Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 875
Filtrar
1.
Food Res Int ; 186: 114313, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729689

RESUMO

Exploring the contribution of common microorganisms to spoilage is of great significance in inhibiting spoilage in lamb. This work investigated the extent of protein degradation and profile changes of free amino acids (FAAs), free fatty acids (FFAs) and volatile organic compounds (VOCs) in lamb caused by single- and co-culture of the common aerobic spoilage bacteria, P. paralactis, Ac. MN21 and S. maltophilia. Meanwhile, some key VOCs produced by the three bacteria during lamb spoilage were also screened by orthogonal partial least square discriminant analysis and difference value in VOCs content between inoculated groups and sterile group. Lamb inoculated with P. paralactis had the higher total viable counts, pH, total volatile base nitrogen and TCA-soluble peptides than those with the other two bacteria. Some FAAs and FFAs could be uniquely degraded by P. paralactis but not Ac. MN21 and S. maltophilia, such as Arg, Glu, C15:0, C18:0 and C18:1n9t. Co-culture of the three bacteria significantly promoted the overall spoilage, including bacterial growth, proteolysis and lipolysis. Key VOCs produced by P. paralactis were 2, 3-octanedione, those by Ac. MN21 were 1-octanol, octanal, hexanoic acid, 1-pentanol and hexanoic acid methyl ester, and that by S. maltophilia were hexanoic acid. The production of extensive key-VOCs was significantly and negatively correlated with C20:0, C23:0 and C18:ln9t degradation. This study can provide a basis for inhibiting common spoilage bacteria and promoting high-quality processing of fresh lamb.


Assuntos
Acinetobacter , Técnicas de Cocultura , Microbiologia de Alimentos , Pseudomonas , Carne Vermelha , Stenotrophomonas maltophilia , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Pseudomonas/metabolismo , Pseudomonas/crescimento & desenvolvimento , Acinetobacter/crescimento & desenvolvimento , Acinetobacter/metabolismo , Stenotrophomonas maltophilia/crescimento & desenvolvimento , Stenotrophomonas maltophilia/metabolismo , Carne Vermelha/microbiologia , Carne Vermelha/análise , Ovinos , Armazenamento de Alimentos , Temperatura Baixa , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/análise , Aminoácidos/metabolismo , Aminoácidos/análise , Carneiro Doméstico/microbiologia , Proteólise
2.
BMC Microbiol ; 24(1): 165, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745279

RESUMO

Globally, drought stress poses a significant threat to crop productivity. Improving the drought tolerance of crops with microbial biostimulants is a sustainable strategy to meet a growing population's demands. This research aimed to elucidate microbial biostimulants' (Plant Growth Promoting Rhizobacteria) role in alleviating drought stress in oil-seed crops. In total, 15 bacterial isolates were selected for drought tolerance and screened for plant growth-promoting (PGP) attributes like phosphate solubilization and production of indole-3-acetic acid, siderophore, hydrogen cyanide, ammonia, and exopolysaccharide. This research describes two PGPR strains: Acinetobacter calcoaceticus AC06 and Bacillus amyloliquefaciens BA01. The present study demonstrated that these strains (AC06 and BA01) produced abundant osmolytes under osmotic stress, including proline (2.21 and 1.75 µg ml- 1), salicylic acid (18.59 and 14.21 µg ml- 1), trehalose (28.35 and 22.74 µg mg- 1 FW) and glycine betaine (11.35 and 7.74 mg g- 1) respectively. AC06 and BA01 strains were further evaluated for their multifunctional performance by inoculating in Arachis hypogaea L. (Groundnut) under mild and severe drought regimes (60 and 40% Field Capacity). Inoculation with microbial biostimulants displayed distinct osmotic-adjustment abilities of the groundnut, such as growth parameters, plant biomass, photosynthetic pigments, relative water content, proline, and soluble sugar in respective to control during drought. On the other hand, plant sensitivity indexes such as electrolyte leakage and malondialdehyde (MDA) contents were decreased as well as cooperatively conferred plant drought tolerance by induced alterations in stress indicators such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD). Thus, Acinetobacter sp. AC06 and Bacillus sp. BA01 can be considered as osmolyte producing microbial biostimulants to simultaneously induce osmotic tolerance and metabolic changes in groundnuts under drought stress.


Assuntos
Arachis , Secas , Estresse Fisiológico , Arachis/microbiologia , Arachis/crescimento & desenvolvimento , Arachis/metabolismo , Arachis/fisiologia , Prolina/metabolismo , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/fisiologia , Microbiologia do Solo , Pressão Osmótica , Betaína/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido Salicílico/metabolismo , Acinetobacter/metabolismo , Acinetobacter/crescimento & desenvolvimento , Acinetobacter/fisiologia , Cianeto de Hidrogênio/metabolismo , Trealose/metabolismo
3.
Sci Rep ; 14(1): 9972, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693342

RESUMO

This study presents a novel biosorbent developed by immobilizing dead Sp2b bacterial biomass into calcium alginate (CASp2b) to efficiently remove arsenic (AsIII) from contaminated water. The bacterium Sp2b was isolated from arsenic-contaminated industrial soil of Punjab, a state in India. The strain was designated Acinetobacter sp. strain Sp2b as per the 16S rDNA sequencing, GenBank accession number -OP010048.The CASp2b was used for the biosorption studies after an initial screening for the biosorption capacity of Sp2b biomass with immobilized biomass in both live and dead states. The optimum biosorption conditions were examined in batch experimentations with contact time, pH, biomass, temperature, and AsIII concentration variables. The maximum biosorption capacity (qmax = 20.1 ± 0.76 mg/g of CA Sp2b) was obtained at pH9, 35 ̊ C, 20 min contact time, and 120 rpm agitation speed. The isotherm, kinetic and thermodynamic modeling of the experimental data favored Freundlich isotherm (R2 = 0.941) and pseudo-2nd-order kinetics (R2 = 0.968) with endothermic nature (ΔH° = 27.42) and high randomness (ΔS° = 58.1).The scanning electron microscopy with energy dispersive X-ray (SEM-EDX) analysis indicated the As surface binding. The reusability study revealed the reasonable usage of beads up to 5 cycles. In conclusion, CASp2b is a promising, efficient, eco-friendly biosorbent for AsIII removal from contaminated water.


Assuntos
Acinetobacter , Alginatos , Arsênio , Biodegradação Ambiental , Biomassa , Poluentes Químicos da Água , Alginatos/química , Alginatos/metabolismo , Acinetobacter/metabolismo , Acinetobacter/genética , Arsênio/metabolismo , Poluentes Químicos da Água/metabolismo , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Purificação da Água/métodos , Temperatura , Termodinâmica
4.
J Environ Sci Health B ; 59(5): 248-262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605578

RESUMO

The ability of Acinetobacter sp. strain HAP1, isolated from petroleum refinery effluent, to eliminate different concentrations (20, 40, 60, 80 and 100 mg/L) of Benzo[a]Pyrene degradation (BaP) was studied. A test to improve this degradation capacity was carried out by culturing the bacterial strain in association with a cyanobacteria. The results show a highly significant effect of the concentration of (BaP) and a very highly significant effect of the symbiosis between the bacterial strain and the cyanobacteria. This combination was able to significantly improve the (BaP) degradation rate by up to 18%. This degradation and especially in association leads to a complete mineralization of (BaP) and there is a difference in yield that can go up to 15%. Through molecular identification based on 16S rRNA gene sequence analysis, strains HAP1 and S66 were recognized as Acinetobacter sp. strain HAP1 and Cyanobacteriota sp. S66, respectively. Comparison of the retrieved sequences with the NCBI GenBank database was done, and the closest matches were found to be Acinetobacter pittii strain JD-10 for bacteria and Pseudochroococcus couteii strain PMC 885.14 for cyanobacteria.


Assuntos
Acinetobacter , Cianobactérias , Benzo(a)pireno , Simbiose , RNA Ribossômico 16S/genética , Biodegradação Ambiental , Acinetobacter/genética , Acinetobacter/metabolismo
5.
J Agric Food Chem ; 72(18): 10605-10615, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38647030

RESUMO

Acinetobacter johnsonii and Shewanella putrefaciens were identified as specific spoilage organisms in aquatic food. The interactions among specific spoilage organisms under cold stress have a significant impact on the assembly of microbial communities, which play crucial roles in the spoilage and cold adaptation processes. The limited understanding of A. johnsonii and S. putrefaciens interactions in the cold adaptation mechanism hinders the elucidation of their roles in protein and metabolism levels. 4D quantitative proteomic analysis showed that the coculture of A. johnsonii and S. putrefaciens responds to low temperatures through ABC transporter proteins, resulting in phospholipid transport and inner membrane components. SapA and FtsX proteins were significantly upregulated, while LolC, LolD, LolE, PotD, PotA, PotB, and PotC proteins were significantly downregulated. Metabolome assays revealed that metabolites of glutathione and spermidine/putrescin were significantly upregulated, while metabolites of arginine/lysine/ornithine were significantly downregulated and involved in the ABC transporter metabolism. The results of ultramicroscopic analyses showed that the coculture of A. johnsonii and S. putrefaciens surface combined with the presence of the leakage of intracellular contents, suggesting that the bacteria were severely damaged and wrinkled to absorb metabolic nutrients and adapt to cold temperatures.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Acinetobacter , Proteínas de Bactérias , Temperatura Baixa , Shewanella putrefaciens , Shewanella putrefaciens/metabolismo , Shewanella putrefaciens/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Acinetobacter/metabolismo , Acinetobacter/fisiologia , Armazenamento de Alimentos , Adaptação Fisiológica , Técnicas de Cocultura
6.
J Hazard Mater ; 470: 134149, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554512

RESUMO

Whether bisphenols, as plasticizers, can influence bacterial uptake of antibiotic resistance genes (ARGs) in natural environment, as well as the underlying mechanism remains largely unknown. Our results showed that four commonly used bisphenols (bisphenol A, S, F, and AF) at their environmental relative concentrations can significantly promote transmission of ARGs by 2.97-3.56 times in Acinetobacter baylyi ADP1. Intriguingly, we observed ADP1 acquired resistance by integrating plasmids uptake and cellular metabolic adaptations other than through reactive oxygen species mediated pathway. Metabolic adaptations including upregulation of capsules polysaccharide biosynthesis and intracellularly metabolic enzymes, which enabled formation of thicker capsules for capturing free plasmids, and degradation of accumulated compounds. Simultaneously, genes encoding DNA uptake and translocation machinery were incorporated to enhance natural transformation of antibiotic resistance carrying plasmids. We further exposed aquatic fish to bisphenols for 120 days to monitor their long-term effects in aquatic environment, which showed that intestinal bacteria communities were dominated by a drug resistant microbiome. Our study provides new insight into the mechanism of enhanced natural transformation of ARGs by bisphenols, and highlights the investigations for unexpectedly-elevated antibiotic-resistant risks by structurally related environmental chemicals.


Assuntos
Acinetobacter , Compostos Benzidrílicos , Fenóis , Sulfonas , Fenóis/toxicidade , Fenóis/metabolismo , Acinetobacter/efeitos dos fármacos , Acinetobacter/genética , Acinetobacter/metabolismo , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/metabolismo , Animais , Plasmídeos , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos/genética , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Adaptação Fisiológica , Plastificantes/toxicidade , Antibacterianos/farmacologia , Antibacterianos/toxicidade
7.
Nat Commun ; 15(1): 2746, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553443

RESUMO

Acinetobacters pose a significant threat to human health, especially those with weakened immune systems. Type IV pili of acinetobacters play crucial roles in virulence and antibiotic resistance. Single-stranded RNA bacteriophages target the bacterial retractile pili, including type IV. Our study delves into the interaction between Acinetobacter phage AP205 and type IV pili. Using cryo-electron microscopy, we solve structures of the AP205 virion with an asymmetric dimer of maturation proteins, the native Acinetobacter type IV pili bearing a distinct post-translational pilin cleavage, and the pili-bound AP205 showing its maturation proteins adapted to pilin modifications, allowing each phage to bind to one or two pili. Leveraging these results, we develop a 20-kilodalton AP205-derived protein scaffold targeting type IV pili in situ, with potential for research and diagnostics.


Assuntos
Acinetobacter , Bacteriófagos , Vírus de RNA , Humanos , Proteínas de Fímbrias/metabolismo , Acinetobacter/metabolismo , Microscopia Crioeletrônica , Fímbrias Bacterianas/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo
8.
Appl Microbiol Biotechnol ; 108(1): 230, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393350

RESUMO

The presence of ochratoxin A (OTA) in food and feed represents a serious concern since it raises severe health implications. Bacterial strains of the Acinetobacter genus hydrolyse the amide bond of OTA yielding non-toxic OTα and L-ß-phenylalanine; in particular, the carboxypeptidase PJ15_1540 from Acinetobacter sp. neg1 has been identified as an OTA-degrading enzyme. Here, we describe the ability to transform OTA of cell-free protein extracts from Acinetobacter tandoii DSM 14970 T, a strain isolated from sludge plants, and also report on the finding of a new and promiscuous α/ß hydrolase (ABH), with close homologs highly distributed within the Acinetobacter genus. ABH from A. tandoii (AtABH) exhibited amidase activity against OTA and OTB mycotoxins, as well as against several carboxypeptidase substrates. The predicted structure of AtABH reveals an α/ß hydrolase core composed of a parallel, six-stranded ß-sheet, with a large cap domain similar to the marine esterase EprEst. Further biochemical analyses of AtABH reveal that it is an efficient esterase with a similar specificity profile as EprEst. Molecular docking studies rendered a consistent OTA-binding mode. We proposed a potential procedure for preparing new OTA-degrading enzymes starting from promiscuous α/ß hydrolases based on our results. KEY POINTS: • AtABH is a promiscuous αß hydrolase with both esterase and amidohydrolase activities • AtABH hydrolyses the amide bond of ochratoxin A rendering nontoxic OTα • Promiscuous αß hydrolases are a possible source of new OTA-degrading enzymes.


Assuntos
Acinetobacter , Micotoxinas , Ocratoxinas , Micotoxinas/metabolismo , Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Ocratoxinas/metabolismo , Ocratoxinas/toxicidade , Acinetobacter/metabolismo , Carboxipeptidases/metabolismo , Esterases/metabolismo , Amidas/metabolismo
9.
Sci Total Environ ; 919: 170770, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340823

RESUMO

Antibiotic resistance genes (ARGs) may be synergistic selected during bio-treatment of chromium-containing wastewater and causing environmental risks through horizontal transfer. This research explored the impact of self-screening bacterium Acinetobacter sp. SL-1 on the treatment of chromium-containing wastewater under varying environmental conditions. The findings indicated that the optimal Cr(VI) removal conditions were an anaerobic environment, 30 °C temperature, 5 g/L waste molasses, 100 mg/L Cr(VI), pH = 7, and a reaction time of 168 h. Under these conditions, the removal of Cr(VI) reached 99.10 %, however, it also developed cross-resistance to tetracycline, gentamicin, clarithromycin, ofloxacin following exposure to Cr(VI). When decrease Cr(VI) concentration to 50 mg/L at pH of 9 with waste molasses as carbon source, the expression of ARGs was down regulated, which decreased the horizontal transfer possibility of ARGs and minimized the potential environmental pollution risk caused by ARGs. The study ultimately emphasized that the treatment of chromium-containing wastewater with waste molasses in conjunction with SL-1 not only effectively eliminates hexavalent chromium but also mitigates the risk of environmental pollution.


Assuntos
Acinetobacter , Catecóis , Águas Residuárias , Antibacterianos/metabolismo , Melaço , Carbono/metabolismo , Acinetobacter/metabolismo , Cromo/metabolismo , Resistência Microbiana a Medicamentos , Biodegradação Ambiental
10.
Appl Environ Microbiol ; 90(2): e0211123, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38289138

RESUMO

Despite the significant presence of plant-derived tricarboxylic acids in some environments, few studies detail the bacterial metabolism of trans-aconitic acid (Taa) and tricarballylic acid (Tcb). In a soil bacterium, Acinetobacter baylyi ADP1, we discovered interrelated pathways for the consumption of Taa and Tcb. An intricate regulatory scheme tightly controls the transport and catabolism of both compounds and may reflect that they can be toxic inhibitors of the tricarboxylic acid cycle. The genes encoding two similar LysR-type transcriptional regulators, TcuR and TclR, were clustered on the chromosome with tcuA and tcuB, genes required for Tcb consumption. The genetic organization differed from that in Salmonella enterica serovar Typhimurium, in which tcuA and tcuB form an operon with a transporter gene, tcuC. In A. baylyi, tcuC was not cotranscribed with tcuAB. Rather, tcuC was cotranscribed with a gene, designated pacI, encoding an isomerase needed for Taa consumption. TcuC appears to transport Tcb and cis-aconitic acid (Caa), the presumed product of PacI-mediated periplasmic isomerization of Taa. Two operons, tcuC-pacI and tcuAB, were transcriptionally controlled by both TcuR and TclR, which have overlapping functions. We investigated the roles of the two regulators in activating transcription of both operons in response to multiple effector compounds, including Taa, Tcb, and Caa.IMPORTANCEIngestion of Taa and Tcb by grazing livestock can cause a serious metabolic disorder called grass tetany. The disorder, which results from Tcb absorption by ruminants, focuses attention on the metabolism of tricarboxylic acids. Additional interest stems from efforts to produce tricarboxylic acids as commodity chemicals. Improved understanding of bacterial enzymes and pathways for tricarboxylic acid metabolism may contribute to new biomanufacturing strategies.


Assuntos
Acinetobacter , Ácido Aconítico , Ácido Aconítico/metabolismo , Ácidos Tricarboxílicos/química , Ácidos Tricarboxílicos/metabolismo , Acinetobacter/genética , Acinetobacter/metabolismo , Salmonella typhimurium/genética , Proteínas de Bactérias/metabolismo
11.
Curr Microbiol ; 81(1): 31, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062219

RESUMO

A formaldehyde-degrading bacterium JJ-2 was isolated from the rhizosphere of Chlorophytum and identified as Acinetobacter pittii by colony morphology and 16S rDNA sequence analysis. Further studies showed that under optimal conditions, JJ-2 could maintain activity for six cycles at an initial formaldehyde concentration of 450 mg L-1. At the same time, the complete degradation time was shortened from 12 to 6 h. When the JJ-2 strain was inoculated into sterile soil, the surface spray method had the best effect, and the removal efficiency of 5 ppm formaldehyde increased by 22.63%. In an actual potted plants system colonized with strain JJ-2, the first and second fumigations (without re-inoculation) increased removal by 1.36 times and 0.92 times during the day and 1.27 times and 2.07 times at night. In addition, in the second fumigation, the plant-bacteria combined system was 693.63 ppm and the plant system was 715.34 ppm, effectively reducing the CO2 concentration. This study provides an economical, ecological, and efficient approach to improve the combined system of plants and bacteria to remove gaseous formaldehyde from indoor air, with a positive impact on carbon neutrality.


Assuntos
Acinetobacter , Dióxido de Carbono , Dióxido de Carbono/metabolismo , Plantas , Acinetobacter/genética , Acinetobacter/metabolismo , Bactérias/metabolismo , Formaldeído/metabolismo , Biodegradação Ambiental
12.
Environ Sci Pollut Res Int ; 30(47): 104029-104042, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37698791

RESUMO

A heterotrophic nitrifying aerobic denitrifying (HN-AD) strain ZQ-A1 with excellent denitrification performance, identified as Acinetobacter, was isolated from simultaneous nitrification and denitrification (SND) craft. ZQ-A1 was capable of removing NH4+, NO2-, and NO3-; the 21-hour removal rates were 84.84%, 87.13%, and 92.63%. ZQ-A1 has the ability to treat mixed nitrogen sources. In addition, ZQ-A1 can be well applied to actual sewage. According to the analysis of microbial community characteristics, the relative abundance of Acinetobacter in the experimental group increased from 0.06% to 2.38%, which is an important reason for the removal rate of NH4+ exceeding 99% within 30 days. The results of KEGG function prediction showed that with the addition of ZQ-A1, the relative abundance of pathways related to bacterial metabolism, such as tricarboxylic acid cycle metabolism, was higher. The research expanded the thinking of HN-AD bacteria in actual production and laid a foundation for its application in sewage treatment.


Assuntos
Acinetobacter , Nitrificação , Animais , Suínos , Águas Residuárias , Desnitrificação , Esgotos/microbiologia , Nitrogênio/metabolismo , Acinetobacter/metabolismo , Fazendas , Aerobiose , Bactérias/metabolismo , Processos Heterotróficos , Nitritos/metabolismo
13.
J Environ Manage ; 342: 118333, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37320920

RESUMO

Acinetobacter guillouiae SFC 500-1 A is a promising candidate for the bioremediation of tannery wastewater. In this study, we applied shotgun proteomic technology in conjunction with a gel-based assay (Gel-LC) to explore the strain's intracellular protein profile when grown in tannery wastewater as opposed to normal culture conditions. A total of 1775 proteins were identified, 52 of which were unique to the tannery wastewater treatment. Many of them were connected to the degradation of aromatic compounds and siderophore biosynthesis. On the other hand, 1598 proteins overlapped both conditions but were differentially expressed in each. Those that were upregulated in wastewater (109) were involved in the processes mentioned above, as well as in oxidative stress mitigation and intracellular redox state regulation. Particularly interesting were the downregulated proteins under the same treatment (318), which were diverse but mainly linked to the regulation of basic cellular functions (replication, transcription, translation, cell cycle, and wall biogenesis); metabolism (amino acids, lipids, sulphate, energetic processes); and other more complex responses (cell motility, exopolysaccharide production, biofilm formation, and quorum sensing). The findings suggest that SFC 500-1 A engages in survival and stress management strategies to cope with the toxic effects of tannery wastewater, and that such strategies may be mostly oriented at keeping metabolic processes to a minimum. Altogether, the results might be useful in the near future to improve the strain's effectiveness if it will be applied for bioremediation.


Assuntos
Acinetobacter , Águas Residuárias , Proteômica , Acinetobacter/metabolismo , Oxirredução
14.
Toxins (Basel) ; 15(6)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37368688

RESUMO

Zearalenone (ZEN, ZEA) contamination in various foods and feeds is a significant global problem. Similar to deoxynivalenol (DON) and other mycotoxins, ZEN in feed mainly enters the body of animals through absorption in the small intestine, resulting in estrogen-like toxicity. In this study, the gene encoding Oxa, a ZEN-degrading enzyme isolated from Acinetobacter SM04, was cloned into Lactobacillus acidophilus ATCC4356, a parthenogenic anaerobic gut probiotic, and the 38 kDa sized Oxa protein was expressed to detoxify ZEN intestinally. The transformed strain L. acidophilus pMG-Oxa acquired the capacity to degrade ZEN, with a degradation rate of 42.95% at 12 h (initial amount: 20 µg/mL). The probiotic properties of L. acidophilus pMG-Oxa (e.g., acid tolerance, bile salt tolerance, and adhesion properties) were not affected by the insertion and intracellular expression of Oxa. Considering the low amount of Oxa expressed by L. acidophilus pMG-Oxa and the damage to enzyme activity by digestive juices, Oxa was immobilized with 3.5% sodium alginate, 3.0% chitosan, and 0.2 M CaCl2 to improve the ZEN degradation efficiency (from 42.95% to 48.65%) and protect it from digestive juices. The activity of immobilized Oxa was 32-41% higher than that of the free crude enzyme at different temperatures (20-80 °C), pH values (2.0-12.0), storage conditions (4 °C and 25 °C), and gastrointestinal simulated digestion conditions. Accordingly, immobilized Oxa could be resistant to adverse environmental conditions. Owing to the colonization, efficient degradation performance, and probiotic functionality of L. acidophilus, it is an ideal host for detoxifying residual ZEN in vivo, demonstrating great potential for application in the feed industry.


Assuntos
Acinetobacter , Micotoxinas , Probióticos , Zearalenona , Animais , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/metabolismo , Acinetobacter/metabolismo , Zearalenona/toxicidade
15.
Chemosphere ; 331: 138732, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37127201

RESUMO

Plant-growth-promoting rhizobacteria (PGPR) have received increasing attention for assisting phytoremediation. However, the effect of PGPR on total petroleum hydrocarbon (TPH) degradation and plant growth promotion and its underlying mechanism is not well understood. In this study, phenotypic analysis and whole genome sequencing were conducted to comprehensively characterize a newly isolated rhizobacterium strain S4, which was identified as Acinetobacter oleivorans, from a TPH-contaminated soil. The strain degraded 62.5% of initially spiked diesel (1%) in minimal media within six days and utilized n-alkanes with a wide range of chain length (i.e., C12 to C40). In addition, the strain showed phenotypic traits beneficial to plant growth, including siderophore production, indole-3-acetic acid synthesis and phosphate solubilization. Potential metabolic pathways and genes encoding proteins responsible for the phenotypic traits were identified. In a real TPH-contaminated soil, inoculation of Acinetobacter oleivorans S4 significantly enhanced the growth of tall fescue relative to the soil without inoculation. In contrast, inoculation of Bacillus sp. Z7, a hydrocarbon-degrading strain, showed a negligible effect on the growth of tall fescue. The removal efficiency of TPH with inoculation of Acinetobacter oleivorans S4 was significantly higher than those without inoculation or inoculation of Bacillus sp. Z7. These results suggested that traits of PGPR beneficial to plant growth are critical to assist phytoremediation. Furthermore, heavy metal resistance genes and benzoate and phenol degradation genes were found in the genome of Acinetobacter oleivorans S4, suggesting its application potential in broad scenarios.


Assuntos
Acinetobacter , Bacillus , Festuca , Petróleo , Poluentes do Solo , Hidrocarbonetos/metabolismo , Acinetobacter/genética , Acinetobacter/metabolismo , Petróleo/metabolismo , Solo/química , Festuca/metabolismo , Bacillus/metabolismo , Biodegradação Ambiental , Poluentes do Solo/metabolismo , Microbiologia do Solo
16.
Environ Res ; 231(Pt 1): 116119, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178747

RESUMO

Green and economical pollution management methods which reusing bio-waste as biostimulant to effectively improve the removal of target pollutants are receiving more and more attention. In this study, Lactobacillus plantarum fermentation waste solution (LPS) was used to investigate its facilitative effect and the stimulation mechanisms on the degradation of 2-chlorophenol (2-CP) by strain Acinetobacter sp. strain ZY1 in terms of both cell physiology and transcriptomics. The degradation efficiency of 2-CP was improved from 60% to > 80% under LPS treatment. The biostimulant maintained the morphology of strain, reduced the level of reactive oxygen species, and recovered the cell membrane permeability from 39% to 22%. It also significantly increased the level of electron transfer activity and extracellular polymeric substances secretion and improved the metabolic activity of the strain. The transcriptome results revealed the stimulation of LPS to promote biological processes such as bacterial proliferation, metabolism, membrane structure composition, and energy conversion. This study provided new insights and references for the reuse of fermentation waste streams in biostimulation methods.


Assuntos
Acinetobacter , Lactobacillus plantarum , Fermentação , Lactobacillus plantarum/metabolismo , Acinetobacter/metabolismo , Lipopolissacarídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
J Hazard Mater ; 452: 131302, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37031670

RESUMO

Biological dehalogenation degradation was an important detoxification method for the ecotoxicity and teratogenic toxicity of fluorocorticosteroids (FGCs). The functional strain Acinetobacter pittii C3 can effectively biodegrade and defluorinate to 1 mg/L Triamcinolone acetonide (TA), a representative FGCs, with 86 % and 79 % removal proportion in 168 h with the biodegradation and detoxification kinetic constant of 0.031/h and 0.016/h. The dehalogenation and degradation ability of strain C3 was related to its dehalogenation genomic characteristics, which manifested in the functional gene expression of dehalogenation, degradation, and toxicity tolerance. Three detoxification mechanisms were positively correlated with defluorination pathways through hydrolysis, oxidation, and reduction, which were regulated by the expression of the haloacid dehalogenase (HAD) gene (mupP, yrfG, and gph), oxygenase gene (dmpA and catA), and reductase gene (nrdAB and TgnAB). Hydrolysis defluorination was the most critical way for TA detoxification metabolism, which could rapidly generate low-toxicity metabolites and reduce toxic bioaccumulation due to hydrolytic dehalogenase-induced defluorination. The mechanism of hydrolytic defluorination was that the active pocket of hydrolytic dehalogenase was matched well with the spatial structure of TA under the adjustment of the hydrogen bond, and thus induced molecular recognition to promote the catalytic hydrolytic degradation of various amino acid residues. This work provided an effective bioremediation method and mechanism for improving defluorination and detoxification performance.


Assuntos
Acinetobacter , Hidrolases , Hidrólise , Hidrolases/metabolismo , Acinetobacter/genética , Acinetobacter/metabolismo , Oxirredução , Genômica
18.
Bioresour Technol ; 375: 128822, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36871698

RESUMO

A novel aerobic strain of Acinetobacter oleivorans AHP123 was isolated from activated sludge, which could conduct heterotrophic nitrification and denitrification simultaneously. This strain has excellent NH4+-N removal ability, with 97.93% removal rate at 24-hour. To identify the metabolic pathways of this novel strain, genes of gam, glnA, gdhA, gltB, nirB, nasA, nar, nor, glnK and amt were detected by genome analysis. Through RT-qPCR, it was found that the expression of key genes confirmed two possible ways of nitrogen removal in strain AHP123: nitrogen assimilation and heterotrophic nitrification aerobic denitrification (HNAD). However, the absence of some common HNAD genes (amo, nap and nos) suggested that strain AHP123 might have a different HNAD pathway from other HNAD bacteria. Nitrogen balance analysis revealed that strain AHP123 assimilated most of the external nitrogen sources into intracellular nitrogen.


Assuntos
Acinetobacter , Desnitrificação , Nitrogênio/metabolismo , Aerobiose , Nitrificação , Processos Heterotróficos , Acinetobacter/genética , Acinetobacter/metabolismo , Bactérias/metabolismo , Genômica , Nitritos/metabolismo
19.
Protein Expr Purif ; 206: 106254, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36804950

RESUMO

Acinetobacter baylyi is an interesting model organism to investigate bacterial metabolism due to its vast repertoire of metabolic enzymes and ease of genetic manipulation. However, the study of gene expression in vitro is dependent on the availability of its RNA polymerase (RNAp), an essential enzyme in transcription. In this work, we developed a convenient method of producing the recombinant A. baylyi ADP1 RNA polymerase holoenzyme (RNApholo) in E. coli that yields 22 mg of a >96% purity protein from a 1-liter shake flask culture. We further characterized the A. baylyi ADP1 RNApholo kinetic profile using T7 Phage DNA as template and demonstrated that it is a highly transcriptionally active enzyme with an elongation rate of 24 nt/s and a termination efficiency of 94%. Moreover, the A. baylyi ADP1 RNApholo has a substantial sequence identity (∼95%) with the RNApholo from the human pathogen Acinetobacter baumannii. This protein can serve as a source of material for structural and biological studies towards advancing our understanding of genome expression and regulation in Acinetobacter species.


Assuntos
Acinetobacter baumannii , Acinetobacter , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Acinetobacter/genética , Acinetobacter/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Acinetobacter baumannii/genética , Holoenzimas/metabolismo
20.
J Biosci Bioeng ; 135(3): 224-231, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36653269

RESUMO

AtaA, the sticky, long, and peritrichate nanofiber protein from Acinetobacter sp. Tol 5, mediates autoagglutination and is highly adhesive to various material surfaces, resulting in a biofilm. Although the production of the adhesive nanofiber protein is likely to require a large amount of energy and material sources, the relationship between AtaA fiber production and cell growth remains unknown. Here, we report the growth phase-dependent AtaA fiber production in Tol 5. We examined the ataA gene expression in different growth phases using a reporter gene assay with an originally developed reporter plasmid and using reverse transcription-quantitative polymerase chain reaction. Bacterial cells with surface-displayed AtaA at different growth phases were immunostained and analyzed using fluorescence flow cytometry and confocal laser scanning microscopy. The results indicate that Tol 5 modulated the amount of surface-displayed AtaA at the transcriptional level. AtaA production was low in the early growth phase but remarkably increased in the late growth phase, covering the whole bacterial cell with AtaA fibers in the stationary phase. Tol 5 displayed AtaA fibers poorly in the early growth phase and showed less autoagglutination and adhesiveness than those in the stationary phase. Although Tol 5 grew as fast as its ataA-deficient mutant in the early growth phase, the optical density of Tol 5 culture was slightly lower than that of the ataA-deficient mutant in the late growth phase. Based on these experimental results, we propose the growth-phase-dependent production of AtaA fiber for efficient and fast cell growth.


Assuntos
Acinetobacter , Nanofibras , Adesinas Bacterianas/genética , Adesivos/metabolismo , Acinetobacter/genética , Acinetobacter/metabolismo , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...