Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
1.
J Clin Invest ; 134(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949025

RESUMO

Healthy adipose tissue is essential for normal physiology. There are 2 broad types of adipose tissue depots: brown adipose tissue (BAT), which contains adipocytes poised to burn energy through thermogenesis, and white adipose tissue (WAT), which contains adipocytes that store lipids. However, within those types of adipose, adipocytes possess depot and cell-specific properties that have important implications. For example, the subcutaneous and visceral WAT confers divergent risk for metabolic disease. Further, within a depot, different adipocytes can have distinct properties; subcutaneous WAT can contain adipocytes with either white or brown-like (beige) adipocyte properties. However, the pathways that regulate and maintain this cell and depot-specificity are incompletely understood. Here, we found that the transcription factor KLF15 is required for maintaining white adipocyte properties selectively within the subcutaneous WAT. We revealed that deletion of Klf15 is sufficient to induce beige adipocyte properties and that KLF15's direct regulation of Adrb1 is a critical molecular mechanism for this process. We uncovered that this activity is cell autonomous but has systemic implications in mouse models and is conserved in primary human adipose cells. Our results elucidate a pathway for depot-specific maintenance of white adipocyte properties that could enable the development of therapies for obesity and associated diseases.


Assuntos
Adipócitos Brancos , Fatores de Transcrição Kruppel-Like , Gordura Subcutânea , Animais , Camundongos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Adipócitos Brancos/metabolismo , Gordura Subcutânea/metabolismo , Humanos , Camundongos Knockout , Tecido Adiposo Branco/metabolismo , Masculino , Adipócitos Bege/metabolismo
2.
Front Endocrinol (Lausanne) ; 15: 1396965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38982992

RESUMO

Adipose tissues, particularly beige and brown adipose tissue, play crucial roles in energy metabolism. Brown adipose tissues' thermogenic capacity and the appearance of beige cells within white adipose tissue have spurred interest in their metabolic impact and therapeutic potential. Brown and beige fat cells, activated by environmental factors like cold exposure or by pharmacology, share metabolic mechanisms that drive non-shivering thermogenesis. Understanding these two cell types requires advanced, yet broadly applicable in vitro models that reflect the complex microenvironment and vasculature of adipose tissues. Here we present mouse vascularized adipose spheroids of the stromal vascular microenvironment from inguinal white adipose tissue, a tissue with 'beiging' capacity in mice and humans. We show that adding a scaffold improves vascular sprouting, enhances spheroid growth, and upregulates adipogenic markers, thus reflecting increased adipocyte maturity. Transcriptional profiling via RNA sequencing revealed distinct metabolic pathways upregulated in our vascularized adipose spheroids, with increased expression of genes involved in glucose metabolism, lipid metabolism, and thermogenesis. Functional assessment demonstrated increased oxygen consumption in vascularized adipose spheroids compared to classical 2D cultures, which was enhanced by ß-adrenergic receptor stimulation correlating with elevated ß-adrenergic receptor expression. Moreover, stimulation with the naturally occurring adipokine, FGF21, induced Ucp1 mRNA expression in the vascularized adipose spheroids. In conclusion, vascularized inguinal white adipose tissue spheroids provide a physiologically relevant platform to study how the stromal vascular microenvironment shapes adipocyte responses and influence activated thermogenesis in beige adipocytes.


Assuntos
Esferoides Celulares , Termogênese , Animais , Camundongos , Esferoides Celulares/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/citologia , Camundongos Endogâmicos C57BL , Masculino , Adipócitos/metabolismo , Adipócitos/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/citologia , Células Cultivadas , Adipócitos Bege/metabolismo , Adipócitos Bege/citologia , Metabolismo Energético , Adipogenia/fisiologia , Sistemas Microfisiológicos
3.
Nat Aging ; 4(6): 839-853, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38858606

RESUMO

Thermogenic beige adipocytes are recognized as potential therapeutic targets for combating metabolic diseases. However, the metabolic advantages that they offer are compromised with aging. Here we show that treating mice with estrogen (E2), a hormone that decreases with age, can counteract the age-related decline in beige adipogenesis when exposed to cold temperature while concurrently enhancing energy expenditure and improving glucose tolerance in mice. Mechanistically, we found that nicotinamide phosphoribosyl transferase (NAMPT) plays a pivotal role in facilitating the formation of E2-induced beige adipocytes, which subsequently suppresses the onset of age-related endoplasmic reticulum (ER) stress. Furthermore, we found that targeting NAMPT signaling, either genetically or pharmacologically, can restore the formation of beige adipocytes by increasing the number of perivascular adipocyte progenitor cells. Conversely, the absence of NAMPT signaling prevents this process. Together, our findings shed light on the mechanisms regulating the age-dependent impairment of beige adipocyte formation and underscore the E2-NAMPT-controlled ER stress pathway as a key regulator of this process.


Assuntos
Adipócitos Bege , Adipogenia , Envelhecimento , Estresse do Retículo Endoplasmático , Estrogênios , Nicotinamida Fosforribosiltransferase , Nicotinamida Fosforribosiltransferase/metabolismo , Animais , Adipogenia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Estrogênios/metabolismo , Estrogênios/farmacologia , Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/metabolismo , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Feminino , Camundongos Endogâmicos C57BL , Metabolismo Energético/efeitos dos fármacos
4.
Sci Adv ; 10(26): eadn5229, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924414

RESUMO

There is a regional preference around lymph nodes (LNs) for adipose beiging. Here, we show that local LN removal within inguinal white adipose tissue (iWAT) greatly impairs cold-induced beiging, and this impairment can be restored by injecting M2 macrophages or macrophage-derived C-C motif chemokine (CCL22) into iWAT. CCL22 injection into iWAT effectively promotes iWAT beiging, while blocking CCL22 with antibodies can prevent it. Mechanistically, the CCL22 receptor, C-C motif chemokine receptor 4 (CCR4), within eosinophils and its downstream focal adhesion kinase/p65/interleukin-4 signaling are essential for CCL22-mediated beige adipocyte formation. Moreover, CCL22 levels are inversely correlated with body weight and fat mass in mice and humans. Acute elevation of CCL22 levels effectively prevents diet-induced body weight and fat gain by enhancing adipose beiging. Together, our data identify the CCL22-CCR4 axis as an essential mediator for LN-controlled adaptive thermogenesis and highlight its potential to combat obesity and its associated complications.


Assuntos
Tecido Adiposo Branco , Quimiocina CCL22 , Metabolismo Energético , Linfonodos , Macrófagos , Termogênese , Animais , Feminino , Humanos , Masculino , Camundongos , Adipócitos Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Quimiocina CCL22/metabolismo , Eosinófilos/metabolismo , Linfonodos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptores CCR4/metabolismo , Transdução de Sinais
5.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928011

RESUMO

Adipose tissue is conventionally recognized as a metabolic organ responsible for storing energy. However, a proportion of adipose tissue also functions as a thermogenic organ, contributing to the inhibition of weight gain and prevention of metabolic diseases. In recent years, there has been significant progress in the study of thermogenic fats, particularly brown adipose tissue (BAT). Despite this progress, the mechanism underlying thermogenesis in beige adipose tissue remains highly controversial. It is widely acknowledged that beige adipose tissue has three additional thermogenic mechanisms in addition to the conventional UCP1-dependent thermogenesis: Ca2+ cycling thermogenesis, creatine substrate cycling thermogenesis, and triacylglycerol/fatty acid cycling thermogenesis. This paper delves into these three mechanisms and reviews the latest advancements in the molecular regulation of thermogenesis from the molecular genetic perspective. The objective of this review is to provide readers with a foundation of knowledge regarding the beige fats and a foundation for future research into the mechanisms of this process, which may lead to the development of new strategies for maintaining human health.


Assuntos
Adipócitos Bege , Termogênese , Termogênese/genética , Humanos , Adipócitos Bege/metabolismo , Animais , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Cálcio/metabolismo , Ácidos Graxos/metabolismo , Triglicerídeos/metabolismo , Tecido Adiposo Bege/metabolismo
6.
Cell Metab ; 36(6): 1287-1301.e7, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838641

RESUMO

Adipocytes in dermis are considered to be important participants in skin repair and regeneration, but the role of subcutaneous white adipose tissue (sWAT) in skin repair is poorly understood. Here, we revealed the dynamic changes of sWAT during wound healing process. Lineage-tracing mouse studies revealed that sWAT would enter into the large wound bed and participate in the formation of granulation tissue. Moreover, sWAT undergoes beiging after skin injury. Inhibition of sWAT beiging by genetically silencing PRDM16, a key regulator to beiging, hindered wound healing process. The transcriptomics results suggested that beige adipocytes in sWAT abundantly express neuregulin 4 (NRG4), which regulated macrophage polarization and the function of myofibroblasts. In diabetic wounds, the beiging of sWAT was significantly suppressed. Thus, adipocytes from sWAT regulate multiple aspects of repair and may be therapeutic for inflammatory diseases and defective wound healing associated with aging and diabetes.


Assuntos
Tecido Adiposo Branco , Pele , Cicatrização , Animais , Tecido Adiposo Branco/metabolismo , Camundongos , Pele/metabolismo , Pele/patologia , Camundongos Endogâmicos C57BL , Gordura Subcutânea/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Neurregulinas/metabolismo , Neurregulinas/genética , Masculino , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Tecido Adiposo Marrom/metabolismo , Adipócitos Bege/metabolismo , Macrófagos/metabolismo , Humanos , Miofibroblastos/metabolismo
7.
Front Endocrinol (Lausanne) ; 15: 1395750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859907

RESUMO

Background: The beneficial effect of thermogenic adipocytes in maintaining body weight and protecting against metabolic disorders has raised interest in understanding the regulatory mechanisms defining white and beige adipocyte identity. Although alternative splicing has been shown to propagate adipose browning signals in mice, this has yet to be thoroughly investigated in human adipocytes. Methods: We performed parallel white and beige adipogenic differentiation using primary adipose stem cells from 6 unrelated healthy subjects and assessed differential gene and isoform expression in mature adipocytes by RNA sequencing. Results: We find 777 exon junctions with robust differential usage between white and beige adipocytes in all 6 subjects, mapping to 562 genes. Importantly, only 10% of these differentially spliced genes are also differentially expressed, indicating that alternative splicing constitutes an additional layer of gene expression regulation during beige adipocyte differentiation. Functional classification of alternative isoforms points to a gain of function for key thermogenic transcription factors such as PPARG and CITED1, and enzymes such as PEMT, or LPIN1. We find that a large majority of the splice variants arise from differential TSS usage, with beige-specific TSSs being enriched for PPARγ and MED1 binding compared to white-specific TSSs. Finally, we validate beige specific isoform expression at the protein level for two thermogenic regulators, PPARγ and PEMT. Discussion: These results suggest that differential isoform expression through alternative TSS usage is an important regulatory mechanism for human adipocyte thermogenic specification.


Assuntos
Adipócitos Bege , Processamento Alternativo , Isoformas de Proteínas , Termogênese , Humanos , Adipócitos Bege/metabolismo , Termogênese/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Diferenciação Celular , Adipogenia/genética , Masculino , Feminino , Adulto , Células Cultivadas , Regulação da Expressão Gênica , PPAR gama/genética , PPAR gama/metabolismo
9.
RNA ; 30(8): 1011-1024, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38692841

RESUMO

Neat1 is an architectural RNA that provides the structural basis for nuclear bodies known as paraspeckles. Although the assembly processes by which Neat1 organizes paraspeckle components are well-documented, the physiological functions of Neat1 are not yet fully understood. This is partly because Neat1 knockout (KO) mice, lacking paraspeckles, do not exhibit overt phenotypes under normal laboratory conditions. During our search for conditions that elicit clear phenotypes in Neat1 KO mice, we discovered that the differentiation of beige adipocytes-inducible thermogenic cells that emerge upon cold exposure-is severely impaired in these mutant mice. Neat1_2, the architectural isoform of Neat1, is transiently upregulated during the early stages of beige adipocyte differentiation, coinciding with increased paraspeckle formation. Genes with altered expression during beige adipocyte differentiation typically cluster at specific chromosomal locations, some of which move closer to paraspeckles upon cold exposure. These observations suggest that paraspeckles might coordinate the regulation of these gene clusters by controlling the activity of certain transcriptional condensates that coregulate multiple genes. We propose that our findings highlight a potential role for Neat1 and paraspeckles in modulating chromosomal organization and gene expression, potentially crucial processes for the differentiation of beige adipocytes.


Assuntos
Adipócitos Bege , Diferenciação Celular , Temperatura Baixa , Camundongos Knockout , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Diferenciação Celular/genética , Adipócitos Bege/metabolismo , Adipócitos Bege/citologia , Termogênese/genética
10.
JCI Insight ; 9(11)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713533

RESUMO

Activation of brown adipose tissue (BAT) thermogenesis increases energy expenditure and alleviates obesity. Here we discover that histone methyltransferase suppressor of variegation 4-20 homolog 2 (Suv420h2) expression parallels that of Ucp1 in brown and beige adipocytes and that Suv420h2 knockdown significantly reduces - whereas Suv420h2 overexpression significantly increases - Ucp1 levels in brown adipocytes. Suv420h2 knockout (H2KO) mice exhibit impaired cold-induced thermogenesis and are prone to diet-induced obesity. In contrast, mice with specific overexpression of Suv420h2 in adipocytes display enhanced cold-induced thermogenesis and are resistant to diet-induced obesity. Further study shows that Suv420h2 catalyzes H4K20 trimethylation at eukaryotic translation initiation factor 4E-binding protein 1 (4e-bp1) promoter, leading to downregulated expression of 4e-bp1, a negative regulator of the translation initiation complex. This in turn upregulates PGC1α protein levels, and this upregulation is associated with increased expression of thermogenic program. We conclude that Suv420h2 is a key regulator of brown/beige adipocyte development and thermogenesis.


Assuntos
Adipócitos Bege , Tecido Adiposo Marrom , Histona-Lisina N-Metiltransferase , Camundongos Knockout , Obesidade , Termogênese , Proteína Desacopladora 1 , Animais , Termogênese/genética , Camundongos , Adipócitos Bege/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Obesidade/metabolismo , Obesidade/genética , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tecido Adiposo Marrom/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Adipócitos Marrons/metabolismo , Masculino , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Metabolismo Energético , Camundongos Endogâmicos C57BL
11.
Elife ; 122024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775132

RESUMO

The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.


Assuntos
Adipócitos Bege , Adipogenia , Envelhecimento , Temperatura Baixa , Animais , Adipogenia/genética , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Camundongos , Adipócitos Bege/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Adipócitos/metabolismo , Diferenciação Celular , Reprogramação Celular , Reprogramação Metabólica
12.
Front Endocrinol (Lausanne) ; 15: 1385811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765953

RESUMO

Background: Thermogenic beige adipocytes, which dissipate energy as heat, are found in neonates and adults. Recent studies show that neonatal beige adipocytes are highly plastic and contribute to >50% of beige adipocytes in adults. Neonatal beige adipocytes are distinct from recruited beige adipocytes in that they develop independently of temperature and sympathetic innervation through poorly defined mechanisms. Methods: We characterized the neonatal beige adipocytes in the inguinal white adipose tissue (iWAT) of C57BL6 postnatal day 3 and 20 mice (P3 and P20) by imaging, genome-wide RNA-seq analysis, ChIP-seq analysis, qRT-PCR validation, and biochemical assays. Results: We found an increase in acetylated histone 3 lysine 27 (H3K27ac) on the promoter and enhancer regions of beige-specific gene UCP1 in iWAT of P20 mice. Furthermore, H3K27ac ChIP-seq analysis in the iWAT of P3 and P20 mice revealed strong H3K27ac signals at beige adipocyte-associated genes in the iWAT of P20 mice. The integration of H3K27ac ChIP-seq and RNA-seq analysis in the iWAT of P20 mice reveal epigenetically active signatures of beige adipocytes, including oxidative phosphorylation and mitochondrial metabolism. We identify the enrichment of GA-binding protein alpha (GABPα) binding regions in the epigenetically active chromatin regions of the P20 iWAT, particularly on beige genes, and demonstrate that GABPα is required for beige adipocyte differentiation. Moreover, transcriptomic analysis and glucose oxidation assays revealed increased glycolytic activity in the neonatal iWAT from P20. Conclusions: Our findings demonstrate that epigenetic mechanisms regulate the development of peri-weaning beige adipocytes via GABPα. Further studies to better understand the upstream mechanisms that regulate epigenetic activation of GABPα and characterization of the metabolic identity of neonatal beige adipocytes will help us harness their therapeutic potential in metabolic diseases.


Assuntos
Adipócitos Bege , Adipogenia , Tecido Adiposo Branco , Animais Recém-Nascidos , Cromatina , Epigênese Genética , Fator de Transcrição de Proteínas de Ligação GA , Camundongos Endogâmicos C57BL , Animais , Camundongos , Adipócitos Bege/metabolismo , Cromatina/metabolismo , Cromatina/genética , Adipogenia/genética , Tecido Adiposo Branco/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/genética , Masculino , Termogênese/genética , Histonas/metabolismo , Histonas/genética
13.
Gene ; 915: 148421, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561165

RESUMO

Obesity and its associated complications pose a significant burden on health. The non-shivering thermogenesis (NST) and metabolic capacity properties of brown adipose tissue (BAT), which are distinct from those of white adipose tissue (WAT), in combating obesity and its related metabolic diseases has been well documented. However, beige adipose tissue, the third and relatively novel type of adipose tissue, which emerges in extensive presence of WAT and shares similar favorable metabolic properties with BAT, has garnered considerable attention in recent years. In this review, we focused on the role of G protein-coupled receptors (GPCRs), the largest receptor family and the most successful class of drug targets in humans, in the induction of beige adipocytes. More importantly, we highlight researchers' clinical treatment attempts to ameliorate obesity and other related metabolic diseases through the formation and activation of beige adipose tissue. In summary, this review provides valuable insights into the formation of beige adipose tissue and the involvement of GPCRs, based on the latest advancements in scientific research.


Assuntos
Adipócitos Bege , Obesidade , Receptores Acoplados a Proteínas G , Termogênese , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Obesidade/metabolismo , Adipócitos Bege/metabolismo , Animais , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo
14.
Cells ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667324

RESUMO

After exposure to cold stress, animals enhance the production of beige adipocytes and expedite thermogenesis, leading to improved metabolic health. Although brown adipose tissue in rodents is primarily induced by ß3-adrenergic receptor (ADRB3) stimulation, the activation of major ß-adrenergic receptors (ADRBs) in pigs has been a topic of debate. To address this, we developed overexpression vectors for ADRB1, ADRB2, and ADRB3 and silenced the expression of these receptors to observe their effects on the adipogenic differentiation stages of porcine preadipocytes. Our investigation revealed that cold stress triggers the transformation of subcutaneous white adipose tissue to beige adipose tissue in pigs by modulating adrenergic receptor levels. Meanwhile, we found that ADRB3 promotes the transformation of white adipocytes into beige adipocytes. Notably, ADRB3 enhances the expression of beige adipose tissue marker genes, consequently influencing cellular respiration and metabolism by regulating lipolysis and mitochondrial expression. Therefore, ADRB3 may serve as a pivotal gene in animal husbandry and contribute to the improvement of cold intolerance in piglets.


Assuntos
Adipócitos Bege , Temperatura Baixa , Receptores Adrenérgicos beta 3 , Animais , Receptores Adrenérgicos beta 3/metabolismo , Receptores Adrenérgicos beta 3/genética , Adipócitos Bege/metabolismo , Suínos , Adipogenia/genética , Lipólise , Termogênese/genética , Diferenciação Celular , Mitocôndrias/metabolismo
15.
Elife ; 132024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470102

RESUMO

Perirenal adipose tissue (PRAT) is a unique visceral depot that contains a mixture of brown and white adipocytes. The origin and plasticity of such cellular heterogeneity remains unknown. Here, we combine single-nucleus RNA sequencing with genetic lineage tracing to reveal the existence of a distinct subpopulation of Ucp1-&Cidea+ adipocytes that arises from brown-to-white conversion during postnatal life in the periureter region of mouse PRAT. Cold exposure restores Ucp1 expression and a thermogenic phenotype in this subpopulation. These cells have a transcriptome that is distinct from subcutaneous beige adipocytes and may represent a unique type of cold-recruitable adipocytes. These results pave the way for studies of PRAT physiology and mechanisms controlling the plasticity of brown/white adipocyte phenotypes.


Assuntos
Adipócitos Bege , Tecido Adiposo , Camundongos , Animais , Tecido Adiposo/metabolismo , Adipócitos Brancos , Adipócitos Marrons/metabolismo , Termogênese/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/fisiologia
16.
ACS Nano ; 18(13): 9311-9330, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498418

RESUMO

In obesity, the interactions between proinflammatory macrophages and adipocytes in white adipose tissues are known to play a crucial role in disease progression by providing inflammatory microenvironments. Here, we report that the functional nanoparticle-mediated modulation of crosstalk between adipocytes and macrophages can remodel adipocyte immune microenvironments. As a functional nanomodulator, we designed antivascular cell adhesion molecule (VCAM)-1 antibody-conjugated and amlexanox-loaded polydopamine nanoparticles (VAPN). Amlexanox was used as a model drug to increase energy expenditure. Compared to nanoparticles lacking antibody modification or amlexanox, VAPN showed significantly greater binding to VCAM-1-expressing adipocytes and lowered the interaction of adipocytes with macrophages. In high fat diet-fed mice, repeated subcutaneous administration of VAPN increased the populations of beige adipocytes and ameliorated inflammation in white adipose tissues. Moreover, the localized application of VAPN in vivo exerted a systemic metabolic effect and reduced metabolic disorders, including insulin tolerance and liver steatosis. These findings suggested that VAPN had potential to modulate the immune microenvironments of adipose tissues for the immunologic treatment of obesity. Although we used amlexanox as a model drug and anti-VCAM-1 antibody in VAPN, the concept of immune nanomodulators can be widely applied to the immunological treatment of obesity.


Assuntos
Adipócitos Bege , Tecido Adiposo , Aminopiridinas , Camundongos , Animais , Tecido Adiposo/metabolismo , Tecido Adiposo Branco , Obesidade/tratamento farmacológico , Adipócitos Bege/metabolismo , Camundongos Endogâmicos C57BL
17.
Environ Pollut ; 347: 123761, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467365

RESUMO

Adipose tissue compromises one of the principal depots where brominated flame retardants (BFR) accumulate in vivo, yet whether BFR disturb thermogenic brown/beige adipocytes is still not referred to date. Herein, effects of BDE-99, a major congener of polybrominated diphenyl ethers (PBDEs) detected in humans, on brown/beige adipocytes were explored for the first time, aiming to provide new knowledge evaluating the obesogenic and metabolic disrupting effects of BFR. Our results firstly demonstrated that exposure to BDE-99 during the lineage commitment period significantly promoted C3H10T1/2 MSCs differentiating into brown/beige adipocytes, evidenced by the increase of brown/beige adipocyte marker UCP1, Cidea as well as mitochondrial membrane potential and basal respiration rate, which was similar to pharmacological PPARγ agonist rosiglitazone. Unexpectedly, the mitochondrial maximal respiration rate of BDE-99 stimulated brown/beige adipocytes was not synchronously enhanced and resulted in a significant reduction of mitochondrial spare respiration capacity (SRC) compared to control or rosiglitazone stimulated adipocytes, indicating a deficient energy-dissipating capacity of BDE-99 stimulated thermogenic adipocytes. Consistently with compromised mitochondrial SRC, lipidomic analysis further revealed that the lipids profile of mitochondria derived from BDE-99 stimulated brown/beige adipocytes were quite different from control or rosiglitazone stimulated cells. In detail, BDE-99 group contains more free fatty acid (FFA) and lyso-PE in mitochondria. In addition to energy metabolism, our results also demonstrated that BDE-99 stimulated brown/beige adipocytes were deficient in endocrine, which secreted more adverse adipokine named resistin, coinciding with comparable beneficial adipokine adiponectin compared with that of rosiglitazone. Taken together, our results showed for the first time that BDE-99 stimulated brown/beige adipocytes were aberrant in energy metabolism and endocrine, which strongly suggests that BDE-99 accumulated in human adipose tissue could interfere with brown/beige adipocytes to contribute to the occurrence of obesity and relevant metabolic disorders.


Assuntos
Adipócitos Bege , Humanos , Adipócitos Bege/metabolismo , Éteres Difenil Halogenados/metabolismo , Rosiglitazona/farmacologia , Rosiglitazona/metabolismo , Adipócitos Marrons/metabolismo , Adipocinas
18.
Nat Commun ; 15(1): 1646, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388532

RESUMO

Adipose tissue macrophages can promote beige adipose thermogenesis by altering local sympathetic activity. Here, we perform sympathectomy in mice and further eradicate subcutaneous adipose macrophages and discover that these macrophages have a direct beige-promoting function that is independent of sympathetic system. We further identify adipocyte Ets1 as a vital mediator in this process. The anti-inflammatory M2 macrophages suppress Ets1 expression in adipocytes, transcriptionally activate mitochondrial biogenesis, as well as suppress mitochondrial clearance, thereby increasing the mitochondrial numbers and promoting the beiging process. Male adipocyte Ets1 knock-in mice are completely cold intolerant, whereas male mice lacking Ets1 in adipocytes show enhanced energy expenditure and are resistant to metabolic disorders caused by high-fat-diet. Our findings elucidate a direct communication between M2 macrophages and adipocytes, and uncover a function for Ets1 in responding to macrophages and negatively governing mitochondrial content and beige adipocyte formation.


Assuntos
Adipócitos Bege , Adipogenia , Animais , Masculino , Camundongos , Adipócitos/metabolismo , Adipócitos Bege/metabolismo , Adipogenia/genética , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Termogênese/genética
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167057, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331111

RESUMO

During inguinal adipose tissue (iWAT) ontogenesis, beige adipocytes spontaneously appear between postnatal 10 (P10) and P20 and their ablation impairs iWAT browning capacity in adulthood. Since maternal obesity has deleterious effects on offspring iWAT function, we aimed to investigate its effect in spontaneous iWAT browning in offspring. Female C57BL/6 J mice were fed a control or obesogenic diet six weeks before mating. Male and female offspring were euthanized at P10 and P20 or weaned at P21 and fed chow diet until P60. At P50, mice were treated with saline or CL316,243, a ß3-adrenoceptor agonist, for ten days. Maternal obesity induced insulin resistance at P60, and CL316,243 treatment effectively restored insulin sensitivity in male but not female offspring. This discrepancy occurred due to female offspring severe browning impairment. During development, the spontaneous iWAT browning and sympathetic nerve branching at P20 were severely impaired in female obese dam's offspring but occurred normally in males. Additionally, maternal obesity increased miR-22 expression in the iWAT of male and female offspring during development. ERα, a target and regulator of miR-22, was concomitantly upregulated in the male's iWAT. Next, we evaluated miR-22 knockout (KO) offspring at P10 and P20. The miR-22 deficiency does not affect spontaneous iWAT browning in females and, surprisingly, anticipates iWAT browning in males. In conclusion, maternal obesity impairs functional iWAT development in the offspring in a sex-specific way that seems to be driven by miR-22 levels and ERα signaling. This impacts adult browning capacity and glucose homeostasis, especially in female offspring.


Assuntos
Adipócitos Bege , MicroRNAs , Obesidade Materna , Animais , Feminino , Masculino , Camundongos , Gravidez , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/metabolismo , Obesidade Materna/metabolismo
20.
Cell Biochem Funct ; 42(2): e3937, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38329451

RESUMO

The antiobesity effect of conjugated linoleic acid (CLA) has been reported. However, the underlying mechanisms have not been fully clarified. Thus, this study aimed to investigate the effects of CLA on thermogenesis of interscapular brown adipose tissue (iBAT) and browning of inguinal subcutaneous white adipose tissue (iWAT) and explore the possible signaling pathway. The in vivo results showed that CLA enhanced the O2 consumption and heat production in HFD (high-fat diet)-fed female mice by roughly 38%. Meanwhile, CLA increased the average iBAT temperature by 2°C at the room temperature and cold exposure, respectively. Correspondingly, CLA caused 1.6- and 2.4-fold increases in the expression of UCP1 (uncoupling protein 1) of BAT and iWAT, respectively, suggesting the activated iBAT thermogenesis and iWAT browning in HFD-fed female mice. Meanwhile, CLA could promote the formation of brown and beige adipocytes in differentiated stromal vascular cells (SVCs) isolated from iBAT and iWAT (the expressions of UCP1 were promoted by about twofold changes). In possible mechanisms, CLA stimulated the expression of CD36 and the activation of the AMPK pathway in mice iBAT and iWAT as well as the differentiated SVCs. However, inhibition of CD36 and AMPK (adenosine 5'-monophosphate-activated protein kinase) abolished the promotive effects of CLA on brown and beige adipocytes formation. Hence, we showed that CLA reduced HFD-induced obesity through enhancing iBAT thermogenesis and iWAT browning via the  CD36-AMPK pathway.


Assuntos
Adipócitos Bege , Ácidos Linoleicos Conjugados , Feminino , Animais , Camundongos , Ácidos Linoleicos Conjugados/farmacologia , Proteínas Quinases Ativadas por AMP , Obesidade/tratamento farmacológico , Termogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...