Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mSphere ; 9(9): e0046624, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39136454

RESUMO

The cyst wall of the eye pathogen Acanthamoeba castellanii contains cellulose and has ectocyst and endocyst layers connected by conical ostioles. Cyst walls contain families of lectins that localize to the ectocyst layer (Jonah) or the endocyst layer and ostioles (Luke and Leo). How lectins and an abundant laccase bind cellulose and why proteins go to locations in the wall are not known and are the focus of the studies here. Structural predictions identified ß-jelly-roll folds (BJRFs) of Luke and sets of four disulfide knots (4DKs) of Leo, each of which contains linear arrays of aromatic amino acids, also present in carbohydrate-binding modules of bacterial and plant endocellulases. Ala mutations showed that these aromatics are necessary for cellulose binding and proper localization of Luke and Leo in the Acanthamoeba cyst wall. BJRFs of Luke, 4DKs of Leo, a single ß-helical fold (BHF) of Jonah, and a copper oxidase domain of the laccase each bind to glycopolymers in both layers of deproteinated cyst walls. Promoter swaps showed that ectocyst localization does not just correlate with but is caused by early encystation-specific expression, while localization in the endocyst layer and ostioles is caused by later expression. Evolutionary studies showed distinct modes of assembly of duplicated domains in Luke, Leo, and Jonah lectins and suggested Jonah BHFs originated from bacteria, Luke BJRFs share common ancestry with slime molds, while 4DKs of Leo are unique to Acanthamoeba.IMPORTANCEAcanthamoebae is the only human parasite with cellulose in its cyst wall and conical ostioles that connect its inner and outer layers. Cyst walls are important virulence factors because they make Acanthamoebae resistant to surface disinfectants, hand sanitizers, contact lens sterilizers, and antibiotics applied to the eye. The goal here was to understand better how proteins are targeted to specific locations in the cyst wall. To this end, we identified three new proteins in the outer layer of the cyst wall, which may be targets for diagnostic antibodies in corneal scrapings. We used structural predictions and mutated proteins to show linear arrays of aromatic amino acids of two unrelated wall proteins are necessary for binding cellulose and proper wall localization. We showed early expression during encystation causes proteins to localize to the outer layer, while later expression causes proteins to localize to the inner layer and the ostioles.


Assuntos
Acanthamoeba castellanii , Celulose , Proteínas de Protozoários , Celulose/metabolismo , Acanthamoeba castellanii/genética , Acanthamoeba castellanii/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Parede Celular/metabolismo , Parede Celular/química , Parede Celular/genética , Ligação Proteica , Lectinas/genética , Lectinas/metabolismo , Acanthamoeba/genética , Acanthamoeba/metabolismo , Transporte Proteico , Lacase/genética , Lacase/metabolismo , Lacase/química
2.
mSystems ; 9(6): e0122623, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38717186

RESUMO

We conducted a comprehensive comparative analysis of extracellular vesicles (EVs) from two Acanthamoeba castellanii strains, Neff (environmental) and T4 (clinical). Morphological analysis via transmission electron microscopy revealed slightly larger Neff EVs (average = 194.5 nm) compared to more polydisperse T4 EVs (average = 168.4 nm). Nanoparticle tracking analysis (NTA) and dynamic light scattering validated these differences. Proteomic analysis of the EVs identified 1,352 proteins, with 1,107 common, 161 exclusive in Neff, and 84 exclusively in T4 EVs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping revealed distinct molecular functions and biological processes and notably, the T4 EVs enrichment in serine proteases, aligned with its pathogenicity. Lipidomic analysis revealed a prevalence of unsaturated lipid species in Neff EVs, particularly triacylglycerols, phosphatidylethanolamines (PEs), and phosphatidylserine, while T4 EVs were enriched in diacylglycerols and diacylglyceryl trimethylhomoserine, phosphatidylcholine and less unsaturated PEs, suggesting differences in lipid metabolism and membrane permeability. Metabolomic analysis indicated Neff EVs enrichment in glycerolipid metabolism, glycolysis, and nucleotide synthesis, while T4 EVs, methionine metabolism. Furthermore, RNA-seq of EVs revealed differential transcript between the strains, with Neff EVs enriched in transcripts related to gluconeogenesis and translation, suggesting gene regulation and metabolic shift, while in the T4 EVs transcripts were associated with signal transduction and protein kinase activity, indicating rapid responses to environmental changes. In this novel study, data integration highlighted the differences in enzyme profiles, metabolic processes, and potential origins of EVs in the two strains shedding light on the diversity and complexity of A. castellanii EVs and having implications for understanding host-pathogen interactions and developing targeted interventions for Acanthamoeba-related diseases.IMPORTANCEA comprehensive and fully comparative analysis of extracellular vesicles (EVs) from two Acanthamoeba castellanii strains of distinct virulence, a Neff (environmental) and T4 (clinical), revealed striking differences in their morphology and protein, lipid, metabolites, and transcripts levels. Data integration highlighted the differences in enzyme profiles, metabolic processes, and potential distinct origin of EVs from both strains, shedding light on the diversity and complexity of A. castellanii EVs, with direct implications for understanding host-pathogen interactions, disease mechanisms, and developing new therapies for the clinical intervention of Acanthamoeba-related diseases.


Assuntos
Acanthamoeba castellanii , Vesículas Extracelulares , Proteômica , Acanthamoeba castellanii/metabolismo , Acanthamoeba castellanii/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Humanos , Metabolismo dos Lipídeos/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteoma/metabolismo , Proteoma/genética
3.
Biochemistry ; 61(13): 1363-1377, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35730528

RESUMO

Acanthamoeba castellanii is a free-living amoeba that can cause severe eye and brain infections in humans. At present, there is no uniformly effective treatment for any of these infections. However, sterol 14α-demethylases (CYP51s), heme-containing cytochrome P450 enzymes, are known to be validated drug targets in pathogenic fungi and protozoa. The catalytically active P450 form of CYP51 from A. castellanii (AcCYP51) is stabilized against conversion to the inactive P420 form by dimerization. In contrast, Naegleria fowleri CYP51 (NfCYP51) is monomeric in its active P450 and inactive P420 forms. For these two CYP51 enzymes, we have investigated the interplay between the enzyme activity and oligomerization state using steady-state and time-resolved UV-visible absorption spectroscopy. In both enzymes, the P450 → P420 transition is favored under reducing conditions. The transition is accelerated at higher pH, which excludes a protonated thiol as the proximal ligand in P420. Displacement of the proximal thiolate ligand is also promoted by adding exogenous nitrogenous ligands (N-ligands) such as imidazole, isavuconazole, and clotrimazole that bind at the opposite, distal heme side. In AcCYP51, the P450 → P420 transition is faster in the monomer than in the dimer, indicating that the dimeric assembly is critical for stabilizing thiolate coordination to the heme and thus for sustaining AcCYP51 activity. The spectroscopic experiments were complemented with size-exclusion chromatography and X-ray crystallography studies. Collectively, our results indicate that effective inactivation of the AcCYP51 function by azole drugs is due to synergistic interference with AcCYP51 dimerization and promoting irreversible displacement of the proximal heme-thiolate ligand.


Assuntos
Acanthamoeba castellanii , Heme , Acanthamoeba castellanii/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Dimerização , Heme/química , Humanos , Ligantes , Nitrogênio/metabolismo
4.
Parasitol Int ; 87: 102523, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34929407

RESUMO

Acanthamoeba castellanii (A. castellanii) is an important opportunistic parasite. Induction of oxidative stress by the host immune system is one of the most important defense strategies against parasites. Hence, parasites partly deal with oxidative stress by different mechanisms. Identifying resistance mechanisms of A. castellanii parasites against oxidative stress is important to achieve a new therapeutic approach. Thus, this study aimed to understand the resistance mechanisms of A. castellanii, against oxidative stress. Trophozoites of A. castellanii were treated with different concentrations of H2O2. The half maximal inhibitory concentration (IC50) of H2O2 was determined using the MTT assay. The induction of oxidative stress was confirmed by flow cytometer. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) were determined. The gene expression levels of CAT and SOD were measured by qRT-PCR. Furthermore, 3-amino-1:2:4-triazole (3-AT) and potassium cyanide (KCN) were used as specific inhibitors of CAT and SOD, respectively. Cell cycle assay and the apoptosis were evaluated by flow cytometer. The activities of SOD, CAT, GR, and GPx, showed an increase in oxidative stress. The cell cycle analysis revealed that most of the cellular population was in G0 and G1 phases. The apoptosis increased in oxidative stress conditions. Moreover, the apoptosis significantly increased after the specific inhibition of CAT and SOD under oxidative stress. The gene expression levels of CAT and SOD significantly increased under oxidative stress. A. castellanii can resist the host immune system through various mechanisms, including evoking its antioxidant enzymes. Therefore, by reducing or inhibiting the activity of the parasite's antioxidant enzymes such as SOD and CAT, it is possible to cope with A. castellanii.


Assuntos
Acanthamoeba castellanii/enzimologia , Antioxidantes/fisiologia , Peróxido de Hidrogênio/efeitos adversos , Estresse Oxidativo/fisiologia , Acanthamoeba castellanii/classificação , Acanthamoeba castellanii/genética , Acanthamoeba castellanii/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose , Catalase/metabolismo , Ciclo Celular , Regulação Enzimológica da Expressão Gênica , Genótipo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Concentração Inibidora 50 , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
5.
Cell Mol Life Sci ; 78(7): 3673-3689, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33599799

RESUMO

The free-living amoeba Acanthamoeba castellanii occurs worldwide in soil and water and feeds on bacteria and other microorganisms. It is, however, also a facultative parasite and can cause serious infections in humans. The annotated genome of A. castellanii (strain Neff) suggests the presence of two different thioredoxin reductases (TrxR), of which one is of the small bacterial type and the other of the large vertebrate type. This combination is highly unusual. Similar to vertebrate TrxRases, the gene coding for the large TrxR in A. castellanii contains a UGA stop codon at the C-terminal active site, suggesting the presence of selenocysteine. We characterized the thioredoxin system in A. castellanii in conjunction with glutathione reductase (GR), to obtain a more complete understanding of the redox system in A. castellanii and the roles of its components in the response to oxidative stress. Both TrxRases localize to the cytoplasm, whereas GR localizes to the cytoplasm and the large organelle fraction. We could only identify one thioredoxin (Trx-1) to be indeed reduced by one of the TrxRases, i.e., by the small TrxR. This thioredoxin, in turn, could reduce one of the two peroxiredoxins tested and also methionine sulfoxide reductase A (MsrA). Upon exposure to hydrogen peroxide and diamide, only the small TrxR was upregulated in expression at the mRNA and protein levels, but not the large TrxR. Our results show that the small TrxR is involved in the A. castellanii's response to oxidative stress. The role of the large TrxR, however, remains elusive.


Assuntos
Acanthamoeba castellanii/metabolismo , Dissulfeto de Glutationa/metabolismo , Glutationa Redutase/metabolismo , Estresse Oxidativo , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo , Acanthamoeba castellanii/crescimento & desenvolvimento , Antioxidantes , Humanos , Oxirredução
6.
Exp Parasitol ; 221: 108060, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33338467

RESUMO

Amoebic keratitis (AK) is a sight-threatening infection characterized by a severe inflammation of the cornea, caused by the free-living protozoan of the genus Acanthamoeba. Identification of amoebic proteins involved in AK pathogenesis may help to elucidate molecular mechanisms of infection and contribute to indicate diagnostic and therapeutic targets. In this study, we evaluated changes in the expression profile of Acanthamoeba proteins triggered by the invasive process, using an approach involving two-dimensional polyacrylamide gel electrophoresis (2DE PAGE), followed by mass spectrometry identification (ESI-IT-TOF LC-MSn). AK was induced by intrastromal inoculation in Wistar rats, using trophozoites from a T4 genotype, human case-derived A. castellanii strain under prolonged axenic culture. Cultures re-isolated from the lesions after two successive passages in the animals were used as biological triplicate for proteomic experiments. Analysis of the protein profile comparing long-term and re-isolated cultures indicated 62 significant spots, from which 27 proteins could be identified in the Acanthamoeba proteome database. Five of them (Serpin, Carboxypeptidase A1, Hypothetical protein, Calponin domain-containing protein, aldo/keto reductase) were exclusively found in the re-isolated trophozoites. Our analysis also revealed that a concerted modulation of several biochemical pathways is triggered when A. castellanii switches from a free-living style to a parasitic mode, including energetic metabolism, proteolytic activity, control of gene expression, protein degradation and methylation of DNA, which may be also involved in gain of virulence in an animal model of AK.


Assuntos
Ceratite por Acanthamoeba/metabolismo , Acanthamoeba castellanii/metabolismo , Proteínas de Protozoários/biossíntese , Ceratite por Acanthamoeba/parasitologia , Análise de Variância , Animais , Modelos Animais de Doenças , Humanos , Masculino , Proteômica , Proteínas de Protozoários/genética , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização por Electrospray , Eletroforese em Gel Diferencial Bidimensional
7.
Chem Biol Drug Des ; 97(1): 18-27, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32602961

RESUMO

Acanthamoeba spp. cause a corneal infection, Acanthamoeba keratitis (AK), and a cerebral infection, granulomatous amoebic encephalitis (GAE). Though aggressive chemotherapy has been able to kill the active trophozoite form of Acanthamoeba, the encysted form of this parasite has remained problematic to resist physiological concentrations of drugs. The emergence of encysted amoeba into active trophozoite form poses a challenge to eradicate this parasite. Acanthamoeba trophozoites have active metabolic machinery that furnishes energy in the form of ATPs by subjecting carbohydrates and lipids to undergo pathways including glycolysis and beta-oxidation of free fatty acids, respectively. However, very little is known about the metabolic preferences and dependencies of an encysted trophozoite on minerals or potential nutrients that it consumes to live in an encysted state. Here, we investigate the metabolic and nutrient preferences of the encysted trophozoite of Acanthamoeba castellanii and the possibility to target them by drugs that act on calcium ion dependencies of the encysted amoeba. The experimental assays, immunostaining coupled with bioinformatics tools show that the encysted Acanthamoeba uses diverse nutrient pathways to obtain energy in the quiescent encysted state. These findings highlight potential pathways that can be targeted in eradicating amoebae cysts successfully.


Assuntos
Acanthamoeba castellanii/metabolismo , Antiprotozoários/química , Acanthamoeba castellanii/efeitos dos fármacos , Acanthamoeba castellanii/crescimento & desenvolvimento , Antiprotozoários/metabolismo , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Sítios de Ligação , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Bases de Dados Factuais , Humanos , Ceratite/tratamento farmacológico , Ceratite/parasitologia , Ceratite/patologia , Simulação de Acoplamento Molecular , Nutrientes/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Trofozoítos/efeitos dos fármacos , Trofozoítos/metabolismo , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo
8.
Mol Pharmacol ; 98(6): 770-780, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33008918

RESUMO

Cytochromes P450 (P450, CYP) metabolize a wide variety of endogenous and exogenous lipophilic molecules, including most drugs. Sterol 14α-demethylase (CYP51) is a target for antifungal drugs known as conazoles. Using X-ray crystallography, we have discovered a domain-swap homodimerization mode in CYP51 from a human pathogen, Acanthamoeba castellanii CYP51 (AcCYP51). Recombinant AcCYP51 with a truncated transmembrane helix was purified as a heterogeneous mixture corresponding to the dimer and monomer units. Spectral analyses of these two populations have shown that the CO-bound ferrous form of the dimeric protein absorbed at 448 nm (catalytically competent form), whereas the monomeric form absorbed at 420 nm (catalytically incompetent form). AcCYP51 dimerized head-to-head via N-termini swapping, resulting in formation of a nonplanar protein-protein interface exceeding 2000 Å2 with a total solvation energy gain of -35.4 kcal/mol. In the dimer, the protomers faced each other through the F and G α-helices, thus blocking the substrate access channel. In the presence of the drugs clotrimazole and isavuconazole, the AcCYP51 drug complexes crystallized as monomers. Although clotrimazole-bound AcCYP51 adopted a typical CYP monomer structure, isavuconazole-bound AcCYP51 failed to refold 74 N-terminal residues. The failure of AcCYP51 to fully refold upon inhibitor binding in vivo would cause an irreversible loss of a structurally aberrant enzyme through proteolytic degradation. This assumption explains the superior potency of isavuconazole against A. castellanii The dimerization mode observed in this work is compatible with membrane association and may be relevant to other members of the CYP family of biologic, medical, and pharmacological importance. SIGNIFICANCE STATEMENT: We investigated the mechanism of action of antifungal drugs in the human pathogen Acanthamoeba castellanii. We discovered that the enzyme target [Acanthamoeba castellanii sterol 14α-demethylase (AcCYP51)] formed a dimer via an N-termini swap, whereas drug-bound AcCYP51 was monomeric. In the AcCYP51-isavuconazole complex, the protein target failed to refold 74 N-terminal residues, suggesting a fundamentally different mechanism of AcCYP51 inactivation than only blocking the active site. Proteolytic degradation of a structurally aberrant enzyme would explain the superior potency of isavuconazole against A. castellanii.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Acanthamoeba castellanii/efeitos dos fármacos , Amebíase/tratamento farmacológico , Proteínas de Protozoários/antagonistas & inibidores , Esterol 14-Desmetilase/metabolismo , Inibidores de 14-alfa Desmetilase/uso terapêutico , Acanthamoeba castellanii/metabolismo , Amebíase/parasitologia , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Ligação Proteica , Domínios Proteicos/fisiologia , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/fisiologia , Proteólise/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/ultraestrutura , Piridinas/farmacologia , Piridinas/uso terapêutico , Proteínas Recombinantes , Esterol 14-Desmetilase/ultraestrutura , Triazóis/farmacologia , Triazóis/uso terapêutico
9.
Parasit Vectors ; 13(1): 368, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32698828

RESUMO

BACKGROUND: The encystation of Acanthamoeba leads to the development of resilient cysts from vegetative trophozoites. This process is essential for the survival of parasites under unfavorable conditions. Previous studies have reported that, during the encystation of A. castellanii, the expression levels of encystation-related factors are upregulated. However, the regulatory mechanisms for their expression during the encystation process remains unknown. Proteins in the sirtuin family, which consists of nicotinamide adenine dinucleotide-dependent deacetylases, are known to play an important role in various cellular functions. In the present study, we identified the Acanthamoeba silent-information regulator 2-like protein (AcSir2) and examined its role in the growth and encystation of Acanthamoeba. METHODS: We obtained the full-length sequence for AcSir2 using reverse-transcription polymerase chain reaction. In Acanthamoeba transfectants that constitutively overexpress AcSir2 protein, SIRT deacetylase activity was measured, and the intracellular localization of AcSir2 and the effects on the growth and encystation of trophozoites were examined. In addition, the sirtuin inhibitor salermide was used to determine whether these effects were caused by AcSir2 overexpression RESULTS: AcSir2 was classified as a class-IV sirtuin. AcSir2 exhibited functional SIRT deacetylase activity, localized mainly in the nucleus, and its transcription was upregulated during encystation. In trophozoites, AcSir2 overexpression led to greater cell growth, and this growth was inhibited by treatment with salermide, a sirtuin inhibitor. When AcSir2 was overexpressed in the cysts, the encystation rate was significantly higher; this was also reversed with salermide treatment. In AcSir2-overexpressing encysting cells, the transcription of cellulose synthase was highly upregulated compared with that of control cells, and this upregulation was abolished with salermide treatment. Transmission electron microscope-based ultrastructural analysis of salermide-treated encysting cells showed that the structure of the exocyst wall and intercyst space was impaired and that the endocyst wall had not formed. CONCLUSIONS: These results indicate that AcSir2 is a SIRT deacetylase that plays an essential role as a regulator of a variety of cellular processes and that the regulation of AcSir2 expression is important for the growth and encystation of A. castellanii.


Assuntos
Acanthamoeba castellanii , Encistamento de Parasitas , Sirtuínas , Acanthamoeba castellanii/genética , Acanthamoeba castellanii/crescimento & desenvolvimento , Acanthamoeba castellanii/metabolismo , Amebíase/tratamento farmacológico , Animais , Genes de Protozoários , Glucosiltransferases/efeitos dos fármacos , Glucosiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Naftóis/farmacologia , Encistamento de Parasitas/efeitos dos fármacos , Encistamento de Parasitas/genética , Encistamento de Parasitas/fisiologia , Fenilpropionatos/farmacologia , Filogenia , Proteínas de Protozoários/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Transfecção/métodos , Trofozoítos/efeitos dos fármacos , Trofozoítos/crescimento & desenvolvimento , Trofozoítos/metabolismo
10.
Mitochondrion ; 52: 100-107, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109602

RESUMO

Despite a conserved set of core mitochondrial functions, animal mitochondrial proteomes show a large variation in size. We analyzed putative mechanisms behind and functional significance of this variation by performing comparative analysis of the experimentally-verified mitochondrial proteomes of four bilaterian animals (human, mouse, Caenorhabditis elegans, and Drosophila melanogaster) and two non-animal outgroups (Acanthamoeba castellanii and Saccharomyces cerevisiae). We found that of several factors affecting mitochondrial proteome size, evolution of novel mitochondrial proteins in mammals and loss of ancestral proteins in protostomes were the main contributors. Interestingly, the gain and loss of the N-terminal mitochondrial targeting signal was not a major factor in the proteome size evolution.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteômica/métodos , Acanthamoeba castellanii/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Drosophila melanogaster/metabolismo , Evolução Molecular , Tamanho do Genoma , Humanos , Camundongos , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA