Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 463
Filtrar
1.
Food Chem ; 446: 138809, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402768

RESUMO

This study investigated the individual and combined effects of l-arginine, l-lysine, and NaCl on the ultrastructure of porcine myofibrils to uncover the mechanism underlying meat tenderization. Arg or Lys alone shortened A-bands and damaged M-lines, while NaCl alone destroyed M- and Z-lines. Overall, Arg and Lys cooperated with NaCl to destroy the myofibrillar ultrastructure. Moreover, these two amino acids conjoined with NaCl to increase myosin solubility, actin band intensity, and the protein concentration of the actomyosin supernatant. However, they decreased the turbidity and particle size of both myosin and actomyosin solutions, and the remaining activities of Ca2+- and Mg2+-ATPase. The current results revealed that Arg/Lys combined with NaCl to extract myosin and dissociate actomyosin, thereby aggravating the destruction of the myofibrillar ultrastructure. The present results provide a good explanation for the previous phenomenon that Arg and Lys cooperated with NaCl to improve meat tenderness.


Assuntos
Actomiosina , Lisina , Animais , Suínos , Actomiosina/química , Lisina/química , Cloreto de Sódio/química , Miosinas/química , Carne/análise , Actinas/metabolismo , Arginina/química , Suplementos Nutricionais
2.
Int J Biol Macromol ; 262(Pt 2): 130097, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342265

RESUMO

To assess the blending effect of field snails with grass carp muscle, the effects of paramyosin (PM) and actomyosin (AM) with different mixture ratios on the gel properties of the binary blend system were investigated in our work. The purified PM from field snail muscle was about 95 kDa on SDS-PAGE. Its main secondary structure was α-helix, which reached to 97.97 %. When the amount of PM increased in the binary blend system, their rheological indices and gel strength were improved. The water holding capacity (WHC) increased to 86.30 % at a mixture ratio of 2:8. However, the WHC and the area of immobile water (P22) dramatically decreased, and the area of free water (P23) increased when the mixture ratio exceeded 4:6. The low level of PM in binary blend system promoted the formation of a homogenous and dense gel network through non-covalent interactions as observed results of SEM and FTIR. When there were redundant PM molecules, the development of heterostructure via hydrophobic interaction of tail-tail contributed to the reduced gel properties of the binary blend system. These findings provided new insight into the binary blend system of PM and AM with different ratios to change the gel properties of myofibrillar protein.


Assuntos
Actomiosina , Tropomiosina , Animais , Géis/química , Actomiosina/química , Caramujos , Água/química
3.
Nat Nanotechnol ; 18(8): 905-911, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157022

RESUMO

In living systems, irreversible, yet stochastic, molecular interactions form multiscale structures (such as cytoskeletal networks), which mediate processes (such as cytokinesis and cellular motility) in a close relationship between the structure and function. However, owing to a lack of methods to quantify non-equilibrium activity, their dynamics remain poorly characterized. Here, by measuring the time-reversal asymmetry encoded in the conformational dynamics of filamentous single-walled carbon nanotubes embedded in the actomyosin network of Xenopus egg extract, we characterize the multiscale dynamics of non-equilibrium activity encoded in bending-mode amplitudes. Our method is sensitive to distinct perturbations to the actomyosin network and the concentration ratio of adenosine triphosphate to adenosine diphosphate. Thus, our method can dissect the functional coupling of microscopic dynamics to the emergence of larger scale non-equilibrium activity. We relate the spatiotemporal scales of non-equilibrium activity to the key physical parameters of a semiflexible filament embedded in a non-equilibrium viscoelastic environment. Our analysis provides a general tool to characterize steady-state non-equilibrium activity in high-dimensional spaces.


Assuntos
Nanotubos de Carbono , Actomiosina/química , Citoesqueleto , Movimento Celular , Conformação Molecular
4.
Anim Sci J ; 94(1): e13825, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938887

RESUMO

The heat-induced gelation of actomyosin plays a key role in meat processing. Our previous study showed that L-histidine could affect the characteristics of a heat-induced gel of myosin on a low ionic strength. To apply the specific effect of L-histidine to meat processing, the heat-induced gel properties of actomyosin in the presence of L-histidine were investigated. Actomyosin in a low ionic strength solution containing L-histidine did not form a gel upon heating. The dynamic rheological properties of actomyosin in low ionic strength solutions were distinct depending on the presence or absence of L-histidine. Electron microscopy showed that, heated at 50°C, actomyosin in a low ionic strength solution containing L-histidine remained a filamentous structure. The surface hydrophobicity of actomyosin was stable up to 50°C in a low ionic strength solution containing L-histidine. In conclusion, L-histidine might suppress the aggregation of actomyosin and inhibit heat-induced gelation in a low ionic strength solution.


Assuntos
Actomiosina , Histidina , Animais , Actomiosina/química , Temperatura Alta , Miosinas , Concentração Osmolar
5.
Subcell Biochem ; 99: 421-470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36151385

RESUMO

Formation of cross-bridges between actin and myosin occurs ubiquitously in eukaryotic cells and mediates muscle contraction, intracellular cargo transport, and cytoskeletal remodeling. Myosin motors repeatedly bind to and dissociate from actin filaments in a cycle that transduces the chemical energy from ATP hydrolysis into mechanical force generation. While the general layout of surface elements within the actin-binding interface is conserved among myosin classes, sequence divergence within these motifs alters the specific contacts involved in the actomyosin interaction as well as the kinetics of mechanochemical cycle phases. Additionally, diverse lever arm structures influence the motility and force production of myosin molecules during their actin interactions. The structural differences generated by myosin's molecular evolution have fine-tuned the kinetics of its isoforms and adapted them for their individual cellular roles. In this chapter, we will characterize the structural and biochemical basis of the actin-myosin interaction and explain its relationship with myosin's cellular roles, with emphasis on the structural variation among myosin isoforms that enables their functional specialization. We will also discuss the impact of accessory proteins, such as the troponin-tropomyosin complex and myosin-binding protein C, on the formation and regulation of actomyosin cross-bridges.


Assuntos
Actinas , Actomiosina , Citoesqueleto de Actina/química , Actinas/metabolismo , Actomiosina/análise , Actomiosina/química , Actomiosina/metabolismo , Trifosfato de Adenosina/metabolismo , Miosinas/química , Isoformas de Proteínas/metabolismo
6.
Nature ; 609(7927): 597-604, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978196

RESUMO

A key event at the onset of development is the activation of a contractile actomyosin cortex during the oocyte-to-embryo transition1-3. Here we report on the discovery that, in Caenorhabditis elegans oocytes, actomyosin cortex activation is supported by the emergence of thousands of short-lived protein condensates rich in F-actin, N-WASP and the ARP2/3 complex4-8 that form an active micro-emulsion. A phase portrait analysis of the dynamics of individual cortical condensates reveals that condensates initially grow and then transition to disassembly before dissolving completely. We find that, in contrast to condensate growth through diffusion9, the growth dynamics of cortical condensates are chemically driven. Notably, the associated chemical reactions obey mass action kinetics that govern both composition and size. We suggest that the resultant condensate dynamic instability10 suppresses coarsening of the active micro-emulsion11, ensures reaction kinetics that are independent of condensate size and prevents runaway F-actin nucleation during the formation of the first cortical actin meshwork.


Assuntos
Actomiosina , Condensados Biomoleculares , Caenorhabditis elegans , Oócitos , Citoesqueleto de Actina/metabolismo , Proteína 2 Relacionada a Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Actinas/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Animais , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Emulsões/química , Emulsões/metabolismo , Oócitos/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(30): e2123056119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867835

RESUMO

The spatiotemporal organization of proteins and lipids on the cell surface has direct functional consequences for signaling, sorting, and endocytosis. Earlier studies have shown that multiple types of membrane proteins, including transmembrane proteins that have cytoplasmic actin binding capacity and lipid-tethered glycosylphosphatidylinositol-anchored proteins (GPI-APs), form nanoscale clusters driven by active contractile flows generated by the actin cortex. To gain insight into the role of lipids in organizing membrane domains in living cells, we study the molecular interactions that promote the actively generated nanoclusters of GPI-APs and transmembrane proteins. This motivates a theoretical description, wherein a combination of active contractile stresses and transbilayer coupling drives the creation of active emulsions, mesoscale liquid order (lo) domains of the GPI-APs and lipids, at temperatures greater than equilibrium lipid phase segregation. To test these ideas, we use spatial imaging of molecular clustering combined with local membrane order, and we demonstrate that mesoscopic domains enriched in nanoclusters of GPI-APs are maintained by cortical actin activity and transbilayer interactions and exhibit significant lipid order, consistent with predictions of the active composite model.


Assuntos
Actinas , Actomiosina , Membrana Celular , Proteínas Ligadas por GPI , Estresse Mecânico , Actinas/química , Actomiosina/química , Animais , Células CHO , Membrana Celular/química , Cricetulus , Proteínas Ligadas por GPI/química , Lipídeos/química
8.
PLoS Comput Biol ; 18(5): e1010105, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533192

RESUMO

Actin networks are essential for living cells to move, reproduce, and sense their environments. The dynamic and rheological behavior of actin networks is modulated by actin-binding proteins such as α-actinin, Arp2/3, and myosin. There is experimental evidence that actin-binding proteins modulate the cooperation of myosin motors by connecting the actin network. In this work, we present an analytical mean field model, using the Flory-Stockmayer theory of gelation, to understand how different actin-binding proteins change the connectivity of the actin filaments as the networks are formed. We follow the kinetics of the networks and estimate the concentrations of actin-binding proteins that are needed to reach connectivity percolation as well as to reach rigidity percolation. We find that Arp2/3 increases the actomyosin connectivity in the network in a non-monotonic way. We also describe how changing the connectivity of actomyosin networks modulates the ability of motors to exert forces, leading to three possible phases of the networks with distinctive dynamical characteristics: a sol phase, a gel phase, and an active phase. Thus, changes in the concentration and activity of actin-binding proteins in cells lead to a phase transition of the actin network, allowing the cells to perform active contraction and change their rheological properties.


Assuntos
Actinas , Actomiosina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/química , Cinética , Proteínas dos Microfilamentos/metabolismo , Miosinas/metabolismo
9.
Ultrason Sonochem ; 85: 105987, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35339000

RESUMO

This paper aimed to evaluate the effects of ultrasound-assisted L-histidine marination (UMH) on meat quality and actomyosin properties of beef M. semitendinosus. Our results found that UMH treatment effectively avoided excessive liquid withdrawal, and disrupted myofibril integrity by modifying the water distribution and weakening connection of actin-myosin with increased muscle pH. The ultrasound-treated sample provided more opportunity for the filtration of L-histidine to intervene the isoelectric point and conformation of muscle protein. The activated caspase-3 and changes of ATPase activity in UMH-treated meat accelerated the postmortem ageing, and L-histidine might competitively inhibit the actin-myosin binding by the imidazole group. UMH decreased the surface hydrophobicity by shielding hydrophobic area and unfolding the actomyosin structure. In addition, the increased actomyosin solubility with smaller particle size enhanced the SH content for better cross-linking of myosin tail, and formation of heat-set gelling protein structure. Therefore, UMH treatment manifested the potential to improve beef quality.


Assuntos
Actomiosina , Músculos Isquiossurais , Actinas , Actomiosina/química , Animais , Bovinos , Músculos Isquiossurais/metabolismo , Histidina/química , Carne/análise , Miosinas/química
10.
Proc Natl Acad Sci U S A ; 119(11): e2106098119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35259013

RESUMO

SignificanceThe pseudokinase integrin-linked kinase (ILK) is a central component of focal adhesions, cytoplasmic multiprotein complexes that integrate and transduce biochemical and mechanical signals from the extracellular environment into the cell and vice versa. However, the precise molecular functions, particularly the mechanosensory properties of ILK and the significance of retained adenosine triphosphate (ATP) binding, are still unclear. Combining molecular-dynamics simulations with cell biology, we establish a role for ATP binding to pseudokinases. We find that ATP promotes the structural stability of ILK, allosterically influences the interaction between ILK and its binding partner parvin at adhesions, and enhances the mechanoresistance of this complex. On the cellular level, ATP binding facilitates efficient traction force buildup, focal adhesion stabilization, and efficient cell migration.


Assuntos
Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Regulação Alostérica , Sítios de Ligação , Adesão Celular , Movimento Celular , Estabilidade Enzimática , Adesões Focais , Mecanotransdução Celular , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Conformação Molecular , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/genética , Relação Estrutura-Atividade , Especificidade por Substrato
11.
PLoS Comput Biol ; 18(3): e1009981, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35353813

RESUMO

The actin cortex is an active adaptive material, embedded with complex regulatory networks that can sense, generate, and transmit mechanical forces. The cortex exhibits a wide range of dynamic behaviours, from generating pulsatory contractions and travelling waves to forming organised structures. Despite the progress in characterising the biochemical and mechanical components of the actin cortex, the emergent dynamics of this mechanochemical system is poorly understood. Here we develop a reaction-diffusion model for the RhoA signalling network, the upstream regulator for actomyosin assembly and contractility, coupled to an active actomyosin gel, to investigate how the interplay between chemical signalling and mechanical forces regulates stresses and patterns in the cortex. We demonstrate that mechanochemical feedback in the cortex acts to destabilise homogeneous states and robustly generate pulsatile contractions. By tuning active stress in the system, we show that the cortex can generate propagating contraction pulses, form network structures, or exhibit topological turbulence.


Assuntos
Actinas , Actomiosina , Citoesqueleto de Actina , Actomiosina/química
12.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163146

RESUMO

Two isoforms of human cardiac myosin, alpha and beta, share significant sequence similarities but show different kinetics. The alpha isoform is a faster motor; it spends less time being strongly bound to actin during the actomyosin cycle. With alpha isoform, actomyosin dissociates faster upon ATP binding, and the affinity of ADP to actomyosin is weaker. One can suggest that the isoform-specific actomyosin kinetics is regulated at the nucleotide binding site of human cardiac myosin. Myosin is a P-loop ATPase; the nucleotide-binding site consists of P-loop and loops switch 1 and 2. All three loops position MgATP for successful hydrolysis. Loops sequence is conserved in both myosin isoforms, and we hypothesize that the isoform-specific structural element near the active site regulates the rate of nucleotide binding and release. Previously we ran molecular dynamics simulations and found that loop S291-E317 near loop switch 1 is more compact and exhibits larger fluctuations of the position of amino acid residues in beta isoform than in alpha. In alpha isoform, the loop forms a salt bridge with loop switch 1, the bridge is not present in beta isoform. Two isoleucines I303 and I313 of loop S291-E317 are replaced with valines in alpha isoform. We introduced a double mutation I303V:I313V in beta isoform background and studied how the mutation affects the rate of ATP binding and ADP dissociation from actomyosin. We found that ATP-induced actomyosin dissociation occurs faster in the mutant, but the rate of ADP release remains the same as in the wild-type beta isoform. Due to the proximity of loop S291-E317 and loop switch 1, a faster rate of ATP-induced actomyosin dissociation indicates that loop S291-E317 affects structural dynamics of loop switch 1, and that loop switch 1 controls ATP binding to the active site. A similar rate of ADP dissociation from actomyosin in the mutant and wild-type myosin constructs indicates that loop switch 1 does not control ADP release from actomyosin.


Assuntos
Actomiosina/química , Actomiosina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Sítios de Ligação , Humanos , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
13.
Nano Lett ; 22(3): 1145-1150, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35089720

RESUMO

Molecular motors are pivotal for intracellular transport as well as cell motility and have great potential to be put to use outside cells. Here, we exploit engineered motor proteins in combination with self-assembly of actin filaments to actively pull lipid nanotubes from giant unilamellar vesicles (GUVs). In particular, actin filaments are bound to the outer GUV membrane and the GUVs are seeded on a heavy meromyosin-coated substrate. Upon addition of ATP, hollow lipid nanotubes with a length of tens of micrometer are pulled from single GUVs due to the motor activity. We employ the same mechanism to pull lipid nanotubes from different types of cells. We find that the length and number of nanotubes critically depends on the cell type, whereby suspension cells form bigger networks than adherent cells. This suggests that molecular machines can be used to exert forces on living cells to probe membrane-to-cortex attachment.


Assuntos
Actomiosina , Nanotubos , Citoesqueleto de Actina/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Lipídeos/química , Nanotubos/química , Lipossomas Unilamelares/química
14.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819379

RESUMO

Plasmodium malaria parasites are obligate intracellular protozoans that use a unique form of locomotion, termed gliding motility, to move through host tissues and invade cells. The process is substrate dependent and powered by an actomyosin motor that drives the posterior translocation of extracellular adhesins which, in turn, propel the parasite forward. Gliding motility is essential for tissue translocation in the sporozoite and ookinete stages; however, the short-lived erythrocyte-invading merozoite stage has never been observed to undergo gliding movement. Here we show Plasmodium merozoites possess the ability to undergo gliding motility in vitro and that this mechanism is likely an important precursor step for successful parasite invasion. We demonstrate that two human infective species, Plasmodium falciparum and Plasmodium knowlesi, have distinct merozoite motility profiles which may reflect distinct invasion strategies. Additionally, we develop and validate a higher throughput assay to evaluate the effects of genetic and pharmacological perturbations on both the molecular motor and the complex signaling cascade that regulates motility in merozoites. The discovery of merozoite motility provides a model to study the glideosome and adds a dimension for work aiming to develop treatments targeting the blood stage invasion pathways.


Assuntos
Eritrócitos/parasitologia , Merozoítos/fisiologia , Plasmodium falciparum/genética , Plasmodium/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/fisiologia , Citoesqueleto de Actina/metabolismo , Actomiosina/química , Animais , Eritrócitos/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Concentração Inibidora 50 , Locomoção , Proteínas de Membrana/metabolismo , Transdução de Sinais
15.
Food Chem ; 356: 129655, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33831832

RESUMO

Phosphorylation of myosin regulatory light chain (MRLC) can regulate muscle contraction and thus affect actomyosin dissociation and meat quality. The objective of this study was to explore the mechanism by how MRLC phosphorylation regulates actomyosin dissociation and thus develop strategies for improving meat quality. Here, the phosphorylation status of MRLC was modulated by myosin light chain kinase and myosin light chain kinase inhibitor. MRLC phosphorylation at Ser17 decreased the kinetic energy and total energy of actomyosin, thus stabilized the structure, facilitating the interaction between myosin and actin; this was one possible way that MRLC phosphorylation at Ser17 negatively affects actomyosin dissociation. Moreover, MRLC phosphorylation at Ser17 was beneficial to the formation of ionic bonds, hydrogen bonds, and hydrophobic interaction between myosin and actin, and was the second possible way that MRLC phosphorylation at Ser17 negatively affects actomyosin dissociation.


Assuntos
Actomiosina/metabolismo , Cadeias Leves de Miosina/metabolismo , Actinas/metabolismo , Actomiosina/química , Animais , Calorimetria , Simulação de Dinâmica Molecular , Cadeias Leves de Miosina/química , Quinase de Cadeia Leve de Miosina/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Serina/metabolismo
16.
Cell ; 184(8): 2135-2150.e13, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33765442

RESUMO

Sarcomeres are force-generating and load-bearing devices of muscles. A precise molecular picture of how sarcomeres are built underpins understanding their role in health and disease. Here, we determine the molecular architecture of native vertebrate skeletal sarcomeres by electron cryo-tomography. Our reconstruction reveals molecular details of the three-dimensional organization and interaction of actin and myosin in the A-band, I-band, and Z-disc and demonstrates that α-actinin cross-links antiparallel actin filaments by forming doublets with 6-nm spacing. Structures of myosin, tropomyosin, and actin at ~10 Å further reveal two conformations of the "double-head" myosin, where the flexible orientation of the lever arm and light chains enable myosin not only to interact with the same actin filament, but also to split between two actin filaments. Our results provide unexpected insights into the fundamental organization of vertebrate skeletal muscle and serve as a strong foundation for future investigations of muscle diseases.


Assuntos
Músculo Esquelético/metabolismo , Sarcômeros/química , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinina/química , Actinina/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Animais , Microscopia Crioeletrônica , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Ligação Proteica , Sarcômeros/metabolismo , Sarcômeros/ultraestrutura , Tropomiosina/química , Tropomiosina/metabolismo
17.
Food Chem ; 352: 129398, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33652197

RESUMO

We investigated the effects of ultrasonic treatment (400 W, 20 kHz, 45.52 W/L) and storage time (0 d, 3 d, 7 d and 10 d) on functional properties, structural changes and in vitro digestion of actomyosin complex isolated from vacuum-packed pork. As storage time increased, turbidity, surface hydrophobicity, active sulfhydryl and total sulfhydryl of actomyosin complex increased, while protein solubility decreased. Ultrasonic treatment increased surface hydrophobicity, protein solubility and active sulfhydryl content but decreased turbidity and total sulfhydryl content compared with the control. Ultrasonic treatment caused a reduction in α-helix content on 0 day and the fluorescence intensity of tryptophan and tyrosine residues. It increased pancreatin digestibility of actomyosin complex and the number of peptides of smaller than 1 kDa. However, it decreased the number of peptides. The findings provide a new insight into the application of appropriate ultrasonic treatment to promote meat digestibility.


Assuntos
Actomiosina/química , Digestão , Armazenamento de Alimentos , Carne/análise , Ondas Ultrassônicas , Actomiosina/metabolismo , Animais , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Compostos de Sulfidrila/química , Suínos
18.
PLoS Comput Biol ; 17(2): e1008780, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33617532

RESUMO

Biomineralization is the process by which organisms use minerals to harden their tissues and provide them with physical support. Biomineralizing cells concentrate the mineral in vesicles that they secret into a dedicated compartment where crystallization occurs. The dynamics of vesicle motion and the molecular mechanisms that control it, are not well understood. Sea urchin larval skeletogenesis provides an excellent platform for investigating the kinetics of mineral-bearing vesicles. Here we used lattice light-sheet microscopy to study the three-dimensional (3D) dynamics of calcium-bearing vesicles in the cells of normal sea urchin embryos and of embryos where skeletogenesis is blocked through the inhibition of Vascular Endothelial Growth Factor Receptor (VEGFR). We developed computational tools for displaying 3D-volumetric movies and for automatically quantifying vesicle dynamics. Our findings imply that calcium vesicles perform an active diffusion motion in both, calcifying (skeletogenic) and non-calcifying (ectodermal) cells of the embryo. The diffusion coefficient and vesicle speed are larger in the mesenchymal skeletogenic cells compared to the epithelial ectodermal cells. These differences are possibly due to the distinct mechanical properties of the two tissues, demonstrated by the enhanced f-actin accumulation and myosinII activity in the ectodermal cells compared to the skeletogenic cells. Vesicle motion is not directed toward the biomineralization compartment, but the vesicles slow down when they approach it, and probably bind for mineral deposition. VEGFR inhibition leads to an increase of vesicle volume but hardly changes vesicle kinetics and doesn't affect f-actin accumulation and myosinII activity. Thus, calcium vesicles perform an active diffusion motion in the cells of the sea urchin embryo, with diffusion length and speed that inversely correlate with the strength of the actomyosin network. Overall, our studies provide an unprecedented view of calcium vesicle 3D-dynamics and point toward cytoskeleton remodeling as an important effector of the motion of mineral-bearing vesicles.


Assuntos
Biomineralização , Cálcio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ouriços-do-Mar/fisiologia , Actomiosina/química , Actomiosina/metabolismo , Animais , Biologia Computacional/métodos , Citoesqueleto/metabolismo , Biologia do Desenvolvimento/métodos , Difusão , Ectoderma/metabolismo , Embrião não Mamífero/metabolismo , Endocitose , Fluoresceínas/química , Cinética , Movimento (Física) , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
Commun Biol ; 4(1): 64, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441912

RESUMO

Benefits of single molecule studies of biomolecules include the need for minimal amounts of material and the potential to reveal phenomena hidden in ensembles. However, results from recent single molecule studies of fluorescent ATP turnover by myosin are difficult to reconcile with ensemble studies. We found that key reasons are complexities due to dye photophysics and fluorescent contaminants. After eliminating these, through surface cleaning and use of triple state quenchers and redox agents, the distributions of ATP binding dwell times on myosin are best described by 2 to 3 exponential processes, with and without actin, and with and without the inhibitor para-aminoblebbistatin. Two processes are attributable to ATP turnover by myosin and actomyosin respectively, whereas the remaining process (rate constant 0.2-0.5 s-1) is consistent with non-specific ATP binding to myosin, possibly accelerating ATP transport to the active site. Finally, our study of actin-activated myosin ATP turnover without sliding between actin and myosin reveals heterogeneity in the ATP turnover kinetics consistent with models of isometric contraction.


Assuntos
Actomiosina/metabolismo , Trifosfato de Adenosina/metabolismo , Miosinas/metabolismo , Actomiosina/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Animais , Feminino , Corantes Fluorescentes/química , Contração Isométrica , Microscopia de Fluorescência/métodos , Miosinas/química , Coelhos , Imagem Individual de Molécula/métodos , Fatores de Tempo
20.
Sci Rep ; 11(1): 2677, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514794

RESUMO

The cellular cortex is a dynamic and contractile actomyosin network modulated by actin-binding proteins. We reconstituted a minimal cortex adhered to a model cell membrane mimicking two processes mediated by the motor protein myosin: contractility and high turnover of actin monomers. Myosin reorganized these networks by extensile intra­bundle contractions leading to an altered growth mechanism. Hereby, stress within tethered bundles induced nicking of filaments followed by repair via incorporation of free monomers. This mechanism was able to break the symmetry of the previously disordered network resulting in the generation of extensile clusters, reminiscent of structures found within cells.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Membranas Artificiais , Contração Muscular , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Animais , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...