Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6693): eadn9524, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38669573

RESUMO

The commensal microbiota of the mosquito gut plays a complex role in determining the vector competence for arboviruses. In this study, we identified a bacterium from the gut of field Aedes albopictus mosquitoes named Rosenbergiella sp. YN46 (Rosenbergiella_YN46) that rendered mosquitoes refractory to infection with dengue and Zika viruses. Inoculation of 1.6 × 103 colony forming units (CFUs) of Rosenbergiella_YN46 into A. albopictus mosquitoes effectively prevents viral infection. Mechanistically, this bacterium secretes glucose dehydrogenase (RyGDH), which acidifies the gut lumen of fed mosquitoes, causing irreversible conformational changes in the flavivirus envelope protein that prevent viral entry into cells. In semifield conditions, Rosenbergiella_YN46 exhibits effective transstadial transmission in field mosquitoes, which blocks transmission of dengue virus by newly emerged adult mosquitoes. The prevalence of Rosenbergiella_YN46 is greater in mosquitoes from low-dengue areas (52.9 to ~91.7%) than in those from dengue-endemic regions (0 to ~6.7%). Rosenbergiella_YN46 may offer an effective and safe lead for flavivirus biocontrol.


Assuntos
Aedes , Vírus da Dengue , Mosquitos Vetores , Simbiose , Zika virus , Animais , Aedes/microbiologia , Aedes/virologia , Vírus da Dengue/fisiologia , Mosquitos Vetores/virologia , Mosquitos Vetores/microbiologia , Zika virus/fisiologia , Dengue/transmissão , Dengue/virologia , Dengue/prevenção & controle , Microbioma Gastrointestinal , Acetobacteraceae/fisiologia , Feminino , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Flavivirus/fisiologia , Flavivirus/genética , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
2.
mBio ; 12(3): e0050321, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34101488

RESUMO

Fungal pathogens, among other stressors, negatively impact the productivity and population size of honey bees, one of our most important pollinators (1, 2), in particular their brood (larvae and pupae) (3, 4). Understanding the factors that influence disease incidence and prevalence in brood may help us improve colony health and productivity. Here, we examined the capacity of a honey bee-associated bacterium, Bombella apis, to suppress the growth of fungal pathogens and ultimately protect bee brood from infection. Our results showed that strains of B. apis inhibit the growth of two insect fungal pathogens, Beauveria bassiana and Aspergillus flavus, in vitro. This phenotype was recapitulated in vivo; bee broods supplemented with B. apis were significantly less likely to be infected by A. flavus. Additionally, the presence of B. apis reduced sporulation of A. flavus in the few bees that were infected. Analyses of biosynthetic gene clusters across B. apis strains suggest antifungal candidates, including a type 1 polyketide, terpene, and aryl polyene. Secreted metabolites from B. apis alone were sufficient to suppress fungal growth, supporting the hypothesis that fungal inhibition is mediated by an antifungal metabolite. Together, these data suggest that B. apis can suppress fungal infections in bee brood via secretion of an antifungal metabolite. IMPORTANCE Fungi can play critical roles in host microbiomes (5-7), yet bacterial-fungal interactions are understudied. For insects, fungi are the leading cause of disease (5, 8). In particular, populations of the European honey bee (Apis mellifera), an agriculturally and economically critical species, have declined in part due to fungal pathogens. The presence and prevalence of fungal pathogens in honey bees have far-reaching consequences, endangering other species and threatening food security (1, 2, 9). Our research highlights how a bacterial symbiont protects bee brood from fungal infection. Further mechanistic work could lead to the development of new antifungal treatments.


Assuntos
Acetobacteraceae/fisiologia , Abelhas/microbiologia , Fungos/patogenicidade , Interações Microbianas , Micoses/prevenção & controle , Simbiose , Animais , Interações entre Hospedeiro e Microrganismos , Larva/microbiologia , Micoses/microbiologia
3.
mBio ; 12(2)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785632

RESUMO

The mosquito microbiota is composed of several lineages of microorganisms whose ecological roles and evolutionary histories have yet to be investigated in depth. Among these microorganisms, Asaia bacteria play a prominent role, given their abundance in the gut, reproductive organs, and salivary glands of different mosquito species, while their presence has also been reported in several other insects. Notably, Asaia has great potential as a tool for the control of mosquito-borne diseases. Here, we present a wide phylogenomic analysis of Asaia strains isolated from different species of mosquito vectors and from different populations of the Mediterranean fruit fly (medfly), Ceratitis capitata, an insect pest of worldwide economic importance. We show that phylogenetically distant lineages of Asaia experienced independent genome reductions, despite following a common pattern, characterized by the early loss of genes involved in genome stability. This result highlights the role of specific metabolic pathways in the symbiotic relationship between Asaia and the insect host. Finally, we discovered that all but one of the Asaia strains included in the study possess the pyrethroid hydrolase gene. Phylogenetic analysis revealed that this gene is ancestral in Asaia, strongly suggesting that it played a role in the establishment of the symbiotic association between these bacteria and the mosquito hosts. We propose that this gene from the symbiont contributed to initial pyrethroid resistance in insects harboring Asaia, also considering the widespread production of pyrethrins by several plants.IMPORTANCE We have studied genome reduction within several strains of the insect symbiont Asaia isolated from different species/strains of mosquito and medfly. Phylogenetically distant strains of Asaia, despite following a common pattern involving the loss of genes related to genome stability, have undergone independent genome reductions, highlighting the peculiar role of specific metabolic pathways in the symbiotic relationship between Asaia and its host. We also show that the pyrethroid hydrolase gene is present in all the Asaia strains isolated except for the South American malaria vector Anopheles darlingi, for which resistance to pyrethroids has never been reported, suggesting a possible involvement of Asaia in determining resistance to insecticides.


Assuntos
Acetobacteraceae/genética , Proteínas de Bactérias/metabolismo , Ceratitis capitata/microbiologia , Culicidae/microbiologia , Genoma Bacteriano , Filogenia , Simbiose , Acetobacteraceae/classificação , Acetobacteraceae/isolamento & purificação , Acetobacteraceae/fisiologia , Animais , Proteínas de Bactérias/genética , Ceratitis capitata/efeitos dos fármacos , Ceratitis capitata/fisiologia , Culicidae/efeitos dos fármacos , Culicidae/fisiologia , Evolução Molecular , Tamanho do Genoma , Resistência a Inseticidas , Inseticidas/farmacologia , Masculino , Piretrinas/farmacologia
4.
Carbohydr Polym ; 255: 117328, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33436171

RESUMO

In crystalline cellulose I, all glucan chains are ordered from reducing ends to non-reducing ends. Thus, the polarity of individual chains is added forming a large dipole within the crystal. If one can engineer unidirectional alignment (parallel packing) of cellulose crystals, then it might be possible to utilize the material properties originating from polar crystalline structures. However, most post-synthesis manipulation methods reported so far can only achieve the uniaxial alignment with bi-directionality (antiparallel packing). Here, we report a method to induce the parallel packing of bacterial cellulose microfibrils by applying unidirectional shear stress during the synthesis and deposition through the rising bubble stream in a culture medium. Driving force for the alignment is explained with mathematical estimation of the shear stress. Evidences of the parallel alignment of crystalline cellulose Iα domains were obtained using nonlinear optical spectroscopy techniques.


Assuntos
Acetobacteraceae/química , Celulose/química , Microfibrilas/química , Acetobacteraceae/fisiologia , Ar/análise , Fenômenos Biomecânicos , Reatores Biológicos , Celulose/ultraestrutura , Cristalização , Glucanos/química , Microfibrilas/ultraestrutura , Reologia , Estresse Mecânico
5.
J Microbiol ; 58(12): 988-997, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33095388

RESUMO

In this study, bacterial strains Ha5T, Ta1, and Jb2 were isolated from different colonies of weaver ant Oecophylla smaragdina. They were identified as bacterial symbionts of the ant belonging to family Acetobacteraceae and were distinguished as different strains based on distinctive random-amplified polymorphic DNA (RAPD) fingerprints. Cells of these bacterial strains were Gram-negative, rod-shaped, aerobic, non-motile, catalase-positive and oxidase-negative. They were able to grow at 15-37°C (optimum, 28-30°C) and in the presence of 0-1.5% (w/v) NaCl (optimum 0%). Their predominant cellular fatty acids were C18:1ω7c, C16:0, C19:0ω8c cyclo, C14:0, and C16:0 2-OH. Strains Ha5T, Ta1, and Jb2 shared highest 16S rRNA gene sequence similarity (94.56-94.63%) with Neokomagataea tanensis NBRC106556T of family Acetobacteraceae. Both 16S rRNA gene sequence-based phylogenetic analysis and core gene-based phylogenomic analysis placed them in a distinct lineage in family Acetobacteraceae. These bacterial strains shared higher than species level thresholds in multiple overall genome-relatedness indices which indicated that they belonged to the same species. In addition, they did not belong to any of the current taxa of Acetobacteraceae as they had low pairwise average nucleotide identity (< 71%), in silico DNA-DNA hybridization (< 38%) and average amino acid identity (< 67%) values with all the type members of the family. Based on these results, bacterial strains Ha5T, Ta1, and Jb2 represent a novel species of a novel genus in family Acetobacteaceae, for which we propose the name Oecophyllibacter saccharovorans gen. nov. sp. nov., and strain Ha5T as the type strain.


Assuntos
Acetobacteraceae/classificação , Acetobacteraceae/isolamento & purificação , Acetobacteraceae/fisiologia , Formigas/microbiologia , Filogenia , Simbiose/fisiologia , Acetobacteraceae/genética , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Malásia , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Análise de Sequência de DNA , Ubiquinona
6.
Carbohydr Polym ; 246: 116625, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32747262

RESUMO

Bacterial cellulose (BC) is recognized as a wound dressing material well-suited for chronic wounds; however, it has no intrinsic antimicrobial activity. Further, the formation of biofilms can limit the effectiveness of the pre-saturation of BC with antimicrobial agents. Here, to hinder biofilm formation by P. aeruginosa, we immobilized the hydrolytic domain of PelA (a glycohydrolase involved in the synthesis of biofilm polysaccharide Pel) on the surface of BC. The immobilization of 32.35 ±â€¯1.05 mg PelAh per g BC membrane resulted in an eight-fold higher P. aeruginosa cell detachment from BC membrane, indicating reduced biofilm matrix stability. Further, 1D and 2D infrared spectroscopy analysis indicated systematic reduction of polysaccharide biofilm elements, confirming the specificity of immobilized PelAh. Importantly, BC-PelAh was not cytotoxic towards L929 fibroblast cells. Thus, we conclude that PelAh can be used in BC wound dressings for safe and specific protection against biofilm formation by P. aeruginosa.


Assuntos
Acetobacteraceae/química , Bandagens , Biofilmes/efeitos dos fármacos , Celulose/química , Glicosídeo Hidrolases/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Acetobacteraceae/fisiologia , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Celulose/biossíntese , Celulose/isolamento & purificação , Clonagem Molecular , Enzimas Imobilizadas/biossíntese , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glicosídeo Hidrolases/biossíntese , Glicosídeo Hidrolases/genética , Camundongos , Domínios Proteicos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
7.
Carbohydr Polym ; 246: 116632, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32747267

RESUMO

Bacterial cellulose (BC) has been widely used as a model system to investigate the interaction of polyphenols with the polysaccharides of cell walls. In this study, the water absorption ability and the adsorption ability of epicatechin of the never-dried and freeze-dried BC produced by a high-yield Komagataeibacter hansenii strain ATCC 53582 was compared with two normal-yield strains. The structural characteristics of BC were investigated via microscopy observation and mechanical/rheological tests. The 1-butyl-3-methylimidazolium acetate/dimethyl sulfoxide ([BMIM]Ac/DMSO) co-solvent was used to dissolve BC to calculate the degree of polymerization (DP). Results showed that compared with the other two strain, the BC synthesised by ATCC 53582 had a higher cellulose concentration (1.2 wt%) but lower epicatechin adsorption (29 µg/mg under 4 mM, pH 7). Its fibril network collapsed and led to a reduced recovery ratio (86 %) in the compression-relaxation test, which may be due to large DP (2856).


Assuntos
Acetobacteraceae/química , Catequina/metabolismo , Celulose/metabolismo , Água/química , Acetobacteraceae/fisiologia , Adsorção , Catequina/química , Celulose/química , Celulose/isolamento & purificação , Dimetil Sulfóxido/química , Liofilização , Concentração de Íons de Hidrogênio , Imidazóis/química , Polimerização , Reologia , Solventes/química , Estresse Mecânico
8.
PLoS One ; 15(5): e0233047, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32392269

RESUMO

Fruits have been widely considered as the default "health foods" because they contain numerous vitamins and minerals needed to sustain human health. Fermentation strategies have been utilized to enhance the nutritive and flavor features of healthy and readily consumable fruit products while extending their shelf lives. A traditional fermented multi-fruit beverage was made from five fruits including kiwi, guava, papaya, pineapple, and grape fermented by Saccharomyces cerevisiae along with lactic acid bacteria and acetic acid bacteria. The immunomodulatory properties of the fermented multi-fruit beverage, in vivo nonspecific and ovalbumin (OVA)-specific immune response experiments using female BALB/c mice were performed. Administration of the fermented multi-fruit beverage reduced the calorie intake, thus resulting in a less weight gain in mice compared to the water (placebo)-fed mice. In the nonspecific immune study model, the fermented multi-fruit beverage enhanced phagocytosis and T cell proliferation but did not affect B cell proliferation and immunoglobulin G (IgG) production. Analysis of cytokine secretion profile also revealed that the fermented multi-fruit beverage enhanced proinflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, and T helper (Th)1-related cytokine interferon (IFN)-γ production, thus creating an immunostimulatory effect. Nonetheless, in the specific immune study model, the results showed that the fermented multi-fruit beverage decreased the production of proinflammatory cytokines IL-6 and TNF-α production in OVA-immunized mice. Moreover, it also caused a decrease in the production of anti-OVA IgG1, which was accompanied by a decrease in Th2-related cytokines IL-4 and IL-5 production and an increase in Th1-related cytokine IFN-γ production, indicating that it may have the potential to shift the immune system from the allergen-specific Th2 responses toward Th1-type responses. The results indicate that fermented multi-fruit beverage has the potential to modulate immune responses both in a nonspecific and specific manners.


Assuntos
Citocinas/metabolismo , Alimentos Fermentados/microbiologia , Frutas/imunologia , Ovalbumina/administração & dosagem , Linfócitos T/metabolismo , Acetobacteraceae/fisiologia , Administração Oral , Animais , Peso Corporal , Feminino , Imunoglobulina G/metabolismo , Lactobacillales/fisiologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Fagocitose , Saccharomyces cerevisiae/fisiologia , Células Th1/imunologia , Células Th2/imunologia , Vacinação
9.
J Insect Physiol ; 123: 104048, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32179035

RESUMO

Besides typical sexually transmitted microbes, even environmental, opportunistic microbes have been found in copulatory organs of insects and even humans. To date, only one study has experimentally investigated the sexual transmission of opportunistic microbes from male to female insects, whereas nothing is known about the transmission from females to males. Even if opportunistic microbes do not cause infection upon transmission, they might eventually become harmful if they multiply inside the female. While the immune system of females is often assumed to target sexually transmitted microbes, most studies ignore the role of mating-associated opportunistic microbes. Variation in immunity between populations has been linked to parasite or bacteria prevalence but no study has ever addressed between-population differences in immune responses to sexually transmitted opportunistic microbes. We here show that bacteria applied to the copulatory organs of common bedbugs, Cimex lectularius, are sexually transmitted to the opposite sex at a high rate, including the transmission from female to male. Bacterial growth in the female sperm-receiving organ was inhibited over the first hours after introduction, but after this initial inhibition bacterial numbers increased, suggesting a shift of investment from immune defence towards reproduction. However, 24 h after the injection of bacteria, male components, or saline as a control, the sperm-receiving organ showed lysozyme-like activity and inhibited the growth of Gram-negative and Gram-positive bacteria in vitro, potentially to mop up the remaining bacteria. Contrasting our prediction, neither bacterial growth nor immune responses differed between populations. Future studies should link transmission dynamics, immune responses and fitness effects in both sexes. Experimental manipulation of environmental bacteria could be used to investigate how transmission frequency and toxicity of sexually transmitted opportunistic microbes shapes bacteria clearance and immune responses across populations.


Assuntos
Acetobacteraceae/fisiologia , Percevejos-de-Cama/imunologia , Copulação , Imunidade Inata , Animais , Percevejos-de-Cama/microbiologia , Feminino , Genitália Feminina/microbiologia
10.
Sci Rep ; 10(1): 1715, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015447

RESUMO

Palm wine, the most commonly consumed traditional alcoholic beverage in Western Africa, harbours a complex microbiota and metabolites, which plays a crucial role in the overall quality and value of the product. In the present study, a combined metagenomic and metabolomic approach was applied to describe the microbial community structure and metabolites profile of fermented saps from three palm species (Elaeis guineensis, Raphia hookeri, Borassus aethiopum) in Côte d'Ivoire. Lactobacillaceae (47%), Leuconostocaceae (16%) and Acetobacteriaceae (28%) were the most abundant bacteria and Saccharomyces cerevisiae (87%) the predominant yeasts in these beverages. The microbial community structure of Raphia wine was distinctly different from the others. Multivariate analysis based on the metabolites profile clearly separated the three palm wine types. The main differentiating metabolites were putatively identified as gevotroline hydrochloride, sesartemin and methylisocitrate in Elaeis wine; derivative of homoserine, mitoxantrone in Raphia wine; pyrimidine nucleotide sugars (UDP-D-galacturonate) and myo-Inositol derivatives in Borassus wine. The enriched presence of gevotroline (an antipsychotic agent) and mitoxantrone (an anticancer drug) in palm wine supports its therapeutic potential. This work provides a valuable insight into the microbiology and biochemistry of palm wines and a rationale for selecting functional microorganisms for potential biotechnology applications.


Assuntos
Acetobacteraceae/fisiologia , Arecaceae/fisiologia , Genótipo , Lactobacillaceae/fisiologia , Leuconostocaceae/fisiologia , Saccharomyces cerevisiae/fisiologia , Vinho/microbiologia , Biologia Computacional , Côte d'Ivoire , Fermentação , Metaboloma , Metabolômica , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Ribossômico 16S/genética
11.
Mol Ecol ; 28(4): 900-916, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30106217

RESUMO

Acacia-ant mutualists in the genus Pseudomyrmex nest obligately in acacia plants and, as we show through stable isotope analysis, feed at a remarkably low trophic level. Insects with diets such as these sometimes depend on bacterial symbionts for nutritional enrichment. We, therefore, examine the bacterial communities associated with acacia-ants in order to determine whether they host bacterial partners likely to contribute to their nutrition. Despite large differences in trophic position, acacia-ants and related species with generalized diets do not host distinct bacterial taxa. However, we find that a small number of previously undescribed bacterial taxa do differ in relative abundance between acacia-ants and generalists, including several Acetobacteraceae and Nocardiaceae lineages related to common insect associates. Comparisons with an herbivorous generalist, a parasite that feeds on acacias and a mutualistic species with a generalized diet show that trophic level is likely responsible for these small differences in bacterial community structure. While we did not experimentally test for a nutritional benefit to hosts of these bacterial lineages, metagenomic analysis reveals a Bartonella relative with an intact nitrogen-recycling pathway widespread across Pseudomyrmex mutualists and generalists. This taxon may be contributing to nitrogen enrichment of its ant hosts through urease activity and, concordant with an obligately host-associated lifestyle, appears to be experiencing genomewide relaxed selection. The lack of distinctiveness in bacterial communities across trophic level in this group of ants shows a remarkable ability to adjust to varied diets, possibly with assistance from these diverse ant-specific bacterial lineages.


Assuntos
Acacia/fisiologia , Formigas/fisiologia , Acetobacteraceae/fisiologia , Animais , Bartonella/fisiologia , Herbivoria/fisiologia , Metagenômica , Microbiota/fisiologia , Nocardiaceae/fisiologia , Simbiose/genética , Simbiose/fisiologia
12.
Nat Commun ; 9(1): 4127, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297781

RESUMO

Vector-borne diseases are a substantial portion of the global disease burden; one of the deadliest of these is malaria. Vector control strategies have been hindered by mosquito and pathogen resistances, and population alteration approaches using transgenic mosquitos still have many hurdles to overcome before they can be implemented in the field. Here we report a paratransgenic control strategy in which the microbiota of Anopheles stephensi was engineered to produce an antiplasmodial effector causing the mosquito to become refractory to Plasmodium berghei. The midgut symbiont Asaia was used to conditionally express the antiplasmodial protein scorpine only when a blood meal was present. These blood meal inducible Asaia strains significantly inhibit pathogen infection, and display improved fitness compared to strains that constitutively express the antiplasmodial effector. This strategy may allow the antiplasmodial bacterial strains to survive and be transmitted through mosquito populations, creating an easily implemented and enduring vector control strategy.


Assuntos
Anopheles/genética , Antibiose/fisiologia , Malária/sangue , Mosquitos Vetores/genética , Acetobacteraceae/fisiologia , Animais , Animais Geneticamente Modificados , Anopheles/microbiologia , Anopheles/parasitologia , Sistema Digestório/microbiologia , Sistema Digestório/parasitologia , Resistência à Doença/genética , Malária/microbiologia , Malária/parasitologia , Microbiota/fisiologia , Mosquitos Vetores/microbiologia , Mosquitos Vetores/parasitologia , Plasmodium berghei/fisiologia , Simbiose
13.
Parasit Vectors ; 11(1): 367, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29950179

RESUMO

BACKGROUND: In recent years, the genus Asaia (Rhodospirillales: Acetobacteraceae) has been isolated from different Anopheles species and presented as a promising tool to combat malaria. This bacterium has unique features such as presence in different organs of mosquitoes (midgut, salivary glands and reproductive organs) of female and male mosquitoes and vertical and horizontal transmission. These specifications lead to the possibility of introducing Asaia as a robust candidate for malaria vector control via paratransgenesis technology. Several studies have been performed on the microbiota of Anopheles mosquitoes (Diptera: Culicidae) in Iran and the Middle East to find a suitable candidate for controlling the malaria based on paratransgenesis approaches. The present study is the first report of isolation, biochemical and molecular characterization of the genus Asaia within five different Anopheles species which originated from different zoogeographical zones in the south, east, and north of Iran. METHODS: Mosquitoes originated from field-collected and laboratory-reared colonies of five Anopheles spp. Adult mosquitoes were anesthetized; their midguts were isolated by dissection, followed by grinding the midgut contents which were then cultured in enrichment broth media and later in CaCO3 agar plates separately. Morphological, biochemical and physiological characterization were carried out after the appearance of colonies. For molecular confirmation, selected colonies were cultured, their DNAs were extracted and PCR was performed on the 16S ribosomal RNA gene using specific newly designed primers. RESULTS: Morphological, biochemical, physiological and molecular results indicated that all isolates are members of the genus Asaia. CONCLUSIONS: Contrary to previous opinions, our findings show that Asaia bacteria are present in both insectary-reared colonies and field-collected mosquitoes and can be isolated by simple and specific methods. Furthermore, with respect to the fact that we isolated Asaia within the different Anopheles specimens from distinct climatic and zoogeographical regions, it is promising and may be concluded that species of this genus can tolerate the complicated environmental conditions of the vector-borne diseases endemic regions. Therefore, it can be considered as a promising target in paratransgenesis and vector control programs. However, we suggest that introducing the new technologies such as next generation sequencing and robust in silico approaches may pave the way to find a unique biomarker for rapid and reliable differentiation of the Asaia species.


Assuntos
Acetobacteraceae/isolamento & purificação , Acetobacteraceae/fisiologia , Anopheles/microbiologia , Malária/epidemiologia , Mosquitos Vetores/microbiologia , Acetobacteraceae/citologia , Acetobacteraceae/genética , Animais , Anopheles/anatomia & histologia , Agentes de Controle Biológico , Sistema Digestório/microbiologia , Feminino , Humanos , Irã (Geográfico)/epidemiologia , Larva/fisiologia , Malária/parasitologia , Malária/prevenção & controle , Masculino , Microbiota , Oriente Médio/epidemiologia , Controle de Mosquitos/métodos , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Simbiose
14.
Mol Ecol ; 27(8): 1898-1914, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29411455

RESUMO

Mutualistic interactions with microbes have played a crucial role in the evolution and ecology of animal hosts. However, it is unclear what factors are most important in influencing particular host-microbe associations. While closely related animal species may have more similar microbiota than distantly related species due to phylogenetic contingencies, social partnerships with other organisms, such as those in which one animal farms another, may also influence an organism's symbiotic microbiome. We studied a mutualistic network of Brachymyrmex and Lasius ants farming several honeydew-producing Prociphilus aphids and Rhizoecus mealybugs to test whether the mutualistic microbiomes of these interacting insects are primarily correlated with their phylogeny or with their shared social partnerships. Our results confirm a phylogenetic signal in the microbiomes of aphid and mealybug trophobionts, with each species harbouring species-specific endosymbiont strains of Buchnera (aphids), Tremblaya and Sodalis (mealybugs), and Serratia (both mealybugs and aphids) despite being farmed by the same ants. This is likely explained by strict vertical transmission of trophobiont endosymbionts between generations. In contrast, our results show the ants' microbiome is possibly shaped by their social partnerships, with ants that farm the same trophobionts also sharing strains of sugar-processing Acetobacteraceae bacteria, known from other honeydew-feeding ants and which likely reside extracellularly in the ants' guts. These ant-microbe associations are arguably more "open" and subject to horizontal transmission or social transmission within ant colonies. These findings suggest that the role of social partnerships in shaping a host's symbiotic microbiome can be variable and is likely dependent on how the microbes are transmitted across generations.


Assuntos
Formigas/microbiologia , Afídeos/microbiologia , Microbiota/genética , Simbiose/genética , Acetobacteraceae/genética , Acetobacteraceae/fisiologia , Animais , Formigas/genética , Afídeos/genética , Comportamento Animal , Buchnera/genética , Filogenia , Especificidade da Espécie
15.
BMC Res Notes ; 10(1): 212, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615078

RESUMO

OBJECTIVE: The genus Roseomonas comprises a group of pink-pigmented, slow-growing, aerobic, non-fermentative Gram-negative bacteria, which have been isolated from environmental sources such as water and soil, but are also associated with human infections. In the study presented here, Roseomonas mucosa was identified for the first time as part of the endodontic microbiota of an infected root canal and characterised in respect to growth, antibiotic susceptibility and biofilm formation. RESULTS: The isolated R. mucosa strain showed strong slime formation and was resistant to most ß-lactam antibiotics, while it was susceptible to aminoglycosides, carbapenemes, fluorochinolones, polymyxines, sulfonamides and tetracyclines. Biofilm formation on artificial surfaces (glass, polystyrene, gutta-percha) and on teeth was tested using colorimetric and fluorescence microscopic assays. While solid biofilms were formed on glass surfaces, on the hydrophobic surface of gutta-percha points, no confluent but localised, spotty biofilms were observed. Furthermore, R. mucosa was able form biofilms on dentin. The data obtained indicate that R. mucosa can support establishment of endodontic biofilms and furthermore, infected root canals might serve as an entrance pathway for blood stream infections by this emerging pathogen.


Assuntos
Acetobacteraceae/isolamento & purificação , Cavidade Pulpar/microbiologia , Doenças da Polpa Dentária/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Acetobacteraceae/efeitos dos fármacos , Acetobacteraceae/patogenicidade , Acetobacteraceae/fisiologia , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Microbiota
16.
PLoS Biol ; 15(4): e2000862, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28441450

RESUMO

Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits.


Assuntos
Acetobacter/fisiologia , Aminoácidos Essenciais/metabolismo , Drosophila melanogaster/microbiologia , Comportamento Alimentar , Microbioma Gastrointestinal , Lactobacillus/fisiologia , Simbiose , Acetobacter/genética , Acetobacter/crescimento & desenvolvimento , Acetobacteraceae/genética , Acetobacteraceae/crescimento & desenvolvimento , Acetobacteraceae/fisiologia , Aminoácidos Essenciais/administração & dosagem , Aminoácidos Essenciais/análise , Aminoácidos Essenciais/deficiência , Animais , Animais Geneticamente Modificados , Regulação do Apetite , Comportamento Animal , Misturas Complexas/administração & dosagem , Misturas Complexas/química , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/fisiologia , Feminino , Preferências Alimentares , Técnicas de Inativação de Genes , Interações Hospedeiro-Parasita , Lactobacillus/genética , Lactobacillus/crescimento & desenvolvimento , Oviposição , Especificidade da Espécie , Fermento Seco/química
17.
Wei Sheng Wu Xue Bao ; 57(3): 321-32, 2017 Mar 04.
Artigo em Chinês | MEDLINE | ID: mdl-29756431

RESUMO

Acetic acid bacteria (AAB) are obligately aerobic Gram-negative bacteria. Known for their ability to oxidize ethanol to acetic acid and robust tolerance to acetic acid, AAB have been widely used in industrial vinegar fermentation. Besides the incomplete oxidative ability, investigation of their resistance mechanisms to acetic acid is intriguing and crucial for high titer vinegar production. In this review, we evaluated a variety of resistant pathways involved in carbohydrate metabolism, protein metabolism, lipid metabolism, and stress response based on genomics and proteomics investigations in AAB. Specifically, the discovery in modules related to quorum sensing (QS) system in Komagataeibacter species and the emerging genome data of AAB opens a new window to screen acid resistance regulatory networks, which may promote industrial strain breeding and fermentation optimizing. We reviewed the latest research progress of quorum sensing in acetic acid bacteria based on the brief introduction of genomic and proteomic studies.


Assuntos
Ácido Acético/metabolismo , Acetobacteraceae/fisiologia , Percepção de Quorum , Acetobacteraceae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
18.
BMC Microbiol ; 16(1): 140, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27400652

RESUMO

BACKGROUND: Symbiotic associations between gut microbiota and their animal hosts shape the evolutionary trajectories of both partners. The genomic consequences of these relationships are significantly influenced by a variety of factors, including niche localization, interaction potential, and symbiont transmission mode. In eusocial insect hosts, socially transmitted gut microbiota may represent an intermediate point between free living or environmentally acquired bacteria and those with strict host association and maternal transmission. RESULTS: We characterized the bacterial communities associated with an abundant ant species, Camponotus chromaiodes. While many bacteria had sporadic distributions, some taxa were abundant and persistent within and across ant colonies. Specially, two Acetobacteraceae operational taxonomic units (OTUs; referred to as AAB1 and AAB2) were abundant and widespread across host samples. Dissection experiments confirmed that AAB1 and AAB2 occur in C. chromaiodes gut tracts. We explored the distribution and evolution of these Acetobacteraceae OTUs in more depth. We found that Camponotus hosts representing different species and geographical regions possess close relatives of the Acetobacteraceae OTUs detected in C. chromaiodes. Phylogenetic analysis revealed that AAB1 and AAB2 join other ant associates in a monophyletic clade. This clade consists of Acetobacteraceae from three ant tribes, including a third, basal lineage associated with Attine ants. This ant-specific AAB clade exhibits a significant acceleration of substitution rates at the 16S rDNA gene and elevated AT content. Substitutions along 16S rRNA in AAB1 and AAB2 result in ~10 % reduction in the predicted rRNA stability. CONCLUSIONS: Combined, these patterns in Camponotus-associated Acetobacteraceae resemble those found in cospeciating gut associates that are both socially and maternally transmitted. These associates may represent an intermediate point along an evolutionary trajectory manifest most extremely in symbionts with strict maternal transmission. Collectively, these results suggest that Acetobacteraceae may be a frequent and persistent gut associate in Camponotus species and perhaps other ant groups, and that its evolution is strongly impacted by this host association.


Assuntos
Acetobacteraceae/genética , Acetobacteraceae/fisiologia , Formigas/microbiologia , Evolução Biológica , Microbioma Gastrointestinal , Acetobacteraceae/isolamento & purificação , Animais , Formigas/classificação , Sequência de Bases , Biodiversidade , DNA Bacteriano/genética , DNA Ribossômico/genética , Evolução Molecular , Genes Bacterianos , Especificidade de Hospedeiro , Consórcios Microbianos , Filogenia , RNA Ribossômico 16S/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Simbiose
19.
PLoS One ; 11(4): e0153476, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27093431

RESUMO

The composition of the intestinal microbiota of Drosophila has been studied in some detail in recent years. Environmental, developmental and host-specific genetic factors influence microbiome composition in the fly. Our previous work has indicated that intestinal bacterial load can be affected by chromatin-targeted regulatory mechanisms. Here we studied a potential role of the conserved chromatin assembly and remodeling factor CHD1 in the shaping of the gut microbiome in Drosophila melanogaster. Using high-throughput sequencing of 16S rRNA gene amplicons, we found that Chd1 deletion mutant flies exhibit significantly reduced microbial diversity compared to rescued control strains. Specifically, although Acetobacteraceae dominated the microbiota of both Chd1 wild-type and mutant guts, Chd1 mutants were virtually monoassociated with this bacterial family, whereas in control flies other bacterial taxa constituted ~20% of the microbiome. We further show age-linked differences in microbial load and microbiota composition between Chd1 mutant and control flies. Finally, diet supplementation experiments with Lactobacillus plantarum revealed that, in contrast to wild-type flies, Chd1 mutant flies were unable to maintain higher L. plantarum titres over time. Collectively, these data provide evidence that loss of the chromatin remodeler CHD1 has a major impact on the gut microbiome of Drosophila melanogaster.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Microbioma Gastrointestinal/fisiologia , Microbiota/fisiologia , Fatores de Transcrição/genética , Acetobacteraceae/fisiologia , Animais , Cromatina/fisiologia , Drosophila melanogaster/fisiologia , Lactobacillus plantarum/fisiologia , RNA Ribossômico 16S/genética
20.
J Econ Entomol ; 109(2): 537-43, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26875068

RESUMO

The honey bee, Apis mellifera L., is host to a variety of microorganisms. The bacterial community that occupies the adult worker gut contains a core group of approximately seven taxa, while the hive environment contains its own distribution of bacteria that is in many ways distinct from the gut. Parasaccharibacter apium, gen. nov., sp. nov., is a hive bacterium found in food stores and in larvae, worker jelly, worker hypopharyngeal glands, and queens. Parasaccharibacter apium increases larval survival under laboratory conditions. To determine if this benefit is extended to colonies in the field, we tested if P. apium 1) survives and reproduces in supplemental pollen patty, 2) is distributed throughout the hive when added to pollen patty, 3) benefits colony health, and 4) increases the ability of bees to resist Nosema. Parasaccharibacter apium survived in supplemental diet and was readily consumed by bees. It was distributed throughout the hive under field conditions, moving from the pollen patty to hive larvae. While P. apium did not significantly increase colony brood production, food stores, or foraging rates, it did increase resistance to Nosema infection. Our data suggest that P. apium may positively impact honey bee health.


Assuntos
Acetobacteraceae/fisiologia , Criação de Abelhas/métodos , Abelhas/microbiologia , Nosema/fisiologia , Simbiose , Animais , Suplementos Nutricionais , Comportamento Alimentar , Interações Hospedeiro-Patógeno , Larva/microbiologia , Pólen/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...