Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.532
Filtrar
1.
J Transl Med ; 22(1): 431, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715059

RESUMO

BACKGROUND: In humans, two ubiquitously expressed N-myristoyltransferases, NMT1 and NMT2, catalyze myristate transfer to proteins to facilitate membrane targeting and signaling. We investigated the expression of NMTs in numerous cancers and found that NMT2 levels are dysregulated by epigenetic suppression, particularly so in hematologic malignancies. This suggests that pharmacological inhibition of the remaining NMT1 could allow for the selective killing of these cells, sparing normal cells with both NMTs. METHODS AND RESULTS: Transcriptomic analysis of 1200 NMT inhibitor (NMTI)-treated cancer cell lines revealed that NMTI sensitivity relates not only to NMT2 loss or NMT1 dependency, but also correlates with a myristoylation inhibition sensitivity signature comprising 54 genes (MISS-54) enriched in hematologic cancers as well as testis, brain, lung, ovary, and colon cancers. Because non-myristoylated proteins are degraded by a glycine-specific N-degron, differential proteomics revealed the major impact of abrogating NMT1 genetically using CRISPR/Cas9 in cancer cells was surprisingly to reduce mitochondrial respiratory complex I proteins rather than cell signaling proteins, some of which were also reduced, albeit to a lesser extent. Cancer cell treatments with the first-in-class NMTI PCLX-001 (zelenirstat), which is undergoing human phase 1/2a trials in advanced lymphoma and solid tumors, recapitulated these effects. The most downregulated myristoylated mitochondrial protein was NDUFAF4, a complex I assembly factor. Knockout of NDUFAF4 or in vitro cell treatment with zelenirstat resulted in loss of complex I, oxidative phosphorylation and respiration, which impacted metabolomes. CONCLUSIONS: Targeting of both, oxidative phosphorylation and cell signaling partly explains the lethal effects of zelenirstat in select cancer types. While the prognostic value of the sensitivity score MISS-54 remains to be validated in patients, our findings continue to warrant the clinical development of zelenirstat as cancer treatment.


Assuntos
Aciltransferases , Neoplasias , Fosforilação Oxidativa , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Linhagem Celular Tumoral , Fosforilação Oxidativa/efeitos dos fármacos , Aciltransferases/metabolismo , Ácido Mirístico/metabolismo , Proteômica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Multiômica
2.
FASEB J ; 38(9): e23633, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690712

RESUMO

Recent reports suggest that the Hippo signaling pathway regulates testis development, though its exact roles in Sertoli cell differentiation remain unknown. Here, we examined the functions of the main Hippo pathway kinases, large tumor suppressor homolog kinases 1 and 2 (Lats1 and Lats2) in developing mouse Sertoli cells. Conditional inactivation of Lats1/2 in Sertoli cells resulted in the disorganization and overgrowth of the testis cords, the induction of a testicular inflammatory response and germ cell apoptosis. Stimulated by retinoic acid 8 (STRA8) expression in germ cells additionally suggested that germ cells may have been preparing to enter meiosis prior to their loss. Gene expression analyses of the developing testes of conditional knockout animals further suggested impaired Sertoli cell differentiation, epithelial-to-mesenchymal transition, and the induction of a specific set of genes associated with Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ)-mediated integrin signaling. Finally, the involvement of YAP/TAZ in Sertoli cell differentiation was confirmed by concomitantly inactivating Yap/Taz in Lats1/2 conditional knockout model, which resulted in a partial rescue of the testicular phenotypic changes. Taken together, these results identify Hippo signaling as a crucial pathway for Sertoli cell development and provide novel insight into Sertoli cell fate maintenance.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Proteínas Serina-Treonina Quinases , Células de Sertoli , Proteínas Supressoras de Tumor , Proteínas de Sinalização YAP , Animais , Células de Sertoli/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Masculino , Camundongos , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Diferenciação Celular/fisiologia , Camundongos Knockout , Transdução de Sinais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Testículo/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Transativadores/metabolismo , Transativadores/genética
3.
Biomacromolecules ; 25(5): 2973-2979, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38588330

RESUMO

Polyhydroxyalkanoate (PHA) synthases (PhaCs) are useful and versatile tools for the production of aliphatic polyesters. Here, the chimeric PHA synthase PhaCAR was engineered to increase its capacity to incorporate unusual 6-hydroxyhexanoate (6HHx) units. Mutations at positions 149 and 314 in PhaCAR were previously found to increase the incorporation of an analogous natural monomer, 3-hydroxyhexanoate (3HHx). We attempted to repurpose the mutations to produce 6HHx-containing polymers. Site-directed saturation mutants at these positions were applied for P(3HB-co-6HHx) synthesis in Escherichia coli. As a result, the N149D and F314Y mutants effectively increased the 6HHx fraction. Moreover, the pairwise NDFY mutation further increased the 6HHx fraction, which reached 22 mol %. This increase was presumably caused by altered enzyme activity rather than altered expression levels, as assessed based on immunoblot analysis. The glass transition temperature and crystallinity of P(3HB-co-6HHx) decreased as the 6HHx fraction increased.


Assuntos
Aciltransferases , Caproatos , Escherichia coli , Aciltransferases/genética , Aciltransferases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Caproatos/química , Caproatos/metabolismo , Engenharia de Proteínas/métodos , Poliésteres/química , Poliésteres/metabolismo , Mutagênese Sítio-Dirigida , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química
4.
Cell Rep ; 43(4): 114041, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38573857

RESUMO

CD24 is frequently overexpressed in ovarian cancer and promotes immune evasion by interacting with its receptor Siglec10, present on tumor-associated macrophages, providing a "don't eat me" signal that prevents targeting and phagocytosis by macrophages. Factors promoting CD24 expression could represent novel immunotherapeutic targets for ovarian cancer. Here, using a genome-wide CRISPR knockout screen, we identify GPAA1 (glycosylphosphatidylinositol anchor attachment 1), a factor that catalyzes the attachment of a glycosylphosphatidylinositol (GPI) lipid anchor to substrate proteins, as a positive regulator of CD24 cell surface expression. Genetic ablation of GPAA1 abolishes CD24 cell surface expression, enhances macrophage-mediated phagocytosis, and inhibits ovarian tumor growth in mice. GPAA1 shares structural similarities with aminopeptidases. Consequently, we show that bestatin, a clinically advanced aminopeptidase inhibitor, binds to GPAA1 and blocks GPI attachment, resulting in reduced CD24 cell surface expression, increased macrophage-mediated phagocytosis, and suppressed growth of ovarian tumors. Our study highlights the potential of targeting GPAA1 as an immunotherapeutic approach for CD24+ ovarian cancers.


Assuntos
Aciltransferases , Antígeno CD24 , Neoplasias Ovarianas , Fagocitose , Animais , Feminino , Humanos , Camundongos , Aciltransferases/metabolismo , Amidoidrolases/metabolismo , Amidoidrolases/genética , Antígeno CD24/metabolismo , Linhagem Celular Tumoral , Glicosilfosfatidilinositóis/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia
5.
Food Funct ; 15(9): 5000-5011, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38618651

RESUMO

The anti-obesity effect of conjugated linoleic acid (CLA) has been well elucidated, but whether CLA affects fat deposition by regulating intestinal dietary fat absorption remains largely unknown. Thus, this study aimed to investigate the effects of CLA on intestinal fatty acid uptake and chylomicron formation and explore the possible underlying mechanisms. We found that CLA supplementation reduced the intestinal fat absorption in HFD (high fat diet)-fed mice accompanied by the decreased serum TG level, increased fecal lipids and decreased intestinal expression of ApoB48 and MTTP. Correspondingly, c9, t11-CLA, but not t10, c12-CLA induced the reduction of fatty acid uptake and TG content in PA (palmitic acid)-treated MODE-K cells. In the mechanism of fatty acid uptake, c9, t11-CLA inhibited the binding of CD36 with palmitoyltransferase DHHC7, thus leading to the decreases of CD36 palmitoylation level and localization on the cell membrane of the PA-treated MODE-K cells. In the mechanism of chylomicron formation, c9, t11-CLA inhibited the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the PA-treated MODE-K cells. In in vivo verification, CLA supplementation reduced the DHHC7-mediated total and cell membrane CD36 palmitoylation and suppressed the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the jejunum of HFD-fed mice. Altogether, these data showed that CLA reduced intestinal fatty acid uptake and chylomicron formation in HFD-fed mice associated with the inhibition of DHHC7-mediated CD36 palmitoylation and the downstream ERK pathway.


Assuntos
Antígenos CD36 , Quilomícrons , Dieta Hiperlipídica , Ácidos Linoleicos Conjugados , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Animais , Antígenos CD36/metabolismo , Antígenos CD36/genética , Ácidos Linoleicos Conjugados/farmacologia , Camundongos , Masculino , Quilomícrons/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Aciltransferases/metabolismo , Aciltransferases/genética , Absorção Intestinal/efeitos dos fármacos
6.
J Phys Chem B ; 128(16): 3795-3806, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38606592

RESUMO

The Hippo signaling pathway is a highly conserved signaling network that plays a central role in regulating cellular growth, proliferation, and organ size. This pathway consists of a kinase cascade that integrates various upstream signals to control the activation or inactivation of YAP/TAZ proteins. Phosphorylated YAP/TAZ is sequestered in the cytoplasm; however, when the Hippo pathway is deactivated, it translocates into the nucleus, where it associates with TEAD transcription factors. This partnership is instrumental in regulating the transcription of progrowth and antiapoptotic genes. Thus, in many cancers, aberrantly hyperactivated YAP/TAZ promotes oncogenesis by contributing to cancer cell proliferation, metastasis, and therapy resistance. Because YAP and TAZ exert their oncogenic effects by binding with TEAD, it is critical to understand this key interaction to develop cancer therapeutics. Previous research has indicated that TEAD undergoes autopalmitoylation at a conserved cysteine, and small molecules that inhibit TEAD palmitoylation disrupt effective YAP/TAZ binding. However, how exactly palmitoylation contributes to YAP/TAZ-TEAD interactions and how the TEAD palmitoylation inhibitors disrupt this interaction remains unknown. Utilizing molecular dynamics simulations, our investigation not only provides detailed atomistic insight into the YAP/TAZ-TEAD dynamics but also unveils that the inhibitor studied influences the binding of YAP and TAZ to TEAD in distinct manners. This discovery has significant implications for the design and deployment of future molecular interventions targeting this interaction.


Assuntos
Lipoilação , Simulação de Dinâmica Molecular , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Humanos , Aciltransferases/metabolismo , Aciltransferases/antagonistas & inibidores , Aciltransferases/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/química , Regulação Alostérica/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição de Domínio TEA/química , Fatores de Transcrição de Domínio TEA/metabolismo , Transativadores/metabolismo , Transativadores/química , Transativadores/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/química , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Proteínas de Sinalização YAP/química , Proteínas de Sinalização YAP/metabolismo
7.
Eur J Med Chem ; 271: 116408, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38621327

RESUMO

As an essential form of lipid modification for maintaining vital cellular functions, palmitoylation plays an important role in in the regulation of various physiological processes, serving as a promising therapeutic target for diseases like cancer and neurological disorders. Ongoing research has revealed that palmitoylation can be categorized into three distinct types: N-palmitoylation, O-palmitoylation and S-palmitoylation. Herein this paper provides an overview of the regulatory enzymes involved in palmitoylation, including palmitoyltransferases and depalmitoylases, and discusses the currently available broad-spectrum and selective inhibitors for these enzymes.


Assuntos
Aciltransferases , Lipoilação , Bibliotecas de Moléculas Pequenas , Humanos , Aciltransferases/metabolismo , Aciltransferases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Estrutura Molecular , Proteínas/metabolismo , Proteínas/química
8.
J Med Chem ; 67(9): 7312-7329, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38680035

RESUMO

N-myristoyltransferase (NMT) is a promising antimalarial drug target. Despite biochemical similarities between Plasmodium vivax and human NMTs, our recent research demonstrated that high selectivity is achievable. Herein, we report PvNMT-inhibiting compounds aimed at identifying novel mechanisms of selectivity. Various functional groups are appended to a pyrazole moiety in the inhibitor to target a pocket formed beneath the peptide binding cleft. The inhibitor core group polarity, lipophilicity, and size are also varied to probe the water structure near a channel. Selectivity index values range from 0.8 to 125.3. Cocrystal structures of two selective compounds, determined at 1.97 and 2.43 Å, show that extensions bind the targeted pocket but with different stabilities. A bulky naphthalene moiety introduced into the core binds next to instead of displacing protein-bound waters, causing a shift in the inhibitor position and expanding the binding site. Our structure-activity data provide a conceptual foundation for guiding future inhibitor optimizations.


Assuntos
Aciltransferases , Antimaláricos , Inibidores Enzimáticos , Plasmodium vivax , Pirazóis , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Plasmodium vivax/enzimologia , Plasmodium vivax/efeitos dos fármacos , Aciltransferases/antagonistas & inibidores , Aciltransferases/metabolismo , Aciltransferases/química , Relação Estrutura-Atividade , Antimaláricos/química , Antimaláricos/farmacologia , Antimaláricos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Sítios de Ligação
9.
J Agric Food Chem ; 72(15): 8684-8692, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564621

RESUMO

Polyhydroxyalkanoates (PHAs) are promising alternatives to petroleum-based plastics, owing to their biodegradability and superior material properties. Here, the controllable biosynthesis of scl-co-mcl PHA containing 3-hydroxybutyrate (3HB) and mcl 3-hydroxyalkanoates was achieved in Pseudomonas chlororaphis HT66. First, key genes involved in fatty acid ß-oxidation, the de novo fatty acid biosynthesis pathway, and the phaC1-phaZ-phaC2 operon were deleted to develop a chassis strain. Subsequently, an acetoacetyl-CoA reductase gene phaB and a PHA synthase gene phaC with broad substrate specificity were heterologously expressed for producing and polymerizing the 3HB monomer with mcl 3-hydroxyalkanoates under the assistance of native ß-ketothiolase gene phaA. Furthermore, the monomer composition of scl-co-mcl PHA was regulated by adjusting the amount of glucose and dodecanoic acid supplemented. Notably, the cell dry weight and scl-co-mcl PHA content reached 14.2 g/L and 60.1 wt %, respectively, when the engineered strain HT11Δ::phaCB was cultured in King's B medium containing 5 g/L glucose and 5 g/L dodecanoic acid. These results demonstrated that P. chlororaphis can be a platform for producing scl-co-mcl PHA and has the potential for industrial application.


Assuntos
Poli-Hidroxialcanoatos , Pseudomonas chlororaphis , Ácido 3-Hidroxibutírico , Pseudomonas chlororaphis/genética , Pseudomonas chlororaphis/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Glucose/metabolismo
10.
Microbiol Res ; 283: 127712, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593580

RESUMO

Lipid A plays a crucial role in Vibrio parahaemolyticus. Previously we have reported the diversity of secondary acylation of lipid A in V. parahaemolyticus and four V. parahaemolyticus genes VP_RS08405, VP_RS01045, VP_RS12170, and VP_RS00880 exhibiting homology to the secondary acyltransferases in Escherichia coli. In this study, the gene VP_RS12170 was identified as a specific lipid A secondary hydroxy-acyltransferase responsible for transferring a 3-hydroxymyristate to the 2'-position of lipid A. Four E. coli mutant strains WHL00, WHM00, WH300, and WH001 were constructed, and they would synthesize lipid A with different structures due to the absence of genes encoding lipid A secondary acyltransferases or Kdo transferase. Then V. parahaemolyticus VP_RS12170 was overexpressed in W3110, WHL00, WHM00, WH300, and WH001, and lipid A was isolated from these strains and analyzed by using thin-layer chromatography and high-performance liquid chromatography-tandem mass spectrometry. The detailed structural changes of lipid A in these mutant strains with and without VP_RS12170 overexpression were compared and conclude that VP_RS12170 can specifically transfer a 3-hydroxymyristate to the 2'-position of lipid A. This study also demonstrated that the function of VP_RS12170 is Kdo-dependent and its favorite substrate is Kdo-lipid IVA. These findings give us better understanding the biosynthetic pathway and the structural diversity of V. parahaemolyticus lipid A.


Assuntos
Lipídeo A , Vibrio parahaemolyticus , Lipídeo A/química , Lipídeo A/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Espectrometria de Massas
11.
Sci Adv ; 10(14): eadk1031, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569029

RESUMO

Pathologic Wnt/ß-catenin signaling drives various cancers, leading to multiple approaches to drug this pathway. Appropriate patient selection can maximize success of these interventions. Wnt ligand addiction is a druggable vulnerability in RNF43-mutant/RSPO-fusion cancers. However, pharmacologically targeting the biogenesis of Wnt ligands, e.g., with PORCN inhibitors, has shown mixed therapeutic responses, possibly due to tumor heterogeneity. Here, we show that the tumor suppressor FBXW7 is frequently mutated in RNF43-mutant/RSPO-fusion tumors, and FBXW7 mutations cause intrinsic resistance to anti-Wnt therapies. Mechanistically, FBXW7 inactivation stabilizes multiple oncoproteins including Cyclin E and MYC and antagonizes the cytostatic effect of Wnt inhibitors. Moreover, although FBXW7 mutations do not mitigate ß-catenin degradation upon Wnt inhibition, FBXW7-mutant RNF43-mutant/RSPO-fusion cancers instead lose dependence on ß-catenin signaling, accompanied by dedifferentiation and loss of lineage specificity. These FBXW7-mutant Wnt/ß-catenin-independent tumors are susceptible to multi-cyclin-dependent kinase inhibition. An in-depth understanding of primary resistance to anti-Wnt/ß-catenin therapies allows for more appropriate patient selection and use of alternative mechanism-based therapies.


Assuntos
Neoplasias , beta Catenina , Humanos , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias/genética , Mutação , Linhagem Celular Tumoral , Aciltransferases/genética , Aciltransferases/metabolismo , Proteínas de Membrana/metabolismo
12.
Cell Rep ; 43(4): 114070, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38583156

RESUMO

Nucleotide oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome hyperactivation contributes to many human chronic inflammatory diseases, and understanding how NLRP3 inflammasome is regulated can provide strategies to treat inflammatory diseases. Here, we demonstrate that NLRP3 Cys126 is palmitoylated by zinc finger DHHC-type palmitoyl transferase 7 (ZDHHC7), which is critical for NLRP3-mediated inflammasome activation. Perturbing NLRP3 Cys126 palmitoylation by ZDHHC7 knockout, pharmacological inhibition, or modification site mutation diminishes NLRP3 activation in macrophages. Furthermore, Cys126 palmitoylation is vital for inflammasome activation in vivo. Mechanistically, ZDHHC7-mediated NLRP3 Cys126 palmitoylation promotes resting NLRP3 localizing on the trans-Golgi network (TGN) and activated NLRP3 on the dispersed TGN, which is indispensable for recruitment and oligomerization of the adaptor ASC (apoptosis-associated speck-like protein containing a CARD). The activation of NLRP3 by ZDHHC7 is different from the termination effect mediated by ZDHHC12, highlighting versatile regulatory roles of S-palmitoylation. Our study identifies an important regulatory mechanism of NLRP3 activation that suggests targeting ZDHHC7 or the NLRP3 Cys126 residue as a potential therapeutic strategy to treat NLRP3-related human disorders.


Assuntos
Acetiltransferases , Aciltransferases , Cisteína , Inflamassomos , Lipoilação , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Aciltransferases/metabolismo , Humanos , Animais , Cisteína/metabolismo , Camundongos , Células HEK293 , Camundongos Endogâmicos C57BL , Rede trans-Golgi/metabolismo , Macrófagos/metabolismo
13.
Microb Cell Fact ; 23(1): 122, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678199

RESUMO

BACKGROUND: Industrial biomanufacturing of value-added products using CO2 as a carbon source is considered more sustainable, cost-effective and resource-efficient than using common carbohydrate feedstocks. Cupriavidus necator H16 is a representative H2-oxidizing lithoautotrophic bacterium that can be utilized to valorize CO2 into valuable chemicals and has recently gained much attention as a promising platform host for versatile C1-based biomanufacturing. Since this microbial platform is genetically tractable and has a high-flux carbon storage pathway, it has been engineered to produce a variety of valuable compounds from renewable carbon sources. In this study, the bacterium was engineered to produce resveratrol autotrophically using an artificial phenylpropanoid pathway. RESULTS: The heterologous genes involved in the resveratrol biosynthetic pathway-tyrosine ammonia lyase (TAL), 4-coumaroyl CoA ligase (4CL), and stilbene synthase (STS) -were implemented in C. necator H16. The overexpression of acetyl-CoA carboxylase (ACC), disruption of the PHB synthetic pathway, and an increase in the copy number of STS genes enhanced resveratrol production. In particular, the increased copies of VvSTS derived from Vitis vinifera resulted a 2-fold improvement in resveratrol synthesis from fructose. The final engineered CR-5 strain produced 1.9 mg/L of resveratrol from CO2 and tyrosine via lithoautotrophic fermentation. CONCLUSIONS: To the best of our knowledge, this study is the first to describe the valorization of CO2 into polyphenolic compounds by engineering a phenylpropanoid pathway using the lithoautotrophic bacterium C. necator H16, demonstrating the potential of this strain a platform for sustainable chemical production.


Assuntos
Dióxido de Carbono , Cupriavidus necator , Fermentação , Engenharia Metabólica , Resveratrol , Cupriavidus necator/metabolismo , Cupriavidus necator/genética , Resveratrol/metabolismo , Dióxido de Carbono/metabolismo , Engenharia Metabólica/métodos , Aciltransferases/genética , Aciltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Amônia-Liases/metabolismo , Amônia-Liases/genética , Vias Biossintéticas
14.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675642

RESUMO

Flower color is an important ornamental feature that is often modulated by the contents of flavonoids. Chalcone synthase is the first key enzyme in the biosynthesis of flavonoids, but little is known about the role of R. delavayi CHS in flavonoid biosynthesis. In this paper, three CHS genes (RdCHS1-3) were successfully cloned from R. delavayi flowers. According to multiple sequence alignment and a phylogenetic analysis, only RdCHS1 contained all the highly conserved and important residues, which was classified into the cluster of bona fide CHSs. RdCHS1 was then subjected to further functional analysis. Real-time PCR analysis revealed that the transcripts of RdCHS1 were the highest in the leaves and lowest in the roots; this did not match the anthocyanin accumulation patterns during flower development. Biochemical characterization displayed that RdCHS1 could catalyze p-coumaroyl-CoA and malonyl-CoA molecules to produce naringenin chalcone. The physiological function of RdCHS1 was checked in Arabidopsis mutants and tobacco, and the results showed that RdCHS1 transgenes could recover the color phenotypes of the tt4 mutant and caused the tobacco flower color to change from pink to dark pink through modulating the expressions of endogenous structural and regulatory genes in the tobacco. All these results demonstrate that RdCHS1 fulfills the function of a bona fide CHS and contributes to flavonoid biosynthesis in R. delavayi.


Assuntos
Aciltransferases , Chalconas , Flavonoides , Flores , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Rhododendron , Aciltransferases/genética , Aciltransferases/metabolismo , Flavonoides/biossíntese , Flavonoides/metabolismo , Rhododendron/genética , Rhododendron/metabolismo , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Antocianinas/biossíntese , Antocianinas/metabolismo , Clonagem Molecular , Mutação
15.
Elife ; 122024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648183

RESUMO

Recent genome-wide association studies (GWAS) have identified a link between single-nucleotide polymorphisms (SNPs) near the MBOAT7 gene and advanced liver diseases. Specifically, the common MBOAT7 variant (rs641738) associated with reduced MBOAT7 expression is implicated in non-alcoholic fatty liver disease (NAFLD), alcohol-associated liver disease (ALD), and liver fibrosis. However, the precise mechanism underlying MBOAT7-driven liver disease progression remains elusive. Previously, we identified MBOAT7-driven acylation of lysophosphatidylinositol lipids as key mechanism suppressing the progression of NAFLD (Gwag et al., 2019). Here, we show that MBOAT7 loss of function promotes ALD via reorganization of lysosomal lipid homeostasis. Circulating levels of MBOAT7 metabolic products are significantly reduced in heavy drinkers compared to healthy controls. Hepatocyte- (Mboat7-HSKO), but not myeloid-specific (Mboat7-MSKO), deletion of Mboat7 exacerbates ethanol-induced liver injury. Lipidomic profiling reveals a reorganization of the hepatic lipidome in Mboat7-HSKO mice, characterized by increased endosomal/lysosomal lipids. Ethanol-exposed Mboat7-HSKO mice exhibit dysregulated autophagic flux and lysosomal biogenesis, associated with impaired transcription factor EB-mediated lysosomal biogenesis and autophagosome accumulation. This study provides mechanistic insights into how MBOAT7 influences ALD progression through dysregulation of lysosomal biogenesis and autophagic flux, highlighting hepatocyte-specific MBOAT7 loss as a key driver of ethanol-induced liver injury.


Assuntos
Aciltransferases , Homeostase , Metabolismo dos Lipídeos , Hepatopatias Alcoólicas , Lisossomos , Proteínas de Membrana , Animais , Humanos , Masculino , Camundongos , Aciltransferases/genética , Aciltransferases/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/genética , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
FEBS Lett ; 598(9): 959-977, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38644468

RESUMO

Reversible S-acylation plays a pivotal role in various biological processes, modulating protein functions such as subcellular localization, protein stability/activity, and protein-protein interactions. These modifications are mediated by acyltransferases and deacylases, among which the most abundant modification is S-palmitoylation. Growing evidence has shown that this rivalrous pair of modifications, occurring in a reversible cycle, is essential for various biological functions. Aberrations in this process have been associated with various diseases, including cancer, neurological disorders, and immune diseases. This underscores the importance of studying enzymes involved in acylation and deacylation to gain further insights into disease pathogenesis and provide novel strategies for disease treatment. In this Review, we summarize our current understanding of the structure and physiological function of deacylases, highlighting their pivotal roles in pathology. Our aim is to provide insights for further clinical applications.


Assuntos
Neoplasias , Humanos , Animais , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Aciltransferases/metabolismo , Aciltransferases/química , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/metabolismo , Acilação , Lipoilação , Processamento de Proteína Pós-Traducional , Doenças do Sistema Imunitário/enzimologia , Doenças do Sistema Imunitário/metabolismo
17.
Proc Natl Acad Sci U S A ; 121(18): e2318619121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657050

RESUMO

Nonalcoholic fatty liver disease, recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a progressive metabolic disorder that begins with aberrant triglyceride accumulation in the liver and can lead to cirrhosis and cancer. A common variant in the gene PNPLA3, encoding the protein PNPLA3-I148M, is the strongest known genetic risk factor for MASLD. Despite its discovery 20 y ago, the function of PNPLA3, and now the role of PNPLA3-I148M, remain unclear. In this study, we sought to dissect the biogenesis of PNPLA3 and PNPLA3-I148M and characterize changes induced by endogenous expression of the disease-causing variant. Contrary to bioinformatic predictions and prior studies with overexpressed proteins, we demonstrate here that PNPLA3 and PNPLA3-I148M are not endoplasmic reticulum-resident transmembrane proteins. To identify their intracellular associations, we generated a paired set of isogenic human hepatoma cells expressing PNPLA3 and PNPLA3-I148M at endogenous levels. Both proteins were enriched in lipid droplet, Golgi, and endosomal fractions. Purified PNPLA3 and PNPLA3-I148M proteins associated with phosphoinositides commonly found in these compartments. Despite a similar fractionation pattern as the wild-type variant, PNPLA3-I148M induced morphological changes in the Golgi apparatus, including increased lipid droplet-Golgi contact sites, which were also observed in I148M-expressing primary human patient hepatocytes. In addition to lipid droplet accumulation, PNPLA3-I148M expression caused significant proteomic and transcriptomic changes that resembled all stages of liver disease. Cumulatively, we validate an endogenous human cellular system for investigating PNPLA3-I148M biology and identify the Golgi apparatus as a central hub of PNPLA3-I148M-driven cellular change.


Assuntos
Aciltransferases , Complexo de Golgi , Gotículas Lipídicas , Fosfolipases A2 Independentes de Cálcio , Humanos , Aciltransferases/metabolismo , Complexo de Golgi/metabolismo , Lipase/metabolismo , Lipase/genética , Gotículas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fosfolipases A2 Independentes de Cálcio/metabolismo
18.
Nat Commun ; 15(1): 3404, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649359

RESUMO

DltB, a model member of the Membrane-Bound O-AcylTransferase (MBOAT) superfamily, plays a crucial role in D-alanylation of the lipoteichoic acid (LTA), a significant component of the cell wall of gram-positive bacteria. This process stabilizes the cell wall structure, influences bacterial virulence, and modulates the host immune response. Despite its significance, the role of DltB is not well understood. Through biochemical analysis and cryo-EM imaging, we discover that Streptococcus thermophilus DltB forms a homo-tetramer on the cell membrane. We further visualize DltB in an apo form, in complex with DltC, and in complex with its inhibitor amsacrine (m-AMSA). Each tetramer features a central hole. The C-tunnel of each protomer faces the intratetramer interface and provides access to the periphery membrane. Each protomer binds a DltC without changing the tetrameric organization. A phosphatidylglycerol (PG) molecule in the substrate-binding site may serve as an LTA carrier. The inhibitor m-AMSA bound to the L-tunnel of each protomer blocks the active site. The tetrameric organization of DltB provides a scaffold for catalyzing D-alanyl transfer and regulating the channel opening and closing. Our findings unveil DltB's dual function in the D-alanylation pathway, and provide insight for targeting DltB as a anti-virulence antibiotic.


Assuntos
Proteínas de Bactérias , Microscopia Crioeletrônica , Lipopolissacarídeos , Ácidos Teicoicos , Ácidos Teicoicos/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Aciltransferases/metabolismo , Aciltransferases/genética , Aciltransferases/química , Membrana Celular/metabolismo , Sítios de Ligação , Parede Celular/metabolismo , Modelos Moleculares
19.
Nat Commun ; 15(1): 3623, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684703

RESUMO

Solanaceous plants produce tropane alkaloids (TAs) via esterification of 3α- and 3ß-tropanol. Although littorine synthase is revealed to be responsible for 3α-tropanol esterification that leads to hyoscyamine biosynthesis, the genes associated with 3ß-tropanol esterification are unknown. Here, we report that a BAHD acyltransferase from Atropa belladonna, 3ß-tigloyloxytropane synthase (TS), catalyzes 3ß-tropanol and tigloyl-CoA to form 3ß-tigloyloxytropane, the key intermediate in calystegine biosynthesis and a potential drug for treating neurodegenerative disease. Unlike other cytosolic-localized BAHD acyltransferases, TS is localized to mitochondria. The catalytic mechanism of TS is revealed through molecular docking and site-directed mutagenesis. Subsequently, 3ß-tigloyloxytropane is synthesized in tobacco. A bacterial CoA ligase (PcICS) is found to synthesize tigloyl-CoA, an acyl donor for 3ß-tigloyloxytropane biosynthesis. By expressing TS mutant and PcICS, engineered Escherichia coli synthesizes 3ß-tigloyloxytropane from tiglic acid and 3ß-tropanol. This study helps to characterize the enzymology and chemodiversity of TAs and provides an approach for producing 3ß-tigloyloxytropane.


Assuntos
Aciltransferases , Mitocôndrias , Tropanos , Aciltransferases/metabolismo , Aciltransferases/genética , Mitocôndrias/metabolismo , Mitocôndrias/enzimologia , Tropanos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mutagênese Sítio-Dirigida
20.
BMC Oral Health ; 24(1): 388, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532349

RESUMO

BACKGROUND: The repair of bone defects caused by periodontal diseases is a difficult challenge in clinical treatment. Dental pulp stem cells (DPSCs) are widely studied for alveolar bone repair. The current investigation aimed to examine the specific mechanisms underlying the role of Zinc finger DHHC-type palmitoyl transferases 16 (ZDHHC16) in the process of osteogenic differentiation (OD) of DPSCs. METHODS: The lentiviral vectors ZDHHC16 or si-ZDHHC16 were introduced in the DPSCs and then the cells were induced by an odontogenic medium for 21 days. Subsequently, Quantitate Polymerase Chain Reaction (PCR), immunofluorescent staining, proliferation assay, ethynyl deoxyuridine (EdU) staining, and western blot analysis were used to investigate the specific details of ZDHHC16 contribution in OD of DPSCs. RESULTS: Our findings indicate that ZDHHC16 exhibited a suppressive effect on cellular proliferation and oxidative phosphorylation, while concurrently inducing ferroptosis in DPSCs. Moreover, the inhibition of ZDHHC16 promoted cell development and OD and reduced ferroptosis of DPSCs. The expression of p-CREB was suppressed by ZDHHC16, and immunoprecipitation (IP) analysis revealed that ZDHHC16 protein exhibited interconnection with cAMP-response element binding protein (CREB) of DPSCs. The CREB suppression reduced the impacts of ZDHHC16 on OD and ferroptosis of DPSCs. The activation of CREB also reduced the influences of si-ZDHHC16 on OD and ferroptosis of DPSCs. CONCLUSIONS: These findings provide evidences to support a negative association between ZDHHC16 and OD of DPSCs, which might be mediated by ferroptosis of DPSCs via CREB.


Assuntos
Ferroptose , Osteogênese , Humanos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/farmacologia , Polpa Dentária , Células-Tronco/metabolismo , Diferenciação Celular , Células Cultivadas , Proliferação de Células , Aciltransferases/metabolismo , Aciltransferases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...