulação de Dinâmica Molecular , Solventes/metabolismo , Desnaturação Proteica
2.
Sci Rep ; 12(1): 16806, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207453

RESUMO

Humans and Acanthamoeba polyphaga mimivirus share numerous homologous genes, including collagens and collagen-modifying enzymes. To explore this homology, we performed a genome-wide comparison between human and mimivirus using DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) and identified 52 new putative mimiviral proteins that are homologous with human proteins. To gain functional insights into mimiviral proteins, their human protein homologs were organized into Gene Ontology (GO) and REACTOME pathways to build a functional network. Collagen and collagen-modifying enzymes form the largest subnetwork with most nodes. Further analysis of this subnetwork identified a putative collagen glycosyltransferase R699. Protein expression test suggested that R699 is highly expressed in Escherichia coli, unlike the human collagen-modifying enzymes. Enzymatic activity assay and mass spectrometric analyses showed that R699 catalyzes the glucosylation of galactosylhydroxylysine to glucosylgalactosylhydroxylysine on collagen using uridine diphosphate glucose (UDP-glucose) but no other UDP-sugars as a sugar donor, suggesting R699 is a mimiviral collagen galactosylhydroxylysyl glucosyltransferase (GGT). To facilitate further analysis of human and mimiviral homologous proteins, we presented an interactive and searchable genome-wide comparison website for quickly browsing human and Acanthamoeba polyphaga mimivirus homologs, which is available at RRID Resource ID: SCR_022140 or https://guolab.shinyapps.io/app-mimivirus-publication/ .


Assuntos
Acanthamoeba , Mimiviridae , Acanthamoeba/genética , Acanthamoeba/metabolismo , Colágeno/metabolismo , Genômica , Glucose/metabolismo , Glucosiltransferases , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , Mimiviridae/genética , Açúcares/metabolismo , Uridina Difosfato Glucose/metabolismo , Proteínas Virais/genética
3.
Parasitol Res ; 121(11): 3105-3119, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36102969

RESUMO

Acanthamoeba cysts have a cellulose cell wall made up of a solid layer of ß-glucan, which confers resistance to the dormant phase of this microorganism. The ability of Acanthamoeba to change to this dormant phase causes difficulties in treating its infection at the cyst stage as compared to the trophozoite stage. Therefore, targeting cyst total mortality can help to prevent re-infection in patients. To ensure cysticidal treatment, a ß-glucanase enzyme was introduced in vitro to the Acanthamoeba cyst, followed by a chlorhexidine solution treatment. ß-glucanase enzyme and chlorhexidine dose-response analysis was performed based on cell wall integrity measurement. The treatment was also performed on human corneal epithelial cells to confirm the safety of the treatment in vitro. The surface morphology of the cysts was observed using scanning electron microscopy (SEM), while the protein alterations were determined using 1D protein analysis. The interaction of the ß-glucanase enzyme with cellulose linkages was investigated based on molecular dosimetry. Incubation of the cyst for 24 h at 8.75 units/ml of ß-glucanase followed by 0.88 µg/ml of chlorhexidine resulted in a substantial reduction in the total chlorhexidine used, which made it safer for human corneal epithelial cells. Ultrastructural changes revealed the reduction of the thickness in ectocyst and endocyst layers with the loss of the internal structure of the cyst. After combination treatment of chlorhexidine and ß-glucanase, a decrease in the cyst protein from the size of 37 to 25 kDa was observed. The enzyme-substrate interaction validated these results based on molecular docking between 1,4-ß-D-glucan and 1,4- ß-D-xylan with the ß-glucanase enzyme. In silico analysis revealed that two catalytic glutamate residues (Glu160 and Glu267) are essential to catalysing the hydrolytic reaction. Molecular dynamic simulation analysis revealed that both ligands formed stable interactions throughout the simulation. This work concludes that the enzymatic approach combined with chlorhexidine is a novel and effective technique for ensuring the cysticidal effects against the Acanthamoeba cyst. The interaction of the chlorhexidine and ß-glucanase enzyme on the surface of the cyst of amoeba resulted in the ecto-and endo cyst layer being damaged and confirmed the cysticidal effects.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba , beta-Glucanas , Acanthamoeba/metabolismo , Celulose/metabolismo , Clorexidina/farmacologia , Glucanos , Glutamatos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Xilanos
4.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 4): 150-160, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35400667

RESUMO

Actophorin, which was recently tested for crystallization under microgravity on the International Space Station, was subjected to mutagenesis to identify a construct with improved biophysical properties that were expected to improve the extent of diffraction. First, 20 mutations, including one C-terminal deletion of three residues, were introduced individually into actophorin, resulting in modest increases in thermal stability of between +0.5°C and +2.2°C. All but two of the stabilizing mutants increased both the rates of severing F-actin filaments and of spontaneous polymerization of pyrenyl G-actin in vitro. When the individual mutations were combined into a single actophorin variant, Acto-2, the overall thermal stability was 22°C higher than that of wild-type actophorin. When an inactivating S2P mutation in Acto-2 was restored, Acto-2/P2S was more stable by 20°C but was notably more active than the wild-type protein. The inactivating S2P mutation reaffirms the importance that Ser2 plays in the F-actin-severing reaction. The crystal structure of Acto-2 was solved to 1.7 Šresolution in a monoclinic space group, a first for actophorin. Surprisingly, despite the increase in thermal stability, the extended ß-turn region, which is intimately involved in interactions with F-actin, is disordered in one copy of Acto-2 in the asymmetric unit. These observations emphasize the complex interplay among protein thermal stability, function and dynamics.


Assuntos
Acanthamoeba , Ausência de Peso , Acanthamoeba/química , Acanthamoeba/metabolismo , Actinas/metabolismo , Cristalização , Cristalografia por Raios X
5.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 12): 452-458, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866600

RESUMO

Actophorin, a protein that severs actin filaments isolated from the amoeba Acanthamoeba castellanii, was employed as a test case for crystallization under microgravity. Crystals of purified actophorin were grown under microgravity conditions aboard the International Space Station (ISS) utilizing an interactive crystallization setup between the ISS crew and ground-based experimenters. Crystals grew in conditions similar to those grown on earth. The structure was solved by molecular replacement at a resolution of 1.65 Å. Surprisingly, the structure reveals conformational changes in a remote ß-turn region that were previously associated with actophorin phosphorylated at the terminal residue Ser1. Although crystallization under microgravity did not yield a higher resolution than crystals grown under typical laboratory conditions, the conformation of actophorin obtained from solving the structure suggests greater flexibility in the actophorin ß-turn than previously appreciated and may be beneficial for the binding of actophorin to actin filaments.


Assuntos
Acanthamoeba , Ausência de Peso , Acanthamoeba/química , Acanthamoeba/metabolismo , Actinas/metabolismo , Cristalização , Cristalografia por Raios X
6.
Folia Microbiol (Praha) ; 66(5): 689-699, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34145552

RESUMO

Acanthamoeba is known to interact with a plethora of microorganisms such as bacteria, fungi and viruses. In these interactions, the amoebae can be predatory in nature, transmission vehicle or an incubator. Amoebae consume microorganisms, especially bacteria, as food source to fulfil their nutritional needs by taking up bacteria through phagocytosis and lysing them in phagolysosomes and hence play an eminent role in the regulation of bacterial density in the nature and accountable for eradication of around 60% of the bacterial population in the environment. Acanthamoeba can also act as a "Trojan horse" for microbial transmission in the environment. Additionally, Acanthamoeba may serve as an incubator-like reservoir for microorganisms, including those that are pathogenic to humans, where the microorganisms use amoebae's defences to resist harsh environment and evade host defences and drugs, whilst growing in numbers inside the amoebae. Furthermore, amoebae can also be used as a "genetic melting pot" where exchange of genes as well as adaptation of microorganisms, leading to higher pathogenicity, may arise. Here, we describe bacteria, fungi and viruses that are known to interact with Acanthamoeba spp.


Assuntos
Acanthamoeba , Fenômenos Fisiológicos Bacterianos , Interações entre Hospedeiro e Microrganismos , Fenômenos Fisiológicos Virais , Acanthamoeba/metabolismo , Acanthamoeba/microbiologia , Acanthamoeba/virologia , Fungos/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia
7.
Cell Biol Int ; 45(5): 1060-1071, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33448518

RESUMO

Free living amoeba of the genus Acanthamoeba are opportunist protozoan involved in corneal, systemic, and encephalic infections in humans. Most of the mechanisms underlying intraspecies variations and pathogenicity are still unknown. Recently, the release of extracellular vesicles (EVs) by Acanthamoeba was reported. However, comparative characterization of EVs from distinct strains is not available. The aim of this study was to evaluate EVs produced by Acanthamoeba from different genotypes, comparing their proteases profile and immunomodulatory properties. EVs from four environmental or clinical strains (genotypes T1, T2, T4, and T11) were obtained by ultracentrifugation, quantitated by nanoparticle tracking analysis and analyzed by scanning and transmission electron microscopy. Proteases profile was determined by zymography and functional properties of EVs (measure of nitrite and cytokine production) were determined after peritoneal macrophage stimulation. Despite their genotype, all strains released EVs and no differences in size and/or concentration were detected. EVs exhibited a predominant activity of serine proteases (pH 7.4 and 3.5), with higher intensity in T4 and T1 strains. EVs from the environmental, nonpathogenic T11 strain exhibited a more proinflammatory profile, inducing higher levels of Nitrite, tumor necrosis factor alpha and interleukin-6 via TLR4/TLR2 than those strains with pathogenic traits (T4, T1, and T2). Preincubation with EVs treated with protease inhibitors or heating drastically decreased nitrite concentration production in macrophages. Those data suggest that immunomodulatory effects of EVs may reflect their pathogenic potential depending on the Acanthamoeba strains and are dependent on protease integrity.


Assuntos
Acanthamoeba/genética , Acanthamoeba/metabolismo , Vesículas Extracelulares/imunologia , Acanthamoeba/classificação , Animais , Vesículas Extracelulares/fisiologia , Feminino , Genótipo , Fatores Imunológicos/imunologia , Fatores Imunológicos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
8.
Sci Rep ; 10(1): 10362, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587282

RESUMO

Acanthamoebae are potentially pathogenic organisms, with a highly unique, yet still insufficiently investigated metabolism. Many open questions can be addressed by gene expression studies, however, for Acanthamoeba reliable standards have not yet been established. In this study, suitable reference genes (RGs) for RT-qPCR in Acanthamoeba were comprehensively evaluated, comparing different Acanthamoeba strains and employing four different algorithms (NormFinder, GeNorm, BestKeeper and RefFinder). Expression stability was assessed under various conditions and the potentials of the most promising RGs for accurate normalization of target genes were evaluated. Expression stability of RGs varied depending on conditions and employed algorithms, however, the genes for the 18S rRNA and the hypoxanthine phosphoribosyl transferase seem to be widely suitable RGs. Normalization with a combination of two carefully chosen RGs resulted in reliable expression data for target genes, while normalization with unsuitable RGs led to significant misinterpretation of expression profiles. Thus, a careful evaluation of RGs prior to expression studies is essential.


Assuntos
Acanthamoeba/genética , Algoritmos , Perfilação da Expressão Gênica , RNA Ribossômico 18S/análise , Reação em Cadeia da Polimerase em Tempo Real/normas , Acanthamoeba/metabolismo , RNA Ribossômico 18S/genética , Padrões de Referência
9.
Parasit Vectors ; 13(1): 123, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32143731

RESUMO

BACKGROUND: Acanthamoeba spp. are ubiquitous pathogens which cause granulomatous amoebic encephalitis and disseminated infection. Moreover, Acanthamoeba spp. infection of the cornea leads to Acanthamoeba keratitis. Our previous study showed that the infection of an eyeball may also take place via the migration of trophozoites through the optic nerve from the brain to the eyes. The aim of the study was to analyze the activity of enzymatic antioxidants and the concentration of non-enzymatic antioxidant in the eyes of immunocompetent and immunocompromised mice with disseminated acanthamoebiasis. RESULTS: In the immunocompetent mice infected with Acanthamoeba spp. we noted a significant decrease in catalase activity at 8 and 16 days post-infection (dpi). Glutathione reductase activity was significantly lower at 16 dpi compared to the control group and glutathione concentration was statistically higher at 24 dpi than in the control group. In the immunosuppressed mice, a statistically significant increase in glutathione concentration in the eye samples was found at 16 dpi compared to those not infected with Acanthamoeba spp. In the immunosuppressed mice infected with Acanthamoeba spp., glutathione peroxidase activity was statistically lower at 8 dpi, and glutathione concentration was statistically significantly higher at 16 dpi compared to the control group. CONCLUSIONS: The inflammatory response in the eyes of hosts with experimental acanthamoebiasis led to changes in the activity of enzymatic antioxidants and the content of non-enzymatic antioxidant. Therefore, the dysregulation of antioxidants may play a role in the pathomechanism of Acanthamoeba eye infection.


Assuntos
Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/metabolismo , Acanthamoeba/metabolismo , Antioxidantes/farmacologia , Hospedeiro Imunocomprometido , Acanthamoeba/imunologia , Ceratite por Acanthamoeba/parasitologia , Ceratite por Acanthamoeba/patologia , Animais , Antioxidantes/uso terapêutico , Catalase/metabolismo , Modelos Animais de Doenças , Olho/imunologia , Olho/patologia , Glutationa , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Camundongos , Oxirredução
10.
J Appl Microbiol ; 129(2): 453-464, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32012390

RESUMO

AIMS: The study established the inactivation kinetic parameters of an Acanthamoeba cyst isolate subjected to heating and chlorination. METHODS AND RESULTS: A strain of Acanthamoeba was isolated and purified from an area surrounding a pilot food plant. Mature cysts (14 days) were subjected to heat inactivation studies at 71, 76, 81, 86 and 91°C; and chlorination at 100, 200, 300, 400 and 500 ppm. The decimal reduction times (D-values) at 71, 76, 81, 86 and 91°C were 18·31, 9·26, 7·35, 4·52 and 1·81 min respectively. The calculated thermal resistance constant (z-value) was 21·32°C (R2  = 0·96-0·97). The D-value in 100, 200, 300, 400 and 500 ppm chlorine-treated water were 47·17, 25·06, 24·51, 23·70 and 18·55 min respectively. The chlorine resistance constant (z-value) was 1179 ppm chlorine (R2  = 0·65-0·74). CONCLUSIONS: Results demonstrated high resistance of the isolated Acanthamoeba cysts towards the common methods applied in ensuring food and food processing environment sanitation. SIGNIFICANCE AND IMPACT OF THE STUDY: The resistance parameters of the test organisms established in this study may be used in the establishment of Sanitation Standard Operating Procedures (SSOPs), which are often based on inactivation of bacteria. These SSOPs could render better protection to food and food processing environments.


Assuntos
Acanthamoeba/crescimento & desenvolvimento , Cloro/metabolismo , Temperatura Alta , Encistamento de Parasitas/fisiologia , Purificação da Água/métodos , Acanthamoeba/metabolismo , Adaptação Fisiológica , Cloro/análise , Inocuidade dos Alimentos , Microbiologia do Solo , Água/química , Microbiologia da Água , Purificação da Água/normas
11.
Parasitol Res ; 119(2): 659-666, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31848745

RESUMO

Free-living amoebae of the genus Acanthamoeba are causative agents of Acanthamoeba keratitis and amoebic encephalitis in humans, both of which are serious infections. The ability to produce proteases is one of the factors involved in the pathogenesis of Acanthamoeba infections. The aim of this study was to evaluate the secreted proteases of six Acanthamoeba strains from distinct genotypes (T1, T2, T4 and T11) maintained in prolonged axenic culture and following three successive passages in Madin-Darby Canine Kidney (MDCK) cells. Conditioned medium was obtained from cultures before and after interaction with the MDCK monolayers, resolved in SDS-PAGE containing gelatine, then subjected to quantitative azocasein assays. Zymography profiles varied between the strains, with the predominant proteases found to be serine-type proteases from 49 to 128 kDa. A T1 genotype strain isolated from dust showed quantitatively higher protease secretion compared to the other strains. No changes were detected in the zymography profiles of MDCK-interacted cultures compared to long-term axenic cultures. Two strains presented lower proteolytic activity post-MDCK interaction, while the remaining strains presented similar values before and after MDCK passages. In conclusion, this study confirms the predominance of serine-type protease secretion by Acanthamoeba, with distinct profiles presented by the different strains and genotypes studied. Also, interaction of trophozoites with MDCK cells did not alter the zymography pattern.


Assuntos
Acanthamoeba/enzimologia , Acanthamoeba/metabolismo , Serina Proteases/metabolismo , Acanthamoeba/genética , Ceratite por Acanthamoeba/parasitologia , Animais , Cultura Axênica , Caseínas/análise , Linhagem Celular , Cães , Genótipo , Humanos , Células Madin Darby de Rim Canino , Trofozoítos/metabolismo
12.
Parasit Vectors ; 12(1): 538, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727139

RESUMO

BACKGROUND: Acanthamoeba is well known to produce a blinding keratitis and serious brain infection known as encephalitis. Effective treatment is problematic, and can continue up to a year, and even then, recurrence can ensue. Partly, this is due to the capability of vegetative amoebae to convert into resistant cysts. Cysts can persist in an inactive form for decades while retaining their pathogenicity. It is not clear how Acanthamoeba cysts monitor environmental changes, and determine favourable conditions leading to their emergence as viable trophozoites. METHODS: The role of ion transporters in the encystation and excystation of Acanthamoeba remains unclear. Here, we investigated the role of sodium, potassium and calcium ion transporters as well as proton pump inhibitors on A. castellanii encystation and excystation and their effects on trophozoites. RESULTS: Remarkably 3',4'-dichlorobenzamil hydrochloride a sodium-calcium exchange inhibitor, completely abolished excystation of Acanthamoeba. Furthermore, lanthanum oxide and stevioside hydrate, both potassium transport inhibitors, resulted in the partial inhibition of Acanthamoeba excystation. Conversely, none of the ion transport inhibitors affected encystation or had any effects on Acanthamoeba trophozoites viability. CONCLUSIONS: The present study indicates that ion transporters are involved in sensory perception of A. castellanii suggesting their value as potential therapeutic targets to block cellular differentiation that presents a significant challenge in the successful prognosis of Acanthamoeba infections.


Assuntos
Acanthamoeba/efeitos dos fármacos , Acanthamoeba/metabolismo , Transporte de Íons , Íons/metabolismo , Encistamento de Parasitas/efeitos dos fármacos , Meios de Cultura , Inibidores da Bomba de Prótons/farmacologia
13.
Genes (Basel) ; 10(8)2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416298

RESUMO

The epithelium represents the first and most extensive line of defence against pathogens, toxins and pollutant agents in humans. In general, pathogens have developed strategies to overcome this barrier and use it as an entrance to the organism. Entamoeba histolytica, Naegleriafowleri and Acanthamoeba spp. are amoebae mainly responsible for intestinal dysentery, meningoencephalitis and keratitis, respectively. These amoebae cause significant morbidity and mortality rates. Thus, the identification, characterization and validation of molecules participating in host-parasite interactions can provide attractive targets to timely intervene disease progress. In this work, we present a compendium of the parasite adhesins, lectins, proteases, hydrolases, kinases, and others, that participate in key pathogenic events. Special focus is made for the analysis of assorted molecules and mechanisms involved in the interaction of the parasites with epithelial surface receptors, changes in epithelial junctional markers, implications on the barrier function, among others. This review allows the assessment of initial host-pathogen interaction, to correlate it to the potential of parasite invasion.


Assuntos
Acanthamoeba/patogenicidade , Entamoeba histolytica/patogenicidade , Células Epiteliais/parasitologia , Interações Hospedeiro-Parasita , Naegleria fowleri/patogenicidade , Infecções por Protozoários/parasitologia , Acanthamoeba/metabolismo , Animais , Entamoeba histolytica/metabolismo , Células Epiteliais/metabolismo , Humanos , Naegleria fowleri/metabolismo , Infecções por Protozoários/metabolismo
14.
Parasitol Res ; 118(6): 1865-1874, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31065830

RESUMO

Acanthamoeba is a free-living pathogenic protozoan that is distributed in different environmental reservoirs, including lakes and soil. Pathogenic Acanthamoeba can cause severe human diseases, such as blinding keratitis and granulomatous encephalitis. Therefore, it is important to understand the pathogenic relationship between humans and Acanthamoeba. By comparison of systemic analysis results for Acanthamoeba isolates, we identified a novel secreted protein of Acanthamoeba, an M28 aminopeptidase (M28AP), which targets of the human innate immune defense. We investigated the molecular functions and characteristics of the M28AP protein by anti-M28 antibodies and a M28AP mutant strain generated by the CRISPR/Cas9 system. Human complement proteins such as C3b and iC3b were degraded by Acanthamoeba M28AP. We believe that M28AP is an important factor in human innate immunity. This study provides new insight for the development of more efficient medicines to treat Acanthamoeba infection.


Assuntos
Acanthamoeba/metabolismo , Aminopeptidases/imunologia , Aminopeptidases/metabolismo , Complemento C3/metabolismo , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Acanthamoeba/isolamento & purificação , Amebíase/parasitologia , Aminopeptidases/genética , Sistemas CRISPR-Cas , Humanos , Lagos/parasitologia , Proteínas de Protozoários/genética , Solo/parasitologia
15.
Sci Rep ; 9(1): 4466, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872791

RESUMO

Acanthamoebae success as human pathogens is largely due to the highly resistant cysts which represent a crucial problem in treatment of Acanthamoeba infections. Hence, the study of cyst wall composition and encystment play an important role in finding new therapeutic strategies. For the first time, we detected high activity of cytoskeletal elements - microtubular networks and filamentous actin, in late phases of encystment. Cellulose fibrils - the main components of endocyst were demonstrated in inter-cystic space, and finally in the ectocyst, hereby proving the presence of cellulose in both layers of the cyst wall. We detected clustering of intramembranous particles (IMPs) and their density alterations in cytoplasmic membrane during encystment. We propose a hypothesis that in the phase of endocyst formation, the IMP clusters represent cellulose microfibril terminal complexes involved in cellulose synthesis that after cyst wall completion are reduced. Cyst wall impermeability, due largely to a complex polysaccharide (glycans, mainly cellulose) has been shown to be responsible for Acanthamoeba biocide resistance and cellulose biosynthesis pathway is suggested to be a potential target in treatment of Acanthamoeba infections. Disruption of this pathway would affect the synthesis of cyst wall and reduce considerably the resistance to chemotherapeutic agents.


Assuntos
Acanthamoeba/ultraestrutura , Amebíase/parasitologia , Parede Celular/ultraestrutura , Celulose/metabolismo , Acanthamoeba/isolamento & purificação , Acanthamoeba/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Parede Celular/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Humanos , Microscopia Confocal , Microscopia Eletrônica , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura
16.
J Lipid Res ; 60(5): 981-994, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30709898

RESUMO

Pathogenic organisms may be sensitive to inhibitors of sterol biosynthesis, which carry antimetabolite properties, through manipulation of the key enzyme, sterol methyltransferase (SMT). Here, we isolated natural suicide substrates of the ergosterol biosynthesis pathway, cholesta-5,7,22,24-tetraenol (CHT) and ergosta-5,7,22,24(28)-tetraenol (ERGT), and demonstrated their interference in Acanthamoeba castellanii steroidogenesis: CHT and ERGT inhibit trophozoite growth (EC50 of 51 nM) without affecting cultured human cell growth. Washout experiments confirmed that the target for vulnerability was SMT. Chemical, kinetic, and protein-binding studies of inhibitors assayed with 24-AcSMT [catalyzing C28-sterol via Δ24(28)-olefin production] and 28-AcSMT [catalyzing C29-sterol via Δ25(27)-olefin production] revealed interrupted partitioning and irreversible complex formation from the conjugated double bond system in the side chain of either analog, particularly with 28-AcSMT. Replacement of active site Tyr62 with Phe or Leu residues involved in cation-π interactions that model product specificity prevented protein inactivation. The alkylating properties and high selective index of 103 for CHT and ERGT against 28-AcSMT are indicative of a new class of steroidal antibiotic that, as an antimetabolite, can limit sterol expansion across phylogeny and provide a novel scaffold in the design of amoebicidal drugs. Animal studies of these suicide substrates can further explore the potential of their antibiotic properties.


Assuntos
Acanthamoeba/efeitos dos fármacos , Antibacterianos/farmacologia , Antimetabólitos/farmacologia , Antiparasitários/farmacologia , Filogenia , Esteróis/metabolismo , Esteróis/farmacologia , Acanthamoeba/genética , Acanthamoeba/metabolismo , Antibacterianos/química , Antimetabólitos/química , Antiparasitários/química , Linhagem Celular , Humanos , Cinética , Mutagênese Sítio-Dirigida , Testes de Sensibilidade Parasitária , Proteômica , Esteróis/química
17.
Korean J Parasitol ; 56(5): 491-494, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30419735

RESUMO

Multipurpose contact lens disinfecting solutions (MPDS) are widely used to cleanse and disinfect microorganisms. However, disinfection efficacy of these MPDS against Acanthamoeba cyst remain insufficient. 2, 6-dichlorobenzonitrile (DCB), a cellulose synthesis inhibitor, is capable of increasing the amoebical effect against Acanthamoeba by inhibiting its encystation. In this study, we investigated the possibility of DCB as a disinfecting agent to improve the amoebicidal activity of MPDS against Acanthamoeba cyst. Eight commercial MPDS (from a to h) were assessed, all of which displayed insufficient amoebicidal activity against the mature cysts. Solution e, f, and h showed strong amoebicidal effect on the immature cysts. Amoebicidal efficacy against mature cysts remained inadequate even when the 8 MPDS were combined with 100 µM DCB. However, 4 kinds of MPDS (solution d, e, f, and h) including 100 µM DCB demonstrated strong amoebicidal activity against the immature cysts. The amoebicidal activity of solution d was increased by addition of DCB. Cytotoxicity was absent in human corneal epithelial cells treated with either DCB or mixture of DCB with MPDS. These results suggested that DCB can enhance the amoebicical activity of MPDS against Acanthamoeba immature cyst in vitro.


Assuntos
Acanthamoeba/efeitos dos fármacos , Amebicidas/farmacologia , Soluções para Lentes de Contato/farmacologia , Nitrilas/farmacologia , Acanthamoeba/metabolismo , Células Cultivadas , Celulose/metabolismo , Soluções para Lentes de Contato/efeitos adversos , Lentes de Contato/parasitologia , Células Epiteliais/efeitos dos fármacos , Epitélio Corneano/efeitos dos fármacos , Humanos , Nitrilas/efeitos adversos , Encistamento de Parasitas/efeitos dos fármacos
18.
Sci Rep ; 8(1): 13311, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190504

RESUMO

Gemmata spp. bacteria thrive in the same aquatic environments as free-living amoebae. DNA-based detection of Gemmata spp. sequences in the microbiota of the human digestive tract and blood further questioned the susceptibility of Gemmata spp. to phagocytes. Here, Gemmata obscuriglobus and Gemmata massiliana were co-cultured with the amoebae Acanthamoeba polyphaga, Acanthamoeba castellanii, Acanthamoeba griffini and THP-1 macrophage-like phagocytes. All experiments were performed in five independant replicates. The ratio amoeba/bacteria was 1:20 and the ratio THP-1/bacteria was 1:10. After a 2-hour co-culture, extracellular bacteria were killed by kanamycin or amikacin and eliminated. The intracellular location of Gemmata bacteria was specified by confocal microscopy. Microscopic enumerations and culture-based enumerations of colony-forming units were performed at T = 0, 1, 2, 3, 4, 8, 16, 24, 48 and 72 hours post-infection. Then, Gemmata bacteria were engulfed into the phagocytes' cytoplasmic vacuoles, more than (98 ± 2)% of Gemmata bacteria, compared to controls, were destroyed by phagocytic cells after a 48-h co-culture according to microscopy and culture results, and no positive culture was observed at T = 72-hours. Under our co-culture conditions, Gemmata bacteria were therefore susceptible to the environmental and host phagocytes here investigated. These data suggest that these Acanthamoeba species and THP-1 cells cannot be used to isolate G. massiliana and G. obscuriglobus under the co-culture conditions applied in this study. Although the THP-1 response can point towards potential responses that might occur in vivo, these responses should first bevalidated by in vivo studies to draw definite conclusions.


Assuntos
Acanthamoeba/metabolismo , Macrófagos/metabolismo , Planctomycetales/metabolismo , Acanthamoeba/microbiologia , Técnicas de Cocultura , Humanos , Macrófagos/microbiologia , Células THP-1
19.
Sci Rep ; 8(1): 8520, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867132

RESUMO

Amoebae of the genus Acanthamoeba are ubiquitous protists that have been isolated from many sources such as soils, water and the air. They are responsible for infections including fatal encephalitis and a severe keratitis in humans. To date, there is no satisfactorily effective therapeutic agent against this pathogen and the infections it causes are exacerbated by the existence of a resistant cyst stage produced by this amoeba. As dry eye syndrome is a risk factor for Acanthamoeba keratitis, we aimed to evaluate the anti-Acanthamoeba activity of a variety of proprietary eye drops intended to treat dry eye syndrome. From the nine eye drop formulations tested, "Systane Ultra" was determined to be the most active against all tested Acanthamoeba strains. During our investigations into the mode of action of Systane Ultra, we discovered that it decreases mitochondrial membrane potential and ATP levels, induces chromatin condensation, and increases the permeability of the plasma-membrane.


Assuntos
Acanthamoeba/metabolismo , Amebíase/tratamento farmacológico , Amebicidas/farmacologia , Síndromes do Olho Seco/tratamento farmacológico , Ceratose/tratamento farmacológico , Soluções Oftálmicas/farmacologia , Síndromes do Olho Seco/parasitologia , Humanos , Ceratose/parasitologia
20.
Virus Res ; 253: 77-86, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29913250

RESUMO

Mimivirus' genome includes parts of 5S, 16S and 23S ribosomal RNAs encoded by Acanthamoeba's mitogenome, the giant virus' host. Two non-exclusive hypotheses for rRNA remnants in giant viruses are examined: 1. mitogenomes invade viral genomes as they do for nuclear chromosomes (producing numts); 2. megaviral genomes evolved from an ancestral mitogenome. Alignment analyses confirm mitochondrial, rather than alphaproteobacterial origins of megaviral rRNAs. Other mitogenes have likely megaviral homologues. These megaviral homologues coevolve to much larger extents than candidate rRNA homologues, suggesting rRNA decay in viruses. Megaviral mitogene homologues overall follow mitochondrial gene order, suggesting mitogenome ancestry. Ancestral synteny decreases with megaviral genome size, suggesting that subsequent mitogene insertions blur ancestral gene order. Putative defenses against DNA invasion conserve mitogene order in short megaviral genomes. Synteny between mitogenome and megaviral genomes confirms the RNA/DNA polymerase-homologies-based hypothesis that giant viruses have mitochondrial-like ancestors, viral rRNA remnants are corollary of mitogenomic origins of megaviral genomes. Note that giant viruses, mitochondria and bacterial spores all have double membranes, spores and viruses have protein coats. Mitochondria might occasionally form spore-like structures that drifted into megaviruses. These missing links could confirm mitogenome ancestry of giant viruses rather than giant virus ancestry of mitochondria.


Assuntos
Acanthamoeba/virologia , Evolução Biológica , Vírus Gigantes/genética , Mitocôndrias/virologia , Proteínas de Protozoários/metabolismo , Acanthamoeba/genética , Acanthamoeba/metabolismo , Ordem dos Genes , Tamanho do Genoma , Genoma Viral , Vírus Gigantes/fisiologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Filogenia , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...