Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 23, 2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-34998386

RESUMO

BACKGROUND: Our previous study has demonstrated that the transcription of AchnKCS involved in suberin biosynthesis was up-regulated by exogenous abscisic acid (ABA) during the wound suberization of kiwifruit, but the regulatory mechanism has not been fully elucidated. RESULTS: Through subcellular localization analysis in this work, AchnbZIP29 and AchnMYB70 transcription factors were observed to be localized in the nucleus. Yeast one-hybrid and dual-luciferase assay proved the transcriptional activation of AchnMYB70 and transcriptional suppression of AchnbZIP29 on AchnKCS promoter. Furthermore, the transcription level of AchnMYB70 was enhanced by ABA during wound suberization of kiwifruit, but AchnbZIP29 transcription was reduced by ABA. CONCLUSIONS: Therefore, it was believed that ABA enhanced the transcriptional activation of AchnMYB70 on AchnKCS by increasing AchnMYB70 expression. On the contrary, ABA relieved the inhibitory effect of AchnbZIP29 on transcription of AchnKCS by inhibiting AchnbZIP29 expression. These results gave further insight into the molecular regulatory network of ABA in wound suberization of kiwifruit.


Assuntos
Ácido Abscísico/metabolismo , Actinidia/crescimento & desenvolvimento , Actinidia/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Actinidia/efeitos dos fármacos , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/genética
2.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884527

RESUMO

Sulfur has been previously reported to modulate plant growth and exhibit significant anti-microbial activities. However, the mechanism underlying its diverse effects on plant pathogens has not been elucidated completely. The present study conducted the two-year field experiment of sulfur application to control kiwifruit canker from 2017 to 2018. For the first time, our study uncovered activation of plant disease resistance by salicylic acid after sulfur application in kiwifruit. The results indicated that when the sulfur concentration was 1.5-2.0 kg m-3, the induced effect of kiwifruit canker reached more than 70%. Meanwhile, a salicylic acid high lever was accompanied by the decline of jasmonic acid. Further analysis revealed the high expression of the defense gene, especially AcPR-1, which is a marker of the salicylic acid signaling pathway. Additionally, AcICS1, another critical gene of salicylic acid synthesis, was also highly expressed. All contributed to the synthesis of increasing salicylic acid content in kiwifruit leaves. Moreover, the first key lignin biosynthetic AcPAL gene was marked up-regulated. Thereafter, accumulation of lignin content in the kiwifruit stem and the higher deposition of lignin were visible in histochemical analysis. Moreover, the activity of the endochitinase activity of kiwifruit leaves increased significantly. We suggest that the sulfur-induced resistance against Pseudomonas syringae pv. actinidiae via salicylic activates systemic acquired resistance to enhance plant immune response in kiwifruit.


Assuntos
Actinidia/imunologia , Resistência à Doença/imunologia , Frutas/imunologia , Doenças das Plantas/imunologia , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo , Enxofre/farmacologia , Actinidia/efeitos dos fármacos , Actinidia/crescimento & desenvolvimento , Actinidia/metabolismo , Resistência à Doença/efeitos dos fármacos , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Doenças das Plantas/microbiologia , Transdução de Sinais
3.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830066

RESUMO

Bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) has led to considerable losses in all major kiwifruit-growing areas. There are no commercial products in the market to effectively control this disease. Therefore, the defense resistance of host plants is a prospective option. In our previous study, sulfur could improve the resistance of kiwifruit to Psa infection. However, the mechanisms of inducing resistance remain largely unclear. In this study, disease severity and protection efficiency were tested after applying sulfur, with different concentrations in the field. The results indicated that sulfur could reduce the disease index by 30.26 and 31.6 and recorded high protection efficiency of 76.67% and 77.00% after one and two years, respectively, when the concentration of induction treatments was 2.0 kg/m3. Ultrastructural changes in kiwifruit stems after induction were demonstrated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the activities of phenylalanine ammonia-lyase (PAL), peroxidase (POD) and polyphenol oxidase (PPO), and the accumulation of lignin were determined by biochemical analyses. Our results showed that the morphological characteristics of trichomes and lenticels of kiwifruit stem were in the best defensive state respectively when the sulfur concentration was 3.0 kg/m3 and 1.5 kg/m3. Meanwhile, in the range of 0.5 to 2.0 kg/m3, the sulfur could promote the chloroplast and mitochondria of kiwifruit stems infected with Psa to gradually return to health status, increasing the thickness of the cell wall. In addition, sulfur increased the activities of PAL, POD and PPO, and promoted the accumulation of lignin in kiwifruit stems. Moreover, the sulfur protection efficiency was positively correlated with PPO activity (p < 0.05) and lignin content (p < 0.01), which revealed that the synergistic effect of protective enzyme activity and the phenolic metabolism pathway was the physiological effect of sulfur-induced kiwifruit resistance to Psa. This evidence highlights the importance of lignin content in kiwifruit stems as a defense mechanism in sulfur-induced resistance. These results suggest that sulfur enhances kiwifruit canker resistance via an increase in phenolic components and morphology structure modification in the kiwifruit stems. Therefore, this study could provide insights into sulfur to control kiwifruit canker caused by Psa.


Assuntos
Actinidia/efeitos dos fármacos , Actinidia/microbiologia , Fenóis/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Pseudomonas syringae/efeitos dos fármacos , Enxofre/farmacologia , Actinidia/anatomia & histologia , Catecol Oxidase/metabolismo , Correlação de Dados , Lignina/metabolismo , Peroxidase/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Caules de Planta/anatomia & histologia , Caules de Planta/efeitos dos fármacos , Caules de Planta/microbiologia , Caules de Planta/ultraestrutura , Infecções por Pseudomonas/tratamento farmacológico , Enxofre/uso terapêutico , Tricomas/anatomia & histologia , Tricomas/efeitos dos fármacos , Tricomas/microbiologia
4.
Biomolecules ; 11(9)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34572470

RESUMO

In this study, the co-application of chitosan and tetramycin against kiwifruit soft rot and its effects on the disease resistance, growth, quality and aroma of kiwifruit were investigated. The results show that chitosan could effectively enhance tetramycin against soft rot of kiwifruit with the field control efficacy of 85.33% for spraying chitosan 100 time + 0.3% tetramycin AS 5000-time dilution liquid, which was higher than 80.99% for 0.3% tetramycin AS 5000-time dilution liquid and significantly (p < 0.01) higher than 40.66% for chitosan 100-time dilution liquid. Chitosan could significantly (p < 0.05) improve the promoting effects of tetramycin on total phenolics, total flavonoids, SOD activity of kiwifruit compared to tetramycin during storage for 0-28 days and enhance the disease resistance of kiwifruit. Moreover, the co-application of chitosan and tetramycin was more effective than tetramycin or chitosan alone in enhancing fruit growth, improving fruit quality and increasing fruit aroma. This study highlights that chitosan can be used as an adjuvant to enhance tetramycin against soft rot of kiwifruit and promote tetramycin's improvement for the single fruit volume and weight, vitamin C, soluble sugar, soluble solid, dry matter, soluble protein, titratable acidity and aroma of kiwifruit.


Assuntos
Actinidia/microbiologia , Quitosana/farmacologia , Frutas/microbiologia , Macrolídeos/farmacologia , Odorantes , Doenças das Plantas/microbiologia , Actinidia/efeitos dos fármacos , Actinidia/enzimologia , Actinidia/crescimento & desenvolvimento , Catecol Oxidase/metabolismo , Quitosana/toxicidade , Flavonoides/análise , Frutas/efeitos dos fármacos , Frutas/enzimologia , Macrolídeos/toxicidade , Fenóis/análise , Superóxido Dismutase/metabolismo
5.
J Food Sci ; 86(6): 2346-2357, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34028014

RESUMO

Pesticides are widely used in the process of kiwifruit growth to promote fruit expansion. This study was aimed to assess the effects of pesticides on the quality of kiwifruit by applying high and normal concentrations of forchlorfenuron (CPPU) and thidiazuron (TDZ) to "Xuxiang" (XX) green kiwifruit and "Jinyan" (JY) gold kiwifruit. Sixty kiwifruit trees were used to comprehensively evaluate the effects on the pulp and whole kiwifruit. In addition to the weight gain effect and basic physical-chemical properties (vitamin C, total protein, glucose and fructose, organic acids), the main nutritional qualities (in vitro and cellular antioxidant activity (CAA), and dietary minerals) were also evaluated. The vitamin C content of XX was not affected by pesticides, but the use of CPPU reduced vitamin C of JY pulp by 23% (p < 0.05). Pesticides did not reduce the antioxidant values of XX pulp in vitro but significantly reduced CAA values (32%-47%). In JY pulp, pesticides treatments had no significant effect on antioxidant values in vitro except that CPPU treatments significantly reduced the ferric reducing antioxidant power (FRAP) value by 21% (p < 0.05). Reasonable use of pesticides can effectively improve taste of kiwifruit, increasing kiwifruit weight and the content of certain nutrients. PRACTICAL APPLICATION: Based on observed changes in nutritional components, CPPU may be more suitable for XX while TDZ may be more suitable for JY. The significance of this study may affect kiwifruit farmers and ultimately help improve the sensory quality of kiwifruit.


Assuntos
Actinidia/efeitos dos fármacos , Actinidia/metabolismo , Antioxidantes/análise , Valor Nutritivo/efeitos dos fármacos , Praguicidas/farmacologia
6.
Carbohydr Polym ; 242: 116462, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32564825

RESUMO

Alginate oligosaccharide (AOS) is a biological carbohydrate formed from the degradation of sodium alginate. AOS used in this study was enzymatically prepared and had varying degrees of polymerization (2-8). AOS applied to harvested kiwifruit stored at 25 °C inhibited gray mold, blue mold, and black rot. AOS inhibited pectin solubilization, gene expression of pectin methylesterase and polygalacturonase, and the corresponding enzyme activity of their encoded proteins in kiwifruit. In contrast, AOS induced antioxidant gene expression and enzyme activity, including catalase and superoxide dismutase. The level of total phenols and flavonoids in kiwifruit was also elevated. AOS treatment also had a beneficial effect on fruit quality. Collectively, the results indicate that postharvest treatment with AOS inhibits postharvest decay and prolongs fruit quality by suppressing cell wall degradation and eliciting antioxidants in harvested kiwifruit. AOS has the potential to be used to preserve and extend the postharvest quality of kiwifruit.


Assuntos
Actinidia/efeitos dos fármacos , Alginatos/farmacologia , Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Conservação de Alimentos , Oligossacarídeos/farmacologia , Actinidia/metabolismo , Alginatos/química , Alginatos/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Frutas/efeitos dos fármacos , Frutas/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Poligalacturonase/antagonistas & inibidores , Poligalacturonase/genética , Poligalacturonase/metabolismo
7.
J Sci Food Agric ; 100(7): 3111-3119, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32086814

RESUMO

BACKGROUND: Investigating the effect of N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU) on the bulk optical properties of postharvest kiwifruit is helpful in understanding the mechanism of identification of CPPU-treated kiwifruit using spectroscopy and to develop effective optical sensing techniques. In this study, the absorption coefficient µa and reduced scattering coefficient µ s ' of flesh and skin of kiwifruit treated with CPPU solutions at CPPU concentration levels (CCLs) of 0, 5, 10 and 15 mg L-1 were measured by using a single integrating sphere setup over the range 950-1650 nm during 12 weeks' storage. RESULTS: Generally, at the same storage period, there was no significant difference (P ≤ 0.05) on flesh's µa among the kiwifruit treated with different CCLs at absorption peaks of 970, 1190, and 1390 nm. The average flesh's µ s ' of kiwifruit treated with higher CCLs at 1190 nm were larger than those treated with lower CCLs, and there was a significant difference (P ≤ 0.05) between the kiwifruit treated with 0, 5 and 15 mg L-1 CPPU solutions except for week 6. Contrasted with the µa and µ s ' of kiwifruit flesh, the µa and µ s ' of skin had bigger standard deviations and larger fluctuations with storage time. Additionally, the CPPU-treated kiwifruit had higher moisture content, lower firmness, and larger cells than CPPU-untreated kiwifruit. CONCLUSIONS: This study indicates that the µ s ' of flesh has potential in identifying kiwifruit treated with different CCLs during storage. © 2020 Society of Chemical Industry.


Assuntos
Actinidia/química , Conservação de Alimentos/métodos , Frutas/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Poliuretanos/farmacologia , Actinidia/efeitos dos fármacos , Conservação de Alimentos/instrumentação , Armazenamento de Alimentos , Frutas/química
8.
J Agric Food Chem ; 68(10): 3267-3276, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32101430

RESUMO

Cross-talk between various hormones is important in regulating many aspects of plant growth, development, and senescence, including fruit ripening. Here, exogenous ethylene (ETH, 100 µL/L, 12 h) rapidly accelerated 'Hayward' kiwifruit (Actinidia deliciosa) softening and ethylene production and was enhanced by supplementing with continuous treatment with methyl jasmonate (MeJA, 100 µM/L, 12 h) (ETH+MeJA). ETH+MeJA enhanced ACC synthase (ACS) activities and 1-aminocyclopropane-1-carboxylic acid (ACC) accumulation but not ACC oxidase (ACO) activity. Increased transcripts of ACS genes AdACS1 and AdACS2, ACS activity, and ethylene production were positively correlated. The abundance of AdACS1 was about 6-fold higher than AdACS2. RNA-seq identified 6 transcription factors among the 87 differentially expressed unigenes induced by ETH+MeJA. Dual-luciferase and electrophoretic mobility shift assays (EMSA) indicated that AdNAC2/3 physically interacted with and trans-activated the AdACS1 promoter 2.2- and 3.5-fold, respectively. Collectively, our results indicate that MeJA accelerates ethylene production in kiwifruit induced by exogenous ethylene, via a preferential activation of AdACS1 and AdACS2.


Assuntos
Acetatos/farmacologia , Actinidia/efeitos dos fármacos , Coenzima A Ligases/metabolismo , Ciclopentanos/farmacologia , Etilenos/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Actinidia/enzimologia , Actinidia/genética , Actinidia/metabolismo , Frutas/efeitos dos fármacos , Frutas/enzimologia , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética
9.
Int J Mol Sci ; 21(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32013029

RESUMO

Although melatonin was affirmed to alleviate drought stress in various plant species, the mechanism in kiwifruit remains to be elucidated. In this study, the transcriptomes of kiwifruit leaves under control (CK), DR (drought stress), and MTDR (drought plus melatonin) treatments were evaluated. After comparisons of the gene expression between DR and MTDR, the differentially expressed genes (DEGs) were screened. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated three significant pathways, which were mainly involved in the glutathione metabolism, ascorbate and aldarate metabolism, and carotenoid metabolism. Therefore, the content and metabolic gene expression level of ascorbic acid (AsA), glutathione, and carotenoid were higher in the MTDR treatment than that in others. Furthermore, the activity and mRNA expression level of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were also promoted in the MTDR group. Combined with these results of important secondary metabolites and protective enzymes measured in the seedlings in different treatments, it could be concluded that exogenous melatonin induced the ascorbic acid-glutathione (AsA-GSH) cycle, carotenoid biosynthesis, and protective enzyme system to improve seedling growth. Our results contribute to the development of a practical method for kiwifruit against drought stress.


Assuntos
Actinidia/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Melatonina/farmacologia , Proteínas de Plantas/genética , Actinidia/efeitos dos fármacos , Actinidia/genética , Catalase/genética , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Peroxidase/genética , Metabolismo Secundário/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Análise de Sequência de RNA , Superóxido Dismutase/genética
10.
J Sci Food Agric ; 100(3): 961-968, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31591725

RESUMO

BACKGROUND: Among the challenges for postharvest researchers is that of understanding the physiological and biochemical pathways associated with postharvest fruit decay. Fruit senescence directly affects sensorial and nutritional quality during postharvest life. It has been clarified that reactive oxygen species and oxidative damage are responsible for fruit senescence. Some cultivars of yellow-fleshed kiwifruit can be stored for a short period compared with green-fleshed kiwifruit. Postharvest performance is affected by the physiological state of the fruit at harvest, associated with its postharvest management. Among several postharvest applications, ozone treatment is considered as a cost-effective and eco-friendly food-processing technology to preserve the fruits' quality during cold storage. In this study, we investigated the influence of ozone, after gradual cooling treatment, on the antioxidant defense system in Actinidia chinensis, 'Soreli'. RESULTS: Bioactive compound content decreased during cold storage, and ozone treatment enhanced the activities of superoxide dismutase and catalase during cold storage. This treatment preserved membrane integrity by inhibiting lipoxygenase activity and malondialdehyde accumulation. A multivariate statistical approach, using principal component analysis, provided the global response to the effect of ozone postharvest treatment during cold storage in kiwifruit 'Soreli'. CONCLUSION: Ozone treatment improves the efficiency of antioxidative system and storability of 'Soreli' kiwifruits. © 2019 Society of Chemical Industry.


Assuntos
Actinidia/química , Antioxidantes/análise , Conservação de Alimentos/métodos , Frutas/efeitos dos fármacos , Ozônio/farmacologia , Actinidia/efeitos dos fármacos , Actinidia/crescimento & desenvolvimento , Actinidia/metabolismo , Antioxidantes/metabolismo , Cor , Conservação de Alimentos/instrumentação , Frutas/química , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Malondialdeído/metabolismo , Proteínas de Plantas/metabolismo , Superóxido Dismutase/metabolismo
11.
J Sci Food Agric ; 99(14): 6234-6240, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31250461

RESUMO

BACKGROUND: The application of exogenous plant growth regulator, for example forchlorfenuron (CPPU), on kiwifruits has become an important factor that influences kiwifruit economic efficiency and the health development of the kiwifruit industry. Owing to the slight difference in calyx shape between the kiwifruits treated with CPPU (CPPU-treated kiwifruits) and the kiwifruits without CPPU treatment (CPPU-untreated kiwifruits), this study aims to provide a cheap, quick, convenient, and non-destructive method for identifying CPPU-treated kiwifruits based on the images of kiwifruits captured at visible lights. RESULTS: The identification method includes three steps. Firstly, the kiwifruit was extracted from the background by using Otsu algorithm, hole filling operation and 'bwareaopen' function. Secondly, the calyx was extracted by using corrosion, image enhancement, hole filling and closing operations. Finally, the length/width ratio of the minimum enclosing rectangle of calyx region was calculated. The kiwifruit was regarded as a CPPU-treated kiwifruit if the length/width ratio of the rectangle was higher than 1.6. Otherwise, the kiwifruit was regarded as a CPPU-untreated one. The method had the total identification accuracy rate of 90.0% when the kiwifruit images were captured either by utilizing a smartphone at normal lighting condition or by using an image acquisition system. CONCLUSION: The programs run on computer and smartphone were developed, and they could realize kiwifruit identification in 0.6 s and 2 s, respectively. The study makes identifying CPPU-treated kiwifruits in online processing be realizable, and offers a convenient method for kiwifruit consumers. © 2019 Society of Chemical Industry.


Assuntos
Actinidia/efeitos dos fármacos , Resíduos de Drogas/análise , Frutas/química , Fotografação/métodos , Reguladores de Crescimento de Plantas/análise , Polietilenoglicóis/análise , Poliuretanos/análise , Actinidia/química , Resíduos de Drogas/farmacologia , Frutas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Polietilenoglicóis/farmacologia , Poliuretanos/farmacologia , Smartphone
12.
J Agric Food Chem ; 67(26): 7390-7398, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31244202

RESUMO

Wound-induced suberization is an essentially protective healing process for wounded fruit to reduce water loss and microbial infection. It has been demonstrated that abscisic acid (ABA) could promote wound suberization, but the molecular mechanism of ABA regulation remains little known. In this study, the transcript level of Achn030011 (designated as AchnKCS), coding a ß-ketoacyl-coenzyme A synthase (KCS) involved in suberin biosynthesis, was found to be significantly upregulated by ABA in wounded kiwifruit. A bZIP transcription factor (Achn270881), a possible downstream transcription factor in the ABA signaling pathway, was screened and designated as AchnbZIP12 according to its homology with related Arabidopsis transcription factors. A yeast one-hybrid assay demonstrated that AchnbZIP12 could interact with the AchnKCS promoter. Furthermore, significant trans-activation of AchnbZIP12 on AchnKCS was verified. The transcript level of AchnbZIP12 was also upregulated upon treatment with ABA. These results imply that AchnbZIP12 acts as a positive regulator in ABA-mediated AchnKCS transcription during wound suberization of kiwifruit.


Assuntos
Ácido Abscísico/farmacologia , Actinidia/efeitos dos fármacos , Actinidia/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Actinidia/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/fisiologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos
13.
J Sci Food Agric ; 99(13): 5654-5661, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31141163

RESUMO

BACKGROUND: Ozone has been used for improving the postharvest life of fruits and vegetables. Ozonation, an alternative decontamination method, can be applied effectively to perishable commodities immediately after harvest. Kiwifruit is a subtropical climacteric fruit that is less able to acclimate and is susceptible to low temperatures. In this study, we investigated the influence of ozone and different storage temperatures on the physico-chemical and qualitative features in Actinidia chinensis 'Soreli'. The fruits were treated with a continuous flow of ozone in air (300 ppb), stored at 2 and 4 °C for 60 days, and sampled every 15 days. RESULTS: It was found that ozone treatment induced the ripening process; this was evident at the end of the storage, with higher soluble solids content for ozone-treated fruits at 2 and 4 °C. Storage temperatures and gaseous ozone treatment influenced in a different manner the bioactive compounds, such as polyphenols, flavonoids, ascorbic acid, and carotenoids. Additionally, under gaseous ozone storage, microbial growth was delayed, improving the microbial quality index when the fruits were stored at the lowest storage temperature (2 °C). Principal component analysis highlighted that the effects of storage temperature on physico-chemical and bioactive compounds were greater than the postharvest treatment. CONCLUSION: Storage temperature influenced the postharvest life of 'Soreli'. Storage at 2 °C and under 300 ppb gaseous ozone improved the yellow-fleshed fruit storage life. However, storage at 4 °C under 300 ppb gaseous ozone did not show advantages in preserving the fruit quality. © 2019 Society of Chemical Industry.


Assuntos
Actinidia/química , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Ozônio/farmacologia , Actinidia/efeitos dos fármacos , Ácido Ascórbico/análise , Carotenoides/análise , Temperatura Baixa , Cor , Armazenamento de Alimentos , Frutas/química , Frutas/efeitos dos fármacos , Controle de Qualidade
14.
BMC Plant Biol ; 18(1): 358, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30558543

RESUMO

BACKGROUND: Understanding the mechanisms involved in climacteric fruit ripening is key to improve fruit harvest quality and postharvest performance. Kiwifruit (Actinidia deliciosa cv. 'Hayward') ripening involves a series of metabolic changes regulated by ethylene. Although 1-methylcyclopropene (1-MCP, inhibitor of ethylene action) or ozone (O3) exposure suppresses ethylene-related kiwifruit ripening, how these molecules interact during ripening is unknown. RESULTS: Harvested 'Hayward' kiwifruits were treated with 1-MCP and exposed to ethylene-free cold storage (0 °C, RH 95%) with ambient atmosphere (control) or atmosphere enriched with O3 (0.3 µL L- 1) for up to 6 months. Their subsequent ripening performance at 20 °C (90% RH) was characterized. Treatment with either 1-MCP or O3 inhibited endogenous ethylene biosynthesis and delayed fruit ripening at 20 °C. 1-MCP and O3 in combination severely inhibited kiwifruit ripening, significantly extending fruit storage potential. To characterize ethylene sensitivity of kiwifruit following 1-MCP and O3 treatments, fruit were exposed to exogenous ethylene (100 µL L- 1, 24 h) upon transfer to 20 °C following 4 and 6 months of cold storage. Exogenous ethylene treatment restored ethylene biosynthesis in fruit previously exposed in an O3-enriched atmosphere. Comparative proteomics analysis showed separate kiwifruit ripening responses, unraveled common 1-MCP- and O3-dependent metabolic pathways and identified specific proteins associated with these different ripening behaviors. Protein components that were differentially expressed following exogenous ethylene exposure after 1-MCP or O3 treatment were identified and their protein-protein interaction networks were determined. The expression of several kiwifruit ripening related genes, such as 1-aminocyclopropane-1-carboxylic acid oxidase (ACO1), ethylene receptor (ETR1), lipoxygenase (LOX1), geranylgeranyl diphosphate synthase (GGP1), and expansin (EXP2), was strongly affected by O3, 1-MCP, their combination, and exogenously applied ethylene. CONCLUSIONS: Our findings suggest that the combination of 1-MCP and O3 functions as a robust repressive modulator of kiwifruit ripening and provide new insight into the metabolic events underlying ethylene-induced and ethylene-independent ripening outcomes.


Assuntos
Actinidia/fisiologia , Ciclopropanos/farmacologia , Etilenos/farmacologia , Frutas/fisiologia , Ozônio/farmacologia , Actinidia/efeitos dos fármacos , Etilenos/metabolismo , Armazenamento de Alimentos , Frutas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ozônio/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Braz. j. biol ; 78(4): 686-690, Nov. 2018. graf
Artigo em Inglês | LILACS | ID: biblio-951609

RESUMO

Abstract Kiwifruit are a popular fruit worldwide; however, plant growth is threatened by abiotic stresses such as drought and high temperatures. Niacin treatment in plants has been shown to increase NADPH levels, thus enhancing abiotic stresses tolerance. Here, we evaluate the effect of niacin solution spray treatment on NADPH levels in the kiwifruit cultivars Hayward and Xuxiang. We found that spray treatment with niacin solution promoted NADPH and NADP+ levels and decreased both O2·- production and H2O2 contents in leaves during a short period. In fruit, NADPH contents increased during early development, but decreased later. However, no effect on NADP+ levels has been observed throughout fruit development. In summary, this report suggests that niacin may be used to increase NADPH oxidases, thus increasing stress-tolerance in kiwifruit during encounter of short-term stressful conditions.


Resumo Kiwis são uma fruta popular em todo o mundo; No entanto, o crescimento das plantas é ameaçado por estresses abióticos como a seca e as altas temperaturas. O tratamento com niacina em plantas mostrou aumentar os níveis de NADPH, aumentando assim a tolerância a stress abiótico. Aqui, avaliamos o efeito do tratamento com spray de solução de niacina sobre os níveis de NADPH nos cultivares de kiwis Hayward e Xuxiang. Descobrimos que o tratamento por spray com solução de niacina promoveu níveis de NADPH e NADP + e diminuiu a produção de O2·- e os teores de H2O2 nas folhas durante um curto período. Nos frutos, os teores de NADPH aumentaram durante o desenvolvimento precoce, mas diminuíram mais tarde. No entanto, não se observou qualquer efeito nos níveis de NADP + ao longo do desenvolvimento do fruto. Em resumo, este relatório sugere que a niacina pode ser utilizada para aumentar NADPH oxidases, aumentando assim a tolerância ao estresse em kiwis durante o encontro de condições estressantes de curto prazo.


Assuntos
NADPH Oxidases/efeitos dos fármacos , Actinidia/efeitos dos fármacos , Frutas/efeitos dos fármacos , Niacina/farmacologia , Oxirredução , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Radicais Livres/metabolismo , Frutas/crescimento & desenvolvimento , NADP/metabolismo
16.
Int J Mol Sci ; 19(9)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149559

RESUMO

Mitogen activated protein kinase (MAPK) cascades are universal signal transduction modules that play crucial roles in various biotic and abiotic stresses, hormones, cell division, and developmental processes in plants. Mitogen activated protein kinase (MAPK/MPK), being a part of this cascade, performs an important function for further appropriate cellular responses. Although MAPKs have been investigated in several model plants, no systematic analysis has been conducted in kiwifruit (Actinidia chinensis). In the present study, we identified 18 putative MAPKs in the kiwifruit genome. This gene family was analyzed bioinformatically in terms of their chromosome locations, sequence alignment, gene structures, and phylogenetic and conserved motifs. All members possess fully canonical motif structures of MAPK. Phylogenetic analysis indicated that AcMAPKs could be classified into five subfamilies, and these gene motifs in the same group showed high similarity. Gene structure analysis demonstrated that the number of exons in AcMAPK genes ranged from 2 to 29, suggesting large variation among kiwifruit MAPK genes. The expression profiles of these AcMAPK genes were further investigated using quantitative real-time polymerase chain reaction (qRT-PCR), which demonstrated that AcMAPKs were induced or repressed by various biotic and abiotic stresses and hormone treatments, suggesting their potential roles in the biotic and abiotic stress response and various hormone signal transduction pathways in kiwifruit. The results of this study provide valuable insight into the putative physiological and biochemical functions of MAPK genes in kiwifruit.


Assuntos
Actinidia/genética , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Proteínas Quinases Ativadas por Mitógeno/genética , Família Multigênica , Actinidia/classificação , Actinidia/efeitos dos fármacos , Biologia Computacional/métodos , Sequência Conservada , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla/métodos , Motivos de Nucleotídeos , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Regiões Promotoras Genéticas , Estresse Fisiológico
17.
BMC Genomics ; 19(1): 585, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081820

RESUMO

BACKGROUND: Since 2007, bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) has become a pandemic disease leading to important economic losses in every country where kiwifruit is widely cultivated. Options for controlling this disease are very limited and rely primarily on the use of bactericidal compounds, such as copper, and resistance inducers. Among the latter, the most widely studied is acibenzolar-S-methyl. To elucidate the early molecular reaction of kiwifruit plants (Actinidia chinensis var. chinensis) to Psa infection and acibenzolar-S-methyl treatment, a RNA seq analysis was performed at different phases of the infection process, from the epiphytic phase to the endophytic invasion on acibenzolar-S-methyl treated and on non-treated plants. The infection process was monitored in vivo by confocal laser scanning microscopy. RESULTS: De novo assembly of kiwifruit transcriptome revealed a total of 39,607 transcripts, of which 3360 were differentially expressed during the infection process, primarily 3 h post inoculation. The study revealed the coordinated changes of important gene functional categories such as signaling, hormonal balance and transcriptional regulation. Among the transcription factor families, AP2/ERF, MYB, Myc, bHLH, GATA, NAC, WRKY and GRAS were found differentially expressed in response to Psa infection and acibenzolar-S-methyl treatment. Finally, in plants treated with acibenzolar-S-methyl, a number of gene functions related to plant resistance, such as PR proteins, were modulated, suggesting the set-up of a more effective defense response against the pathogen. Weighted-gene coexpression network analysis confirmed these results. CONCLUSIONS: Our work provides an in-depth description of the plant molecular reactions to Psa, it highlights the metabolic pathway related to acibenzolar-S-methyl-induced resistance and it contributes to the development of effective control strategies in open field.


Assuntos
Actinidia/genética , Perfilação da Expressão Gênica/métodos , Doenças das Plantas/genética , Proteínas de Plantas/genética , Tiadiazóis/farmacologia , Actinidia/efeitos dos fármacos , Actinidia/microbiologia , Resistência à Doença , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Pseudomonas syringae/fisiologia , Análise de Sequência de RNA
18.
Planta ; 248(2): 409-421, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29752536

RESUMO

MAIN CONCLUSION: The studied cationic porphyrins formulation allows an effective photoinactivation of Pseudomonas syringae pv. actinidiae in kiwifruit leaves under sunlight irradiation, without damaging the plant. Pseudomonas syringae pv. actinidiae (Psa) is a Gram-negative phytopathogenic bacterium responsible for canker on kiwifruit plant. Over the last decade, this bacterium dramatically affected the production of this fruit worldwide, causing significant economic losses. In general, Psa control consists in the application of copper which are toxic and persist in the environment. The application of antimicrobial photodynamic therapy (aPDT) as an alternative to inactivate Psa has already been demonstrated in recent studies that showed a 4 log Psa reduction using the cationic porphyrin Tetra-Py+-Me as photosensitizer (PS) and 3 consecutive cycles of treatment with a light irradiance of 150 mW cm-2. The present work aimed to evaluate the photodynamic efficiency of a new formulation constituted with five cationic porphyrins as PS in Psa inactivation. This new formulation was prepared to have as main component the tri-cationic porphyrin which is considered one of the most efficient photosensitizers in the photoinactivation of microorganisms. The in vitro study with a PS concentration of 5.0 µM and low irradiance, showed a 7.4 log photoinactivation after 60 min. Posteriorly, several assays were performed with the PS at 50 µM on kiwifruit leaves (ex vivo), under different conditions of light and inoculation. The ex vivo assays with artificially contaminated leaves showed a 2.8 and 4.5 log inactivation with low irradiance and sunlight, respectively, after 90 min. After a second treatment with sunlight, a 6.2 log inactivation was achieved. The photoinactivation on naturally contaminated leaves was about 2.3 log after 90 min sunlight irradiation. Ten consecutive cycles of phototreatment in sub-lethal conditions showed that Psa does not develop resistance, nor recover viability. The results suggest that aPDT can be an alternative to the current methods used to control Psa, since it was possible to inactivate this bacterium under sunlight, without damaging the leaves.


Assuntos
Actinidia/microbiologia , Folhas de Planta/microbiologia , Porfirinas/farmacologia , Pseudomonas syringae/efeitos dos fármacos , Pseudomonas syringae/patogenicidade , Actinidia/efeitos dos fármacos , Cátions/química , Cobre/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Porfirinas/química , Luz Solar
19.
Molecules ; 23(3)2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29509672

RESUMO

Evidence exists to suggest that melatonin (MT) is important to abiotic stress tolerance in plants. Here, we investigated whether exogenous MT reduces heat damage on biological parameters and gene expression in kiwifruit (Actinidia deliciosa) seedlings. Pretreatment with MT alleviates heat-induced oxidative harm through reducing H2O2 content and increasing proline content. Moreover, MT application raised ascorbic acid (AsA) levels and the activity of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). We also observed elevation in the activity of enzymes related to the AsA-GSH cycle, such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR). Furthermore, MT application increased the expression of 28/31 glutathione S-transferase (GST) genes, reducing oxidative stress. These results clearly indicate that in kiwifruit, MT exerts a protective effect against heat-related damage through regulating antioxidant pathways.


Assuntos
Actinidia/efeitos dos fármacos , Antioxidantes/farmacologia , Glutationa Transferase/biossíntese , Melatonina/farmacologia , Termotolerância/efeitos dos fármacos , Actinidia/enzimologia , Actinidia/genética , Actinidia/metabolismo , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidase/metabolismo , Prolina/metabolismo , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/genética , Plântula/metabolismo , Superóxido Dismutase/metabolismo , Transcrição Gênica/efeitos dos fármacos
20.
Braz J Biol ; 78(4): 686-690, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29412249

RESUMO

Kiwifruit are a popular fruit worldwide; however, plant growth is threatened by abiotic stresses such as drought and high temperatures. Niacin treatment in plants has been shown to increase NADPH levels, thus enhancing abiotic stresses tolerance. Here, we evaluate the effect of niacin solution spray treatment on NADPH levels in the kiwifruit cultivars Hayward and Xuxiang. We found that spray treatment with niacin solution promoted NADPH and NADP+ levels and decreased both O2·- production and H2O2 contents in leaves during a short period. In fruit, NADPH contents increased during early development, but decreased later. However, no effect on NADP+ levels has been observed throughout fruit development. In summary, this report suggests that niacin may be used to increase NADPH oxidases, thus increasing stress-tolerance in kiwifruit during encounter of short-term stressful conditions.


Assuntos
Actinidia/efeitos dos fármacos , Frutas/efeitos dos fármacos , NADPH Oxidases/efeitos dos fármacos , Niacina/farmacologia , Radicais Livres/metabolismo , Frutas/crescimento & desenvolvimento , NADP/metabolismo , Oxirredução , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...