Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 154(1): 41-55, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36057003

RESUMO

Trees regenerating in the understory respond to increased availability of light caused by gap formation by undergoing a range of morphological and physiological adjustments. These adjustments include the production of thick, sun-type leaves containing thicker mesophyll and longer palisade cells than in shade-type leaves. We asked whether in the shade-regenerating tree Acer pseudoplatanus, the increase in leaf thickness and expansion of leaf tissues are possible also in leaves that are already fully formed, a response reported so far only for a handful of species. We acclimated potted seedlings to eight levels (from 1 to 100%) of solar irradiance and, in late summer, transferred a subset of them to full sunlight. Within 30 days, the pre-shaded leaves increased leaf mass per area and became thicker mostly due to the elongation of palisade cells, except for the most shaded individuals which suffered irreversible photo-oxidative damage. This anatomical acclimation was accompanied by a transient decline in photosynthetic efficiency of PSII (Fv/FM), the magnitude of which was related to the degree of pre-shading. The Fv/FM recovered substantially within the re-acclimation period. However, leaves of transferred plants were shed earlier in the fall, indicating that the acclimation was not fully effective. These results show that A. pseudoplatanus is one of the few known species in which mature leaves may re-acclimate anatomically to increased irradiance. This may be an important mechanism enhancing utilization of gaps created during the growing season.


Assuntos
Acer , Aclimatação/fisiologia , Acer/anatomia & histologia , Acer/fisiologia , Humanos , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Árvores/fisiologia
2.
Photosynth Res ; 152(1): 55-71, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35034267

RESUMO

Trees regenerating in the understory respond to increased availability of light caused by gap formation by undergoing a range of morphological and physiological adjustments. These adjustments include the production of thick, sun-type leaves containing thicker mesophyll and longer palisade cells than in shade-type leaves. We asked whether in the shade-regenerating tree Acer pseudoplatanus, the increase in leaf thickness and expansion of leaf tissues are possible also in leaves that had been fully formed prior to the increase in irradiance, a response reported so far only for a handful of species. We acclimated potted seedlings to eight levels (from 1 to 100%) of solar irradiance and, in late summer, transferred a subset of them to full sunlight. Within 30 days, the shaded leaves increased leaf mass per area and became thicker mostly due to elongation of palisade cells, except for the most shaded individuals which suffered irreversible photo-oxidative damage. This anatomical acclimation was accompanied by partial degradation of chlorophyll and a transient decline in photosynthetic efficiency of PSII (Fv/FM). These effects were related to the degree of pre-shading. The Fv/FM recovered substantially within the re-acclimation period. However, leaves of transferred plants were shed significantly earlier in the fall, indicating that the acclimation was not fully effective. These results show that A. pseudoplatanus is one of the few known species in which mature leaves may re-acclimate anatomically to increased irradiance. This may be a potentially important mechanism enhancing utilization of gaps created during the growing season.


Assuntos
Acer , Acer/anatomia & histologia , Acer/metabolismo , Clorofila/metabolismo , Humanos , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Árvores
3.
Plant Cell Environ ; 44(11): 3494-3508, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33822389

RESUMO

Determining the fate of CO2 respired in woody tissues is necessary to understand plant respiratory physiology and to evaluate CO2 recycling mechanisms. An aqueous 13 C-enriched CO2 solution was infused into the stem of 3-4 m tall trees to estimate efflux and assimilation of xylem-transported CO2 via cavity ring-down laser spectroscopy and isotope ratio mass spectrometry, respectively. Different tree locations (lower stem, upper stem and leafy shoots) and tissues (xylem, bark and leaves) were monitored in species with tracheid, diffuse- and ring-porous wood anatomy (cedar, maple and oak, respectively). Radial xylem CO2 diffusivity and xylem [CO2 ] were lower in cedar relative to maple and oak trees, thereby limiting label diffusion. Part of the labeled 13 CO2 was assimilated in cedar (8.7%) and oak (20.6%) trees, mostly in xylem and bark tissues of the stem, while limited solution uptake in maple trees hindered the detection of label assimilation. Little label reached foliar tissues, suggesting substantial label loss along the stem-branch transition following reductions in the radial diffusive pathway. Differences in respiration rates and radial xylem CO2 diffusivity (lower in conifer relative to angiosperm species) might reconcile discrepancies in efflux and assimilation of xylem-transported CO2 so far observed between taxonomic clades.


Assuntos
Dióxido de Carbono/metabolismo , Árvores/metabolismo , Madeira/anatomia & histologia , Xilema/metabolismo , Acer/anatomia & histologia , Acer/metabolismo , Transporte Biológico , Quercus/anatomia & histologia , Quercus/metabolismo , Especificidade da Espécie , Thuja/anatomia & histologia , Thuja/metabolismo , Árvores/anatomia & histologia
4.
PLoS One ; 15(11): e0241443, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33141848

RESUMO

We introduce a unified simulation framework that generates natural sensing environments and produces biosonar echoes under various sensing scenarios. This framework produces rich sensory data with environmental information completely known, thus can be used for the training of robotic algorithms for biosonar-based Unmanned Aerial Vehicles. The simulated environment consists of random trees with full geometry of the tree foliage. To simulate a single tree, we adopt the Lindenmayer system to generate the initial branching pattern and integrate that with the available measurements of the 3D computer-aided design object files to create natural-looking branches, sub-branches, and leaves. A forest is formed by simulating trees at random locations generated by using an inhomogeneous Poisson process. While our simulated environments can be generally used for testing other sensors and training robotic algorithms, in this study we focus on testing bat-inspired Unmanned Aerial Vehicles that recreate bat's flying behavior through biosonar sensors. To this end, we also introduce an foliage echo simulator that produces biosonar echoes while mimicking bat's biosonar system. We demonstrate the application of the proposed simulation framework by generating real-world scenarios with multiple trees and computing the resulting impulse responses under static or dynamic motions of an Unmanned Aerial Vehicle.


Assuntos
Biomimética , Simulação por Computador , Som , Acer/anatomia & histologia , Florestas , Imageamento Tridimensional , Fatores de Tempo , Árvores/anatomia & histologia
5.
J Exp Bot ; 70(21): 6195-6201, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31365742

RESUMO

The structure of leaf veins is typically described by a hierarchical scheme (e.g. midrib, 1st order, 2nd order), which is used to predict variation in conduit diameter from one order to another whilst overlooking possible variation within the same order. We examined whether xylem conduit diameter changes within the same vein order, with resulting consequences for resistance to embolism. We measured the hydraulic diameter (Dh), and number of vessels (VN) along the midrib and petioles of leaves of Acer pseudoplatanus, and estimated the leaf area supplied (Aleaf-sup) at different points of the midrib and how variation in anatomical traits affected embolism resistance. We found that Dh scales with distance from the midrib tip (path length, L) with a power of 0.42, and that VN scales with Aleaf-sup with a power of 0.66. Total conductive area scales isometrically with Aleaf-sup. Embolism events along the midrib occurred first in the basipetal part and then at the leaf tip where vessels are narrower. The distance from the midrib tip is a good predictor of the variation in vessel diameter along the 1st order veins in A. pseudoplatanus leaves and this anatomical pattern seems to have an effect on hydraulic integrity since wider vessels at the leaf base embolize first.


Assuntos
Acer/anatomia & histologia , Folhas de Planta/anatomia & histologia , Água , Xilema/anatomia & histologia , Xilema/fisiologia
6.
PLoS One ; 14(6): e0218884, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31226157

RESUMO

In many woody dicot plant species, colder temperatures correlate with a greater degree of leaf dissection and with larger and more abundant leaf teeth (the serrated edges along margins). The measurement of site-mean characteristics of leaf size and shape (physiognomy), including leaf dissection and tooth morphology, has been an important paleoclimate tool for over a century. These physiognomic-based climate proxies require that all woody dicot plants at a site, regardless of species, change their leaf shape rapidly and predictably in response to temperature. Here we experimentally test these assumptions by growing five woody species in growth cabinets under two temperatures (17 and 25°C). In keeping with global site-based patterns, plants tend to develop more dissected leaves with more abundant and larger leaf teeth in the cool treatment. Overall, this upholds the assumption that leaf shape responds in a particular direction to temperature change. The assumption that leaf shape variables respond to temperature in the same way regardless of species did not hold because the responses varied by species. Leaf physiognomic models for inferring paleoclimate should take into account these species-specific responses.


Assuntos
Acer/crescimento & desenvolvimento , Betula/crescimento & desenvolvimento , Betulaceae/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Quercus/crescimento & desenvolvimento , Acer/anatomia & histologia , Betula/anatomia & histologia , Betulaceae/anatomia & histologia , Clima , Temperatura Baixa , Temperatura Alta , Quercus/anatomia & histologia , Sementes/crescimento & desenvolvimento , Especificidade da Espécie
7.
J R Soc Interface ; 16(150): 20180456, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30958155

RESUMO

Autorotation of botanical samaras, with a consequent reduction in their rate of descent, increases dispersal range in the presence of horizontal winds. Samaras in initial free fall from rest pass through a brief transitional phase prior to reaching their minimum rate of descent and stable autorotation. By contrast, intense wind gusts and elastic recoil of tree branches can produce impulsive samara detachment and accelerate them rapidly through the air. Here, we investigate the autorotation of maple samaras when launched with a high initial impulse. Norway maple seeds catapulted either vertically or horizontally at approximately 9 m s-1 exhibited remarkably high and rapid decelerations (10-15 g) and reached a near-zero translational speed in less than 150 ms. The initial rotational frequency of catapulted seeds was up to four times greater than that ultimately reached during steady-state autorotation. These helicopter seeds thus transiently produce very high lift forces (at Reynolds numbers near approximately 104) that act to enhance aerial transport. These findings are relevant to the modelling of long-distance seed dispersal in unsteady flows, as well as to the design of deceleration mechanisms based on lift generation, rather than drag-based devices such as parachutes.


Assuntos
Acer , Modelos Biológicos , Dispersão de Sementes/fisiologia , Sementes , Vento , Acer/anatomia & histologia , Acer/fisiologia , Sementes/anatomia & histologia , Sementes/fisiologia
8.
Sci Rep ; 9(1): 1167, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718740

RESUMO

Leaf senescence provides a unique window to explore the age-dependent programmed degradation at organ label in plants. Here, spectral domain optical coherence tomography (SD-OCT) has been used to study in vivo senescing leaf microstructural changes in the deciduous plant Acer serrulatum Hayata. Hayata leaves show autumn phenology and change color from green to yellow and finally red. SD-OCT image analysis shows distinctive features among different layers of the leaves; merging of upper epidermis and palisade layers form thicker layers in red leaves compared to green leaves. Moreover, A-scan analysis showed a significant (p < 0.001) decrease in the attenuation coefficient (for wavelength range: 1100-1550 nm) from green to red leaves. In addition, the B-scan analysis also showed significant changes in 14 texture parameters extracted from second-order spatial gray level dependence matrix (SGLDM). Among these parameters, a set of three features (energy, skewness, and sum variance), capable of quantitatively distinguishing difference in the microstructures of three different colored leaves, has been identified. Furthermore, classification based on k-nearest neighbors algorithm (k-NN) was found to yield 98% sensitivity, 99% specificity, and 95.5% accuracy. Following the proposed technique, a portable noninvasive tool for quality control in crop management can be anticipated.


Assuntos
Acer/anatomia & histologia , Acer/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Tomografia de Coerência Óptica/métodos , Agricultura/métodos
9.
New Phytol ; 221(4): 1831-1842, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30347122

RESUMO

The seedling stage is the most susceptible one during a tree's life. Water relations may be crucial for seedlings due to their small roots, limited water buffers and the effects of drought on water transport. Despite obvious relevance, studies on seedling xylem hydraulics are scarce as respective methodical approaches are limited. Micro-CT scans of intact Acer pseudoplatanus and Fagus sylvatica seedlings dehydrated to different water potentials (Ψ) allowed the simultaneous observation of gas-filled versus water-filled conduits and the calculation of percentage loss of conductivity (PLC) in stems, roots and leaves (petioles or main veins). Additionally, anatomical analyses were performed and stem PLC measured with hydraulic techniques. In A. pseudoplatanus, petioles showed a higher Ψ at 50% PLC (Ψ50 -1.13MPa) than stems (-2.51 MPa) and roots (-1.78 MPa). The main leaf veins of F. sylvatica had similar Ψ50 values (-2.26 MPa) to stems (-2.74 MPa) and roots (-2.75 MPa). In both species, no difference between root and stems was observed. Hydraulic measurements on stems closely matched the micro-CT based PLC calculations. Micro-CT analyses indicated a species-specific hydraulic architecture. Vulnerability segmentation, enabling a disconnection of the hydraulic pathway upon drought, was observed in A. pseudoplatanus but not in the especially shade-tolerant F. sylvatica. Hydraulic patterns could partly be related to xylem anatomical traits.


Assuntos
Acer/fisiologia , Fagus/fisiologia , Plântula/fisiologia , Acer/anatomia & histologia , Fagus/anatomia & histologia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Caules de Planta/fisiologia , Plântula/anatomia & histologia , Especificidade da Espécie , Microtomografia por Raio-X , Xilema/fisiologia
10.
Tree Physiol ; 39(3): 484-494, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30304488

RESUMO

Accurately estimating sapwood area is essential for modelling whole-tree or stand-scale transpiration from point-flow sap-flux observations. In this study, we tested the validity of electrical resistance tomography (ERT) to locate the sapwood-heartwood (SW/HW) interface for two ring porous (Quercus nigra L. and Quercus virginiana Mill.) and one diffuse porous (Acer rubrum L.) species. Estimates derived from the ERT analyses were compared with the SW/HW interface measured following dye perfusion testing. The ERT results revealed spatial variation in electrical resistance, with higher resistivity in the inner part of the cross sections. Regression analyses showed that ERT was able to accurately account for 97% and 80% of the variation in sapwood area (calculated as R2) for Q. virginiana (n = 19) and Q. nigra (n = 7), respectively, and 56% of the variation in the diffuse porous species (n = 8). Root mean square error (RMSE) values for sapwood areas of the ring porous species were 11.12 cm2 (19%) and 25.98 cm2 (33%) for Q. virginiana and Q. nigra, respectively. Sapwood area estimates for diffuse wood carried greater error (RMSE = 33.52 cm2 (131%)). Model bias for all sapwood area estimates was negative, suggesting that ERT had a tendency to overestimate sapwood areas. Electrical resistance tomography proved to be a significant predictor of sapwood area in the three investigated species, although it was more reliable for ring porous wood. In addition to the results, a comprehensive code sequence for use with R statistical software is provided, so that other investigators may follow the same method.


Assuntos
Acer/anatomia & histologia , Transpiração Vegetal , Quercus/anatomia & histologia , Tomografia/métodos , Árvores/anatomia & histologia , Madeira/anatomia & histologia , Acer/fisiologia , Impedância Elétrica , Florida , Quercus/fisiologia , Especificidade da Espécie , Árvores/fisiologia , Madeira/fisiologia
11.
Plant Cell Environ ; 41(12): 2718-2730, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30071137

RESUMO

Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and tissue-level hydraulic response to drought remains a subject of inquiry. We present a numerical model of water flow in flowering plant xylem that combines current knowledge on diffuse-porous anatomy and embolism spread to explore this connection. The model produces xylem networks and uses different parameterizations of intervessel connection vulnerability to embolism spread: the Young-Laplace equation and pit membrane stretching. Its purpose is upscaling processes occurring on the microscopic length scales, such as embolism propagation through pit membranes, to obtain tissue-scale hydraulics. The terminal branch VC of Acer glabrum was successfully reproduced relying only on real observations of xylem tissue anatomy. A sensitivity analysis shows that hydraulic performance and VC shape and location along the water tension axis are heavily dependent on anatomy. The main result is that the linkage between pit-scale and vessel-scale anatomical characters, along with xylem network topology, affects VCs significantly. This work underscores the importance of stepping up research related to the three-dimensional network structure of xylem tissues. The proposed model's versatility makes it an important tool to explore similar future questions.


Assuntos
Madeira/anatomia & histologia , Xilema/fisiologia , Acer/anatomia & histologia , Acer/fisiologia , Desidratação , Modelos Biológicos , Árvores/anatomia & histologia , Árvores/fisiologia , Água/metabolismo
12.
Ann Bot ; 122(2): 239-250, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897405

RESUMO

Background and Aims: Understanding root traits and their trade-off with other plant processes is important for understanding plant functioning in natural ecosystems as well as agricultural systems. The aim of the present study was to determine the relationship between root morphology and the hydraulic characteristics of several orders of fine roots (<2 mm) for species differing in shade tolerance (low, moderate and high). Methods: The morphological, anatomical and hydraulic traits across five distal root orders were measured in species with different levels of shade tolerance and life history strategies. The species studied were Acer negundo, Acer rubrum, Acer saccharum, Betula alleghaniensis, Betula lenta, Quercus alba, Quercus rubra, Pinus strobus and Pinus virginiana. Key Results: Compared with shade-tolerant species, shade-intolerant species produced thinner absorptive roots with smaller xylem lumen diameters and underwent secondary development less frequently, suggesting that they had shorter life spans. Shade-tolerant species had greater root specific hydraulic conductance among these roots due to having larger diameter xylems, although these roots had a lower calculated critical tension for conduit collapse. In addition, shade-intolerant species exhibited greater variation in hydraulic conductance across different root growth rings in woody transport roots of the same root order as compared with shade-tolerant species. Conclusions: Plant growth strategies were extended to include root hydraulic properties. It was found that shade intolerance in trees was associated with conservative root hydraulics but greater plasticity in number of xylem conduits and hydraulic conductance. Root traits of shade-intolerant species were consistent with the ability to proliferate roots quickly for rapid water uptake needed to support rapid shoot growth, while minimizing risk in uncertain environments.


Assuntos
Acer/anatomia & histologia , Betula/anatomia & histologia , Pinus/anatomia & histologia , Transpiração Vegetal/fisiologia , Quercus/anatomia & histologia , Acer/fisiologia , Acer/efeitos da radiação , Adaptação Fisiológica , Betula/fisiologia , Betula/efeitos da radiação , Ecossistema , Luz , Pinus/fisiologia , Pinus/efeitos da radiação , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos da radiação , Quercus/fisiologia , Quercus/efeitos da radiação , Árvores , Água/metabolismo , Madeira , Xilema/anatomia & histologia , Xilema/fisiologia , Xilema/efeitos da radiação
13.
Sci Rep ; 7(1): 5367, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710473

RESUMO

Fine roots play an important role in the overall functions of individual plants. Previous studies showed that fertilization and available soil resources have a notably profound effect on fine root, but there is lack of study centered on how fine root morphology, physiology, and chemistry respond to biochar with N additions. Different levels of biochar (0, 10, 15, and 20 g) and N (0, 2, 4 and 6 g) were applied to Acer mono seedling plants in a field nursery. The root system morphology and root chemistry and physiology were evaluated in line with root length, root diameter, SRL, N and N: C and root respiration. Biochar and N significantly affected root morphology, chemistry and root respiration. Morphological, chemical and physiological parameters were found to be at their maximum with 20 g biochar and 6 g N; however, no significant effect was noted on fourth- and fifth-order roots. Furthermore, a significant increase in root respiration was recognized with the increase in root tissue N concentration and the negative relationship of root respiration with higher branch order. Thus, overall, study parameters indicate that biochar and nitrogen positively influence the Acer mono fine root, and therefore should be used to improve fine root health.


Assuntos
Acer/anatomia & histologia , Acer/efeitos dos fármacos , Carvão Vegetal/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Acer/química , Acer/fisiologia , Respiração Celular/efeitos dos fármacos , Raízes de Plantas/química , Raízes de Plantas/fisiologia
14.
Tree Physiol ; 37(10): 1337-1351, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338906

RESUMO

A key trait used in canopy and ecosystem function modeling, leaf mass per area (LMA), is influenced by changes in both leaf thickness and leaf density (LMA = Thickness × Density). In tall trees, LMA is understood to increase with height through two primary mechanisms: (i) increasing palisade layer thickness (and thus leaf thickness) in response to light and/or (ii) reduced cell expansion and intercellular air space in response to hydrostatic constraints, leading to increased leaf density. Our objective was to investigate within-canopy gradients in leaf anatomical traits in order to understand environmental factors that influence leaf morphology in a sugar maple (Acer saccharum Marshall) forest canopy. We teased apart the effects of light and height on anatomical traits by sampling at exposed and closed canopies that had different light conditions at similar heights. As expected, palisade layer thickness responded strongly to cumulative light exposure. Mesophyll porosity, however, was weakly and negatively correlated with light and height (i.e., hydrostatic gradients). Reduced mesophyll porosity was not likely caused by limitations on cell expansion; in fact, epidermal cell width increased with height. Palisade layer thickness was better related to LMA, leaf density and leaf thickness than was mesophyll porosity. Vein diameter and fraction of vascular tissue also increased with height and LMA, density and thickness, revealing that greater investment in vascular and support tissue may be a third mechanism for increased LMA with height. Overall, decreasing mesophyll porosity with height was likely due to palisade cells expanding into the available air space and also greater investments in vascular and support tissue, rather than a reduction of cell expansion due to hydrostatic constraints. Our results provide evidence that light influences both palisade layer thickness and mesophyll porosity and indicate that hydrostatic gradients influence leaf vascular and support tissues in mature Acer saccharum trees.


Assuntos
Acer/anatomia & histologia , Acer/fisiologia , Acer/crescimento & desenvolvimento , Luz , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Água/fisiologia
15.
Tree Physiol ; 37(10): 1426-1435, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28100711

RESUMO

Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in red maple (Acer rubrum), american beech (Fagus grandifolia), white pine (Pinus strobus), and northern red oak (Quercus rubra) at different heights in plots with similar leaf area index but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaf phenotypes of F. grandifolia, Q. rubra and P. strobus were more sun-acclimated in the midstory of structurally complex canopies while leaf phenotypes of A. rubrum were more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further differences in acclimation with increased Narea and reduced Chlmass in leaves with higher LMA, while P. strobus showed no change in Narea and Chlmass with higher LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic disturbances cause structural changes in the canopy.


Assuntos
Florestas , Luz , Folhas de Planta/fisiologia , Árvores/fisiologia , Aclimatação , Acer/anatomia & histologia , Acer/fisiologia , Fagus/anatomia & histologia , Fagus/fisiologia , Michigan , Pinus/anatomia & histologia , Pinus/fisiologia , Folhas de Planta/anatomia & histologia , Quercus/anatomia & histologia , Quercus/fisiologia , Árvores/anatomia & histologia
16.
Am J Bot ; 104(9): 1424-1430, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-29885240

RESUMO

PREMISE OF THE STUDY: Despite the strong influence of the frequency and distribution of vessel endings on both hydraulic safety and efficiency, detailed anatomical descriptions or measurements of these structures are generally lacking. METHODS: Here we used high-resolution x-ray microcomputed tomography (microCT) to identify and describe xylem vessel endings within Acer rubrum root segments (1.0-2.1 mm diameter, ∼2 mm long). We then compared vessel-lumen diameter, pit density, vessel element length, and perforation plate angle between non-ending vessels (those that traverse an entire segment) and those that end within a segment using three-dimensional image analysis. KEY RESULTS: We found 214 vessel endings, 37 complete vessels, and 385 non-ending vessels within four A. rubrum root segments. Vessels that ended within the segments tended to have more acute perforation plate angles and had a smaller diameter than those that did not end within the segments. Most vessel diameters tapered within the last few vessel elements, but the perforation plate angle apparently changed over longer distances. Intervessel pit density and vessel element length did not differ between ending and non-ending vessels. CONCLUSIONS: Vessel endings were surprisingly frequent in A. rubrum roots despite the common perception that root vessels are longer than vessels in other tissues. MicroCT proved to be a useful tool for studying the three-dimensional arrangement of vessel endings within xylem networks, and these data will be helpful in developing a better understanding of vessel ending microstructure and function.


Assuntos
Acer/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Microtomografia por Raio-X , Xilema/anatomia & histologia
17.
Ann Bot ; 119(3): 447-456, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28028019

RESUMO

BACKGROUND AND AIMS: Corner's rule states that thicker twigs bear larger leaves. The exact nature of this relationship and why it should occur has been the subject of numerous studies. It is obvious that thicker twigs should support greater total leaf area ([Formula: see text]) for hydraulical and mechanical reasons. But it is not obvious why mean leaf size ([Formula: see text]) should scale positively with [Formula: see text] We asked what this scaling relationship is within species and how variable it is across species. We then developed a model to explain why these relationships exist. METHODS: To minimize potential sources of variability, we compared twig properties from six co-occurring and functionally similar species: Acer grandidentatum, Amelanchier alnifolia, Betula occidentalis, Cornus sericea, Populus fremontii and Symphoricarpos oreophilus We modelled the economics of leaf display, weighing the benefit from light absorption against the cost of leaf tissue, to predict the optimal [Formula: see text] combinations under different canopy openings. KEY RESULTS: We observed a common [Formula: see text] by [Formula: see text] exponent of 0.6, meaning that [Formula: see text]and leaf number on twigs increased in a specific coordination. Common scaling exponents were not supported for relationships between any other measured twig properties. The model consistently predicted positive [Formula: see text] by [Formula: see text] scaling when twigs optimally filled canopy openings. The observed 0·6 exponent was predicted when self-shading decreased with larger canopy opening. CONCLUSIONS: Our results suggest Corner's rule may be better understood when recast as positive [Formula: see text] by [Formula: see text] scaling. Our model provides a tentative explanation of observed [Formula: see text] by [Formula: see text] scaling and suggests different scaling may exist in different environments.


Assuntos
Folhas de Planta/anatomia & histologia , Caules de Planta/anatomia & histologia , Acer/anatomia & histologia , Acer/fisiologia , Betula/anatomia & histologia , Betula/fisiologia , Fenômenos Biomecânicos , Cornus/anatomia & histologia , Cornus/fisiologia , Modelos Biológicos , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Populus/anatomia & histologia , Populus/fisiologia , Rosaceae/anatomia & histologia , Rosaceae/fisiologia , Symphoricarpos/anatomia & histologia , Symphoricarpos/fisiologia
18.
Tree Physiol ; 36(9): 1077-91, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27246164

RESUMO

Leaf functional traits are used in modeling forest canopy photosynthesis (Ac) due to strong correlations between photosynthetic capacity, leaf mass per area (LMA) and leaf nitrogen per area (Narea). Vertical distributions of these traits may change over time in temperate deciduous forests as a result of acclimation to light, which may result in seasonal changes in Ac To assess both spatial and temporal variations in key traits, we measured vertical profiles of Narea and LMA from leaf expansion through leaf senescence in a sugar maple (Acer saccharum Marshall) forest. To investigate mechanisms behind coordinated changes in leaf morphology and function, we also measured vertical variation in leaf carbon isotope composition (δ(13)C), predawn turgor pressure, leaf water potential and osmotic potential. Finally, we assessed potential biases in Ac estimations by parameterizing models with and without vertical and seasonal Narea variations following leaf expansion. Our data are consistent with the hypothesis that hydrostatic constraints on leaf morphology drive the vertical increase in LMA with height early in the growing season; however, LMA in the upper canopy continued to increase over time during light acclimation, indicating that light is primarily driving gradients in LMA later in the growing season. Models with no seasonal variation in Narea overestimated Ac by up to 11% early in the growing season, while models with no vertical variation in Narea overestimated Ac by up to 60% throughout the season. According to the multilayer model, the upper 25% of leaf area contributed to over 50% of Ac, but when gradients of intercellular CO2, as estimated from δ(13)C, were accounted for, the upper 25% of leaf area contributed to 26% of total Ac Our results suggest that ignoring vertical variation of key traits can lead to considerable overestimation of Ac.


Assuntos
Acer/fisiologia , Modelos Biológicos , Fotossíntese , Folhas de Planta/fisiologia , Estações do Ano , Árvores/fisiologia , Acer/anatomia & histologia , Clima , Florestas , Folhas de Planta/anatomia & histologia , Árvores/anatomia & histologia
19.
Ann Bot ; 117(7): 1163-73, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27107412

RESUMO

BACKGROUND AND AIMS: Despite a longstanding interest in variation in tree species vulnerability to ice storm damage, quantitative analyses of the influence of crown structure on within-crown variation in ice accretion are rare. In particular, the effect of prior interception by higher branches on lower branch accumulation remains unstudied. The aim of this study was to test the hypothesis that intra-crown ice accretion can be predicted by a measure of the degree of sheltering by neighbouring branches. METHODS: Freezing rain was artificially applied to Acer platanoides L., and in situ branch-ice thickness was measured directly and from LiDAR point clouds. Two models of freezing rain interception were developed: 'IceCube', which uses point clouds to relate ice accretion to a voxel-based index (sheltering factor; SF) of the sheltering effect of branch elements above a measurement point; and 'IceTree', a simulation model for in silico evaluation of the interception pattern of freezing rain in virtual tree crowns. KEY RESULTS: Intra-crown radial ice accretion varied strongly, declining from the tips to the bases of branches and from the top to the base of the crown. SF for branches varied strongly within the crown, and differences among branches were consistent for a range of model parameters. Intra-crown variation in ice accretion on branches was related to SF (R(2) = 0·46), with in silico results from IceTree supporting empirical relationships from IceCube. CONCLUSIONS: Empirical results and simulations confirmed a key role for crown architecture in determining intra-crown patterns of ice accretion. As suspected, the concentration of freezing rain droplets is attenuated by passage through the upper crown, and thus higher branches accumulate more ice than lower branches. This is the first step in developing a model that can provide a quantitative basis for investigating intra-crown and inter-specific variation in freezing rain damage.


Assuntos
Acer/anatomia & histologia , Gelo , Modelos Biológicos , Árvores/anatomia & histologia , Acer/fisiologia , Simulação por Computador , Congelamento , Componentes Aéreos da Planta/anatomia & histologia , Componentes Aéreos da Planta/fisiologia , Quebeque , Chuva , Árvores/fisiologia
20.
Plant Cell Environ ; 38(12): 2519-26, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26084355

RESUMO

Vessel lengths are important to plant hydraulic studies, but are not often reported because of the time required to obtain measurements. This paper compares the fast dynamic method (air injection method) with the slower but traditional static method (rubber injection method). Our hypothesis was that the dynamic method should yield a larger mean vessel length than the static method. Vessel length was measured by both methods in current year stems of Acer, Populus, Vitis and Quercus representing short- to long-vessel species. The hypothesis was verified. The reason for the consistently larger values of vessel length is because the dynamic method measures air flow rates in cut open vessels. The Hagen-Poiseuille law predicts that the air flow rate should depend on the product of number of cut open vessels times the fourth power of vessel diameter. An argument is advanced that the dynamic method is more appropriate because it measures the length of the vessels that contribute most to hydraulic flow. If all vessels had the same vessel length distribution regardless of diameter, then both methods should yield the same average length. This supports the hypothesis that large-diameter vessels might be longer than short-diameter vessels in most species.


Assuntos
Acer/anatomia & histologia , Populus/anatomia & histologia , Quercus/anatomia & histologia , Vitis/anatomia & histologia , Caules de Planta/anatomia & histologia , Madeira/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...