Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.642
Filtrar
1.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720270

RESUMO

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Estresse Oxidativo , Fibrose Pulmonar , Dióxido de Silício , Sinvastatina , Animais , Sinvastatina/farmacologia , Ratos , Masculino , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/prevenção & controle , Fibrose Pulmonar/patologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Dióxido de Silício/toxicidade , Ratos Sprague-Dawley , Modelos Animais de Doenças , Pneumonia/induzido quimicamente , Pneumonia/prevenção & controle , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Pneumonia/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Silicose/tratamento farmacológico , Silicose/patologia , Silicose/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Transdução de Sinais/efeitos dos fármacos , NADPH Oxidases/metabolismo , Ribonucleotídeos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , NADPH Oxidase 4/metabolismo , Acetofenonas/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
2.
J Wound Care ; 33(Sup4a): cxviii-cxxix, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38588060

RESUMO

OBJECTIVE: Accurate assessment of burn depth and burn wound healing potential is essential to determine early treatments. Infrared thermography (IRT) is a non-invasive and objective tool to do this. This systematic review evaluated the accuracy of IRT to determine burn wound healing potential. METHOD: This systematic review and meta-analysis used MEDLINE, EMBASE, CINAHL, PEDro, DiTA and CENTRAL databases. IRT data were extracted from primary studies and categorised into four cells (i.e., true positives, false positives, true negatives and false negatives). Subgroup analysis was performed according to methods used to capture thermal images. RESULTS: The search strategy identified 2727 publications; however, 15 articles were selected for review and 11 for meta-analysis. In our meta-analysis, the accuracy of IRT was 84.8% (63% sensitivity and 81.9% specificity). CONCLUSION: IRT is a moderately accurate tool to identify burn depth and healing potential. Thus, IRT should be used carefully for evaluating burn wounds.


Assuntos
Queimaduras , Termografia , Humanos , Termografia/métodos , Cicatrização , Queimaduras/diagnóstico , Queimaduras/terapia , Acetofenonas
3.
Chem Biodivers ; 21(5): e202400337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38470409

RESUMO

Rice sheath blight (RSB), caused by Rhizoctonia solani, is a significant disease of rice. The negative effects of chemical fungicides have created an urgent need for low-toxicity botanical fungicides. Our previous research revealed that the ethanol crude extract of Moutan Cortex (MC) exhibited superior antifungal activity against R. solani at 1000 µg/mL, resulting in a 100 % inhibition rate. The antifungal properties were mainly found in the petroleum ether extract. However, the active ingredients of the extract are still unclear. In this study, gas chromatography-mass spectrometry (GC-MS) was utilised for the analysis of its chemical components. The mycelium growth rate method was utilized to detect the antifungal activity. The findings indicated that paeonol constituted the primary active component, with a content of more than 96 %. Meanwhile, paeonol was the most significant antifungal active ingredient, the antifungal activity of paeonol (EC50=44.83 µg/mL) was much higher than that of ß-sitosterol and ethyl propionate against R. solani. Observation under an optical microscope revealed that paeonol resulted in abnormal mycelial morphology. This study provided theoretical support for identifying monomer antifungal compounds and developing biological fungicides for R. solani.


Assuntos
Antifúngicos , Testes de Sensibilidade Microbiana , Paeonia , Rhizoctonia , Rhizoctonia/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Paeonia/química , Acetofenonas/farmacologia , Acetofenonas/química , Acetofenonas/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Dose-Resposta a Droga
4.
Biomed Pharmacother ; 173: 116368, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471269

RESUMO

Paeonol, as one of the most abundant plant-derived polyphenols, has multiple bioactivities including anti-inflammatory, anti-tumor, and anti-cardiovascular diseases. Nevertheless, the anti-aging effects and related mechanisms of paeonol are rarely reported. In this study, we found that paeonol significantly prolonged the mean lifespan of Caenorhabditis elegans (C. elegans) by 28.49% at a dose of 200 µM. Moreover, paeonol promoted the health of C. elegans by increasing the body bending and pharyngeal pumping rates and reducing the lipofuscin accumulation level. Meanwhile, paeonol induced the expression of stress-related genes or proteins by activating the transcription factors DAF-16/FOXO, SKN-1/Nrf2, and HSF-1, which in turn enhanced oxidative and thermal stress tolerance. The mechanism behind the anti-aging effect of paeonol occurred by down-regulating the insulin/IGF-1 signaling (IIS) pathway. Our findings shed new light on the application of paeonol for longevity promotion and human health.


Assuntos
Acetofenonas , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/metabolismo , Longevidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Estresse Oxidativo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
5.
J Ethnopharmacol ; 327: 118063, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38493906

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Moutan cortex (MC), the root bark of Paeonia suffruticosa Anderws (Paeoniaceae), has been historically employed in traditional herbal medicine for addressing women's ailments by replenishing kidney Yin. AIM OF THE STUDY: We aimed to explore if paeonol, an active constituent of MC, could ameliorate neuropsychiatric symptoms, such as anxiety, depression, and cognitive impairments, associated with post-menopausal syndrome (PMS) in an ovariectomized (OVX) mouse model. MATERIALS AND METHODS: The experimental design comprised 6 groups, including a sham group, OVX group, paeonol administration groups (3, 10 or 30 mg/kg, p.o.), and an estradiol (E2)-treated positive control group. Behavioral tests including the open field, novel object recognition, Y-maze, elevated plus-maze, splash, and forced swimming tests were conducted. In addition, we investigated the effets of paeonol on the phosphorylated levels of phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR), as well as on the expression levels of G protein-coupled receptor (GPR30) and brain-derived neurotrophic factor (BDNF) in the prefrontal cortex and hippocampus. RESULTS: Paeonol treatment (10 and 30 mg/kg, p.o.) effectively reversed the cognitive decline in OVX mice, measured by the novel object recognition and Y-maze tests, similar to that in the positive control group. Additionally, it alleviated anxiety- and depressive-like behaviors, as evaluated by the elevated plus-maze test, splash test, and forced swimming test. Paeonol restored GPR30 expression levels in the prefrontal cortex and hippocampus, mirroring the effects of E2 administration. Furthermore, it reversed the reduced expression levels of the PI3K-Akt-mTOR signaling pathway in the prefrontal cortex and hippocampus and increased BDNF expression in the hippocampus of OVX mice. CONCLUSION: This research suggests that paeonol would be beneficial for alleviating PMS-associated cognitive impairment, anxiety and depression.


Assuntos
Acetofenonas , Fator Neurotrófico Derivado do Encéfalo , Pós-Menopausa , Camundongos , Humanos , Feminino , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipocampo , Serina-Treonina Quinases TOR/metabolismo , Mamíferos/metabolismo
6.
Plant Sci ; 343: 112060, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460554

RESUMO

Micronutrient manipulation can enhance crop resilience against pathogens, but the mechanisms are mostly unknown. We tested whether priming Capsicum annuum plants with zinc (5 µM Zn) or manganese (3 µM Mn) for six weeks increases their immunity against the generalist necrotroph Botrytis cinerea compared to deficient (0.1 µM Zn, 0.02 µM Mn) and control conditions (1 µM Zn, 0.6 µM Mn). Zinc priming reduced the pathogen biomass and lesion area and preserved CO2 assimilation and stomatal conductance. Zinc mobilization at the infection site, visualized by micro-X-ray fluorescence, was accompanied by increased Zn protein binding obtained by size exclusion HPLC-ICP/MS. A common metabolic response to fungal infection in Zn- and Mn-primed plants was an accumulation of corchorifatty acid F, a signaling compound, and the antifungal compound acetophenone. In vitro tests showed that the binding of Zn2+ increased, while Mn2+ binding decreased acetophenone toxicity against B. cinerea at concentrations far below the toxicity thresholds of both metals in unbound (aquo complex) form. The metal-specific response to fungal infection included the accumulation of phenolics and amino acids (Mn), and the ligand isocitrate (Zn). The results highlight the importance of Zn for pepper immunity through direct involvement in immunity-related proteins and low molecular weight Zn-complexes, while Mn priming was inefficient.


Assuntos
Capsicum , Micoses , Zinco , Capsicum/microbiologia , Botrytis/fisiologia , Acetofenonas , Doenças das Plantas/microbiologia
7.
Mol Immunol ; 169: 66-77, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503139

RESUMO

Systemic lupus erythematosus (SLE) is a complex autoimmune disease of unknown etiology. It is marked by the production of pathogenic autoantibodies and the deposition of immune complexes. Lupus nephritis (LN) is a prevalent and challenging clinical complications of SLE. Cortex Moutan contains paeonol as its main effective component. In this study, using the animal model of SLE induced by R848, it was found that paeonol could alleviate the lupus-like symptoms of lupus mouse model induced by R848 activating TLR7, reduce the mortality and ameliorate the renal damage of mice. In order to explore the mechanism of paeonol on lupus nephritis, we studied the effect of paeonol on the polarization of Raw264.7 macrophages in vitro. The experimental results show that paeonol can inhibit the polarization of macrophages to M1 and promote their polarization to M2, which may be related to the inhibition of MAPK and NF-κB signaling pathways. Our research provides a new insight into paeonol in the treatment of lupus nephritis, which is of great importance for the treatment of systemic lupus erythematosus and its complications.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Camundongos , Animais , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/metabolismo , Acetofenonas/farmacologia , Acetofenonas/metabolismo , Macrófagos/metabolismo
8.
Gene ; 914: 148369, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485036

RESUMO

INTRODUCTION: The study focuses on the long-term prognosis of myocardial infarction (MI) influenced by neutrophil extracellular traps (NETs). It also aims to analyze and validate relative hub genes in this process, in order to further explore new therapeutic targets that can improve the prognosis of MI. MATERIALS AND METHODS: We established a MI model in mice by ligating the left anterior descending branch (LAD) and conducted an 8-week continuous observation to study the dynamic changes in the structure and function of the heart in these mice. Meanwhile, we administered Apocynin, an inhibitor of NADPH Oxidase, which has also been shown to inhibit the formation of NETs, to mice undergoing MI surgery in order to compare. This study employed hematoxylin-eosin (HE) staining, echocardiography, immunofluorescence, and real-time quantitative PCR (RT-qPCR) to examine the impact of NETs on the long-term prognosis of MI. Next, datasets related to MI and NETs were downloaded from the GEO database, respectively. The Limma package of R software was used to identify differentially expressed genes (DEGs). After analyzing the "Robust Rank Aggregation (RRA)" package, we conducted a screening for robust differentially expressed genes (DEGs) and performed pathway enrichment analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to determine the functional roles of these robust DEGs. The protein-protein interaction (PPI) network was visualized and hub genes were filtered using Cytoscape. RESULTS: Immunofluorescence and qPCR results showed an increase in the expression of Myeloperoxidase (MPO) at week 1 and week 8 in the hearts of mice after MI. HE staining reveals a series of pathological manifestations in the heart of the MI group during 8 weeks, including enlarged size, disordered arrangement of cardiomyocytes, infiltration of inflammatory cells, and excessive deposition of collagen fibers, among others. The utilization of Apocynin could significantly improve these poor performances. The echocardiography displayed the cardiac function of the heart in mice. The MI group has a reduced range of heart movement and decreased ejection ability. Moreover, the ventricular systolic movement was found to be abnormal, and its wall thickening rate decreased over time, indicating a progressive worsening of myocardial ischemia. The Apocynin group, on the contrary, showed fewer abnormal changes in the aforementioned aspects. A total of 81 DEGs and 4 hub genes (FOS, EGR1, PTGS2, and HIST1H4H) were obtained. The results of RT-qPCR demonstrated abnormal expression of these four genes in the MI group, which could be reversed by treatment of Apocynin. CONCLUSION: The NETs formation could be highly related to MI and the long-term prognosis of MI can be significantly influenced by the NETs formation. Four hub genes, namely FOS, EGR1, PTGS2, and HIST1H4H, have the potential to be key genes related to this process. They could also serve as biomarkers for predicting MI prognosis and as targets for gene therapy.


Assuntos
Armadilhas Extracelulares , Infarto do Miocárdio , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Animais , Armadilhas Extracelulares/metabolismo , Camundongos , Prognóstico , Masculino , Mapas de Interação de Proteínas/genética , Modelos Animais de Doenças , Redes Reguladoras de Genes , Neutrófilos/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Acetofenonas/farmacologia , Camundongos Endogâmicos C57BL , Ontologia Genética
9.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474193

RESUMO

Upregulation of free radical-generating NADPH oxidases (NOX), xanthine oxidoreductase (XOR), and neutrophil infiltration-induced, NOX2-mediated respiratory burst contribute to renal ischemia-reperfusion injury (IRI), but their roles may depend on the severity of IRI. We investigated the role of NOX, XOR, and neutrophils in developing IRI of various severities. C57BL/6 and Mcl-1ΔMyelo neutrophil-deficient mice were used. Oxidases were silenced by RNA interference (RNAi) or pharmacologically inhibited. Kidney function, morphology, immunohistochemistry and mRNA expression were assessed. After reperfusion, the expression of NOX enzymes and XOR increased until 6 h and from 15 h, respectively, while neutrophil infiltration was prominent from 3 h. NOX4 and XOR silencing or pharmacological XOR inhibition did not protect the kidney from IRI. Attenuation of NOX enzyme-induced oxidative stress by apocynin and neutrophil deficiency improved kidney function and ameliorated morphological damage after mild but not moderate/severe IRI. The IR-induced postischemic renal functional impairment (BUN, Lcn-2), tubular necrosis score, inflammation (TNF-α, F4/80), and decreases in the antioxidant enzyme (GPx3) mRNA expression were attenuated by both apocynin and neutrophil deficiency. Inhibition of NOX enzyme-induced oxidative stress or the lack of infiltration by NOX2-expressing neutrophils can attenuate reperfusion injury after mild but not moderate/severe renal IR.


Assuntos
Acetofenonas , Injúria Renal Aguda , Traumatismo por Reperfusão , Camundongos , Animais , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Camundongos Endogâmicos C57BL , Rim/metabolismo , Traumatismo por Reperfusão/genética , Xantina Desidrogenase/metabolismo , RNA Mensageiro
10.
Biochem Biophys Res Commun ; 708: 149788, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38518720

RESUMO

Atherosclerosis (AS) is the underlying cause of many severe vascular diseases and is primarily characterized by abnormal lipid metabolism. Paeonol (Pae), a bioactive compound derived from Paeonia Suffruticosa Andr., is recognized for its significant role in reducing lipid accumulation. Our research objective is to explore the link between lipid buildup in foam cells originating from macrophages and the process of ferroptosis, and explore the effect and mechanism of Pae on inhibiting AS by regulating ferroptosis. In our animal model, ApoE-deficient mice, which were provided with a high-fat regimen to provoke atherosclerosis, were administered Pae. The treatment was benchmarked against simvastatin and ferrostatin-1. The results showed that Pae significantly reduced aortic ferroptosis and lipid accumulation in the mice. In vitro experiments further demonstrated that Pae could decrease lipid accumulation in foam cells induced by oxidized low-density lipoprotein (LDL) and challenged with the ferroptosis inducer erastin. Crucially, the protective effect of Pae against lipid accumulation was dependent on the SIRT1/NRF2/GPX4 pathway, as SIRT1 knockdown abolished this effect. Our findings suggest that Pae may offer a novel therapeutic approach for AS by inhibiting lipid accumulation through the suppression of ferroptosis, mediated by the SIRT1/NRF2/GPX4 pathway. Such knowledge has the potential to inform the creation of novel therapeutic strategies aimed at regulating ferroptosis within the context of atherosclerosis.


Assuntos
Acetofenonas , Aterosclerose , Ferroptose , Animais , Camundongos , Células Espumosas , Fator 2 Relacionado a NF-E2 , Sirtuína 1 , Macrófagos , Aterosclerose/tratamento farmacológico , Transdução de Sinais
11.
Meat Sci ; 213: 109497, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38508078

RESUMO

Mainly skatole and androstenone have so far been considered causative for boar taint. Using a mixed methods approach it is shown herein that 2-aminoacetophenone (AAP) affects human perception of pork, too. We explored the importance of AAP in four trials: (1) chemical analyses of 221 fat samples from boar carcasses revealed that AAP occurs, on average, in similar quantities as skatole while the levels of androstenone being four-fold. (2) ranking tests with mixtures of androstenone and/or skatole with AAP presented on smell strips to trained sensory assessors showed that AAP amplifies boar odour. In order to study AAP's importance in meat products, four experimental variants of Lyon type sausage were then produced: a control, a product with added skatole (0.075 µg/g fat tissue), with added AAP (0.075 µg/g fat tissue), and with addition of both compounds. (3) results of a consumer discrimination test panel (n = 71) showed that, when added to a sausage system, APP causes a sensory difference of similar size as skatole while the methodology chosen affects the effect size: tetrad tests proved to be more sensitive than duo trio difference tests, in the tetrad test a sensory difference expressed as d' (d-prime) of 1.0 was reached. (4) a hedonic consumer test (n = 121) finally revealed that APP decreased consumer liking of the APP-spiked sausage - even to a stronger extent than skatole. APP caused significant drops in smell, taste, mouth-feel, after-taste and overall liking in Lyoner. Overall the findings suggest that, in the context of pork meat, AAP is of similar olfactory importance as skatole.


Assuntos
Acetofenonas , Comportamento do Consumidor , Produtos da Carne , Odorantes , Escatol , Animais , Produtos da Carne/análise , Humanos , Escatol/análise , Odorantes/análise , Masculino , Adulto , Feminino , Suínos , Pessoa de Meia-Idade , Acetofenonas/análise , Paladar , Adulto Jovem , Androsterona/análise , Olfato , Androstenos/análise
12.
Environ Toxicol Pharmacol ; 107: 104418, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493881

RESUMO

Exposure to organic solvents is associated with various health problems, including neurodegenerative diseases. Among these solvents, 1,2-diethylbenzene is notable for its ability to produce a toxic metabolite, 1,2-Diacetylbenzene (DAB), which can cause memory impairment. Prolactin (PRL) is theorized to protect the central nervous system. Certain antipsychotic drugs, known for increasing PRL secretion, have shown to improve cognitive performance in psychotic Alzheimer's patients. Among these, amisulpride stands out for its high efficacy, limited side effects, and high selectivity for dopamine D2 receptors. In our study, we explored the potential of amisulpride to inhibit DAB-induced neurotoxicity via PRL activation. Our results show that amisulpride enhances the PRL/JAK/STAT, PI3K/AKT, and BDNF/ERK/CREB pathways, playing critical roles in PRL's neuroprotection pathways and memory formation. Additionally, amisulpride inhibited DAB-triggered NLRP3 inflammasome activation and apoptosis. Collectively, these findings suggest that amisulpride may be a promising therapeutic intervention for DAB-induced neurotoxicity, partly through activating the PRL pathway.


Assuntos
Acetofenonas , Antipsicóticos , Prolactina , Humanos , Amissulprida , Antipsicóticos/toxicidade , Antipsicóticos/uso terapêutico , Fosfatidilinositol 3-Quinases , Solventes
14.
Phytomedicine ; 126: 155447, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394732

RESUMO

BACKGROUD: High comorbidity rates have been reported in patients with atherosclerosis and osteoporosis, posing a serious risk to the health and well-being of elderly patients. To improve and update clinical practice regarding the joint treatment of these two diseases, the common mechanisms of atherosclerosis and osteoporosis need to be clarified. MicroRNAs (miRNAs), are importance molecules in the pathogenesis of human diseases, including in cardiovascular and orthopedic fields. They have garnered interest as potential targets for novel therapeutic strategies. However, the key miRNAs involved in atherosclerosis and osteoporosis and their precise regulation mechanisms remain unknown. Paeonol (Pae), an active ingredient in Cortex Moutan, has shown promising results in improving both lipid and bone metabolic abnormalities. However, it is uncertain whether this agent can exert a cotherapeutic effect on atherosclerosis and osteoporosis. OBJECTIVE: This study aimed to screen important shared miRNAs in atherosclerotic and osteoporotic complications, and explore the mechanism of the protective effects of Pae against atherosclerosis and osteoporosis in high-fat diet (HFD)-fed ApoE-/- mice. METHODS: An experimental atherosclerosis and osteoporosis model was established in 40-week-old HFD ApoE-/- mice. Various techniques such as Oil Red O staining, HE staining and micro-CT were used to confirm the co-occurrence of these two diseases and efficacy of Pae in addition to the associated biochemical changes. Bioinformatics was used to screen key miRNAs in the atherosclerosis and osteoporosis model, and gene involvement was assessed through serum analyses, qRT-PCR, and western blot. To investigate the effect of Pae on the modulation of the miR let-7g/HMGA2/CEBPß pathway, Raw 264.7 cells were cocultured with bone marrow mesenchymal stem cells (BMSCs) and treated with an miR let-7g mimic/inhibitor. RESULTS: miR let-7g identified using bioinformatics was assessed to evaluate its participation in atherosclerosis-osteoporosis. Experimental analysis showed reduced miR let-7g levels in the atherosclerosis-osteoporosis mice model. Moreover, miR let-7g was required for BMSC - Raw 264.7 cell crosstalk, thereby promoting foam cell formation and adipocyte differentiation. Treatment with Pae significantly reduced plaque accumulation and foam cell number in the aorta while increasing bone density and improving trabecular bone microarchitecture in HFD ApoE-/- mice. Pae also increased the level of miR let-7g in the bloodstream of model mice. In vitro studies, Pae enhanced miR let-7g expression in BMSCs, thereby suppressing the HMGA2/CEBPß pathway to prevent the formation of foam cells and differentiation of adipocytes induced by oxidized low-density lipoprotein (ox-LDL). CONCLUSION: The study results suggested that miR let-7g participates in atherosclerosis -osteoporosis regulation and that Pae acts as a potential therapeutic agent for preventing atherosclerosis-osteoporosis through regulatory effects on the miR let-7g/HMGA2/CEBPß pathway to hinder foam cell formation and adipocyte differentiation.


Assuntos
Acetofenonas , Aterosclerose , MicroRNAs , Osteoporose , Humanos , Animais , Camundongos , Idoso , Células Espumosas , MicroRNAs/genética , MicroRNAs/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Diferenciação Celular , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Apolipoproteínas E/genética
15.
Molecules ; 29(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338367

RESUMO

Moutan Cortex (MC) is a traditional Chinese medicine that contains abundant medicinal components, such as paeonol, paeoniflorin, etc. Paeonol is the main active component of MC. In this study, paeonol was extracted from MC through an ultrasound-assisted extraction process, which is based on single-factor experiments and response surface methodology (RSM). Subsequently, eight macroporous resins of different properties were used to purify paeonol from MC. The main components of the purified extract were identified by ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS/MS). The results indicate the optimal parameters are as follows: liquid-to-material ratio 21:1 mL/g, ethanol concentration 62%, ultrasonic time 31 min, ultrasonic temperature 36 °C, ultrasonic power 420 W. Under these extraction conditions, the actual yield of paeonol was 14.01 mg/g. Among the eight tested macroporous resins, HPD-300 macroporous resin was verified to possess the highest adsorption and desorption qualities. The content of paeonol increased from 6.93% (crude extract) to 41.40% (purified extract) after the HPD-300 macroporous resin treatment. A total of five major phenolic compounds and two principal monoterpene glycosides were characterized by comparison with reference compounds. These findings will make a contribution to the isolation and utilization of the active components from MC.


Assuntos
Acetofenonas , Medicamentos de Ervas Chinesas , Paeonia , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química
16.
Elife ; 122024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206122

RESUMO

Phage satellites commonly remodel capsids they hijack from the phages they parasitize, but only a few mechanisms regulating the change in capsid size have been reported. Here, we investigated how a satellite from Vibrio cholerae, phage-inducible chromosomal island-like element (PLE), remodels the capsid it has been predicted to steal from the phage ICP1 (Netter et al., 2021). We identified that a PLE-encoded protein, TcaP, is both necessary and sufficient to form small capsids during ICP1 infection. Interestingly, we found that PLE is dependent on small capsids for efficient transduction of its genome, making it the first satellite to have this requirement. ICP1 isolates that escaped TcaP-mediated remodeling acquired substitutions in the coat protein, suggesting an interaction between these two proteins. With a procapsid-like particle (PLP) assembly platform in Escherichia coli, we demonstrated that TcaP is a bona fide scaffold that regulates the assembly of small capsids. Further, we studied the structure of PLE PLPs using cryogenic electron microscopy and found that TcaP is an external scaffold that is functionally and somewhat structurally similar to the external scaffold, Sid, encoded by the unrelated satellite P4 (Kizziah et al., 2020). Finally, we showed that TcaP is largely conserved across PLEs. Together, these data support a model in which TcaP directs the assembly of small capsids comprised of ICP1 coat proteins, which inhibits the complete packaging of the ICP1 genome and permits more efficient packaging of replicated PLE genomes.


Assuntos
Acetofenonas , Bacteriófagos , Vibrio cholerae , Capsídeo , Proteínas do Capsídeo , Bacteriófagos/genética , Escherichia coli
17.
Molecules ; 29(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38202844

RESUMO

Atherosclerosis is a chronic inflammatory disease leading to various vascular diseases. Vascular smooth muscle cell (VSMC) senescence promotes atherosclerotic inflammation and the formation of plaque necrosis core, in part through telomere damage mediated by a high-fat diet. Our previous research found that paeonol, a potential anti-inflammatory agent extracted from Cortex Moutan, could significantly improve VSMCs dysfunction. However, the impact of paeonol on the senescence of VSMCs remains unexplored. This study presents the protective effects of paeonol on VSMCs senescence, and its potential activity in inhibiting the progression of atherosclerosis in vivo and in vitro. Sirtuin 1 (SIRT1) is a nuclear deacetylase involved in cell proliferation, senescence, telomere damage, and inflammation. Here, SIRT1 was identified as a potential target of paeonol having anti-senescence and anti-atherosclerosis activity. Mechanistic studies revealed that paeonol binds directly to SIRT1 and then activates the SIRT1/P53/TRF2 pathway to inhibit VSMCs senescence. Our results suggested that SIRT1-mediated VSMCs senescence is a promising druggable target for atherosclerosis, and that pharmacological modulation of the SIRT1/P53/TRF2 signaling pathway by paeonol is of potential benefit for patients with atherosclerosis.


Assuntos
Acetofenonas , Aterosclerose , Sirtuínas , Humanos , Sirtuína 1 , Músculo Liso Vascular , Proteína Supressora de Tumor p53 , Aterosclerose/tratamento farmacológico , Inflamação , Transdução de Sinais
18.
ACS Chem Neurosci ; 15(4): 724-734, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38290213

RESUMO

Herbs themselves and various herbal medicines are great resources for discovering therapeutic drugs for various diseases, including Alzheimer's disease (AD), one of the common neurodegenerative diseases. Utilizing mouse primary cortical neurons and DiBAC4(3), a voltage-sensitive indicator, we have set up a drug screening system and identified an herbal extraction compound, paeonol, obtained from Paeonia lactiflora; this compound is able to ameliorate the abnormal depolarization induced by Aß42 oligomers. Our aim was to further find effective paeonol derivatives since paeonol has been previously studied. 6'-Methyl paeonol, one of the six paeonol derivatives surveyed, is able to inhibit the abnormal depolarization induced by Aß oligomers. Furthermore, 6'-methyl paeonol is able to alleviate the NMDA- and AMPA-induced depolarization. When a molecular mechanism was investigated, 6'-methyl paeonol was found to reverse the Aß-induced increase in ERK phosphorylation. At the animal level, mice injected with 6'-methyl paeonol showed little change in their basic physical parameters compared to the control mice. 6'-Methyl paeonol was able to ameliorate the impairment of memory and learning behavior in J20 mice, an AD mouse model, as measured by the Morris water maze. Thus, paeonol derivatives could provide a structural foundation for developing and designing an effective compound with promising clinical benefits.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Neurônios , Acetofenonas/farmacologia , Acetofenonas/uso terapêutico , Modelos Animais de Doenças , Peptídeos beta-Amiloides/toxicidade , Aprendizagem em Labirinto
19.
Phytochemistry ; 219: 113984, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266953

RESUMO

Thirty-nine thymol and acetophenone derivatives, including eight pairs of enantiomers, were isolated from the aerial parts of Eupatorium fortunei. Their structures were assigned by detailed analyses of spectroscopic data and NMR calculations based on density functional theory, with 18 ones (1a/1b-14) being previously undescribed compounds. While the absolute configurations of 1a/1b, 2a/2b, 4, 6a/6b, 7, 11a/11b and 15a/15b-18a/18b were established by calculations of electronic circular dichroism data, that of 14 was determined by modified Mosher's method. Compounds 1a/1b and 2a/2b represent a previously unreported type of monoterpenoid dimers via an amide linkage, and compound 3 is a monoterpene-phenylpropanoid hybrid connected through an ester bond. Among the known molecules, the formerly mis-assigned structures of 15a/15b and 22 were revised, and pure natural enantiomers of 16a/16b-18a/18b were reported for the first time. Selective compounds showed antiradical and NO production inhibitory activities in the preliminary biological screening. Compound 31 was further demonstrated to alleviate oxidative stress by activating Nrf2 signaling pathway.


Assuntos
Eupatorium , Eupatorium/química , Monoterpenos/farmacologia , Monoterpenos/análise , Estrutura Molecular , Componentes Aéreos da Planta/química , Acetofenonas/análise
20.
J Food Sci ; 89(2): 1280-1293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193205

RESUMO

The Fusarium verticillioides produces a mycotoxin, that is, fumonisin b1 (Fb1), which commonly infects corn and agricultural commodities. The Fb1 showed hepatotoxicity, neurotoxicity, and carcinogenicity in animals. Hence, the present investigation aimed to evaluate the effect of apocynin (AP) on Fb1-induced neurotoxic effects and its mechanism in the mice model and cell line. The male Balb/c mice, with the 6.75 mg/kg bwt of Fb1 were injected subcutaneously for 5 days to induce neurotoxicity. A significant elevation of serotonin (5-HT) was observed in mice treated with Fb1 in the whole brain showing biogenic amines may reflect Fb1 neurotoxicity, but the negatively regulated mechanisms were attenuated by the pretreatment of AP. In addition, AP pretreatment normalized apoptotic changes in histology and immunohistochemistry studies. In Western blotting studies, apoptotic genes were upregulated and oxidative stress genes were downregulated due to Fb1 treatment; while treating with AP, these gene expressions were rectified. Further cell cytotoxicity was investigated by MTT and lactate dehydrogenase (LDH) assays in SH-SY5Y cell line. MTT and LDH assays indicated the IC50 value to be 150 µM of Fb1, which was protected by 100 µg of AP. The electron microscopy evaluated the Fb1-induced apoptotic conditions and its cell morphology recovery by AP. These results suggest that nicotinamide adenine dinucleotide phosphate hydrogen oxidase-mediated reactive oxygen species is the primary upstream signal leading to increased Fb1-mediated neurotoxicity in mice. The use of the antioxidant AP reversed the toxin-induced oxidative stress and apoptosis by its antioxidant potency.


Assuntos
Acetofenonas , Fumonisinas , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Masculino , Camundongos , Animais , Fármacos Neuroprotetores/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fumonisinas/toxicidade , Fumonisinas/metabolismo , Apoptose , Estresse Oxidativo , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...