Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.494
Filtrar
2.
Curr Med Sci ; 44(3): 463-474, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900388

RESUMO

Excessive fat deposition in obese subjects promotes the occurrence of metabolic diseases, such as type 2 diabetes mellitus (T2DM), cardiovascular diseases, and non-alcoholic fatty liver disease (NAFLD). Adipose tissue is not only the main form of energy storage but also an endocrine organ that not only secretes adipocytokines but also releases many extracellular vesicles (EVs) that play a role in the regulation of whole-body metabolism. Exosomes are a subtype of EVs, and accumulating evidence indicates that adipose tissue exosomes (AT Exos) mediate crosstalk between adipose tissue and multiple organs by being transferred to targeted cells or tissues through paracrine or endocrine mechanisms. However, the roles of AT Exos in crosstalk with metabolic organs remain to be fully elucidated. In this review, we summarize the latest research progress on the role of AT Exos in the regulation of metabolic disorders. Moreover, we discuss the potential role of AT Exos as biomarkers in metabolic diseases and their clinical application.


Assuntos
Tecido Adiposo , Exossomos , Doenças Metabólicas , Exossomos/metabolismo , Humanos , Tecido Adiposo/metabolismo , Doenças Metabólicas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Biomarcadores/metabolismo , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Adipocinas/metabolismo , Doença Crônica
3.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892118

RESUMO

The connection between body weight alterations and Alzheimer's disease highlights the intricate relationship between the brain and adipose tissue in the context of neurological disorders. During midlife, weight gain increases the risk of cognitive decline and dementia, whereas in late life, weight gain becomes a protective factor. Despite their substantial impact on metabolism, the role of adipokines in the transition from healthy aging to neurological disorders remains largely unexplored. We aim to investigate how the adipose tissue milieu and the secreted adipokines are involved in the transition between biological and pathological aging, highlighting the bidirectional relationship between the brain and systemic metabolism. Understanding the function of these adipokines will allow us to identify biomarkers for early detection of Alzheimer's disease and uncover novel therapeutic options.


Assuntos
Adipocinas , Tecido Adiposo , Doença de Alzheimer , Encéfalo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Animais , Biomarcadores , Envelhecimento/metabolismo
4.
Lipids Health Dis ; 23(1): 192, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909257

RESUMO

BACKGROUND: Overweight, often known as obesity, is the abnormal and excessive accumulation of fat that exposes the health of a person at risk by increasing the likelihood that they may experience many chronic conditions. Consequently, obesity has become a global health threat, presenting serious health issues, and attracting a lot of attention in the healthcare profession and the scientific community. METHOD: This study aims to explore the anti-adipogenic properties of 7-MEGA™ in an attempt to address obesity, using both in vitro and in vivo research. The effects of 7MEGA™ at three distinct concentrations were investigated in obese mice who were given a high-fat diet (HFD) and 3T3-L1 adipocytes. RESULTS: 7MEGA™ decreased the total fat mass, overall body weight, and the perirenal and subcutaneous white adipose tissue (PWAT and SWAT) contents in HFD mice. Additionally, 7MEGA™ showed promise in improving the metabolic health of individuals with obesity and regulate the levels of insulin hormone, pro-inflammatory cytokines and adipokines. Furthermore, Peroxisome proliferator-activated receptors (PPAR) α and γ, Uncoupling Protein 1 (UCP-1), Sterol Regulatory Element-Binding Protein 1 (SREBP-1), Fatty Acid-Binding Protein 4 (FABP4), Fatty Acid Synthase (FAS), Acetyl-CoA Carboxylase (ACC), Stearoyl-CoA Desaturase-1 (SCD-1) and CCAAT/Enhancer-Binding Protein (C/EBPα) were among the adipogenic regulators that 7MEGA™ could regulate. CONCLUSION: In summary, this study uncovered that 7MEGA™ demonstrates anti-adipogenic and anti-obesity effects, suggesting its potential in combating obesity.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Obesidade , Animais , Dieta Hiperlipídica/efeitos adversos , Adipogenia/efeitos dos fármacos , Obesidade/metabolismo , Camundongos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Masculino , PPAR gama/metabolismo , PPAR gama/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Camundongos Obesos , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Adipocinas/metabolismo , Fármacos Antiobesidade/farmacologia , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT
5.
Life Sci ; 349: 122735, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38768776

RESUMO

AIMS: Imeglimin, a novel antidiabetic drug, has recently been reported to affect pancreatic ß-cells and hepatocytes. Adipose tissue plays a crucial role in systemic metabolism. However, its effect on adipocytes remains unexplored. Herein, we investigated the effects of imeglimin on adipocytes, particularly in the mitochondria. MAIN METHODS: The 3T3-L1 adipocytes were treated with imeglimin. Mitochondrial respiratory complex I activity and NAD+, NADH, and AMP levels were measured. Protein expression levels were determined by western blotting, mitochondrial DNA and mRNA expression levels were determined using quantitative polymerase chain reaction, and secreted adipocytokine and mitokine levels were determined using adipokine array and enzyme-linked immunosorbent assay. KEY FINDINGS: Imeglimin inhibited complex I activity, decreased the NAD+/NADH ratio, and increased AMP levels, which were associated with the enhanced phosphorylation of AMP-activated protein kinase. In addition, imeglimin increased the mitochondrial DNA content and levels of mitochondrial transcription factor A and peroxisome proliferator-activated receptor-γ coactivator 1-α mRNA, which were abolished by Ly294002, a phosphoinositide 3-kinase inhibitor. Furthermore, imeglimin facilitated the expression levels of markers of the mitochondrial unfolded protein response, and the gene expression and secretion of two mitokines, fibroblast growth factor 21 and growth differentiation factor 15. The production of both mitokines was transcriptionally regulated and abolished by phosphoinositide 3-kinase and Akt inhibitors. SIGNIFICANCE: Imeglimin modulates mitochondrial biology in adipocytes and may exert a mitohormetic effect through mitokine secretion.


Assuntos
Células 3T3-L1 , Adipócitos , Mitocôndrias , Animais , Camundongos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Citocinas/metabolismo , Adipocinas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fatores de Crescimento de Fibroblastos
6.
Pharmacol Res ; 205: 107219, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763327

RESUMO

Adipokines are a heterogeneous group of signalling molecules secreted prevalently by adipose tissue. Initially considered as regulators of energy metabolism and appetite, adipokines have been recognized for their substantial involvement in musculoskeletal disorders, including osteoarthritis, rheumatoid arthritis, and many others. Understanding the role of adipokines in rheumatic inflammatory and autoimmune diseases, as well as in other musculoskeletal diseases such as intervertebral disc degeneration, is crucial for the development of novel therapeutic strategies. Targeting adipokines, or their signalling pathways, may offer new opportunities for the treatment and management of these conditions. By modulating adipokines levels or activity, it may be possible to regulate inflammation, to maintain bone health, and preserve muscle mass, thereby improving the outcomes and quality of life for individuals affected by musculoskeletal diseases. The aim of this review article is to update the reader on the multifaceted role of adipokines in the main rheumatic diseases such as osteoarthritis and rheumatoid arthritis and to unravel the complex interplay among adipokines, cartilage metabolism, bone remodelling and muscles, which will pave the way for innovative therapeutic intervention in the future. For completeness, the role of adipokines in intervertebral disc degeneration will be also addressed.


Assuntos
Adipocinas , Artrite Reumatoide , Degeneração do Disco Intervertebral , Osteoartrite , Humanos , Adipocinas/metabolismo , Adipocinas/imunologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/imunologia , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/imunologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/imunologia , Animais , Doenças Reumáticas/tratamento farmacológico , Doenças Reumáticas/imunologia , Doenças Reumáticas/metabolismo
7.
Adv Clin Chem ; 121: 172-269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38797542

RESUMO

Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.


Assuntos
Adipocinas , Gravidez , Humanos , Adipocinas/metabolismo , Feminino , Animais , Placenta/metabolismo , Diabetes Gestacional/metabolismo
8.
Mol Biol Rep ; 51(1): 631, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722405

RESUMO

Adipokines are now well-known to regulate reproduction. Visfatin is an adipokine expressed in the hypothalamus, pituitary, ovary, uterus, and placenta of different species, and since it has been found to modulate the endocrine secretion of the hypothalamus, pituitary gland and ovary, it may be considered a novel regulator of female reproduction. Although the majority of the literature explored its role in ovarian regulation, visfatin has also been shown to regulate uterine remodeling, endometrial receptivity and embryo development, and its expression in the uterus is steroid dependent. Like other adipokines, visfatin expression and levels are deregulated in pathological conditions including polycystic ovary syndrome. Thus, the present mini-review focuses on the role of visfatin in female reproduction under both physiological and pathological conditions.


Assuntos
Nicotinamida Fosforribosiltransferase , Síndrome do Ovário Policístico , Reprodução , Feminino , Humanos , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Reprodução/fisiologia , Reprodução/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/fisiopatologia , Animais , Ovário/metabolismo , Útero/metabolismo , Citocinas/metabolismo , Gravidez , Adipocinas/metabolismo
9.
Reprod Domest Anim ; 59(5): e14624, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38798196

RESUMO

The study aimed to assess the local gene expression of adipokine members, namely vaspin, adiponectin, visfatin, resistin and their associated receptors - heat shock 70 protein 5 (HSPA5), adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2) - in bovine follicles during the preovulatory period and early corpus luteum development. Follicles were collected before gonadotropin-releasing hormone (GnRH) treatment (0 h) and at 4, 10, 20, 25 and 60 h after GnRH application through transvaginal ovariectomy (n = 5 samples/group). Relative mRNA expression levels were quantified using real-time reverse transcription polymerase chain reaction (RT-qPCR). Vaspin exhibited high mRNA levels immediately 4 h after GnRH application, followed by a significant decrease. Adiponectin mRNA levels were elevated at 25 h after GnRH treatment. AdipoR2 exhibited late-stage upregulation, displaying increased expression at 20, 25 and 60 h following GnRH application. Visfatin showed upregulation at 20 h post-GnRH application. In conclusion, the observed changes in adipokine family members within preovulatory follicles, following experimentally induced ovulation, may constitute crucial components of the local mechanisms regulating final follicle growth and development.


Assuntos
Adipocinas , Corpo Lúteo , Hormônio Liberador de Gonadotropina , Folículo Ovariano , Ovulação , Animais , Feminino , Bovinos/fisiologia , Corpo Lúteo/metabolismo , Corpo Lúteo/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Ovulação/fisiologia , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Adipocinas/metabolismo , Adipocinas/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo
10.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731880

RESUMO

Adipose tissue is a multifunctional organ that regulates many physiological processes such as energy homeostasis, nutrition, the regulation of insulin sensitivity, body temperature, and immune response. In this review, we highlight the relevance of the different mediators that control adipose tissue activity through a systematic review of the main players present in white and brown adipose tissues. Among them, inflammatory mediators secreted by the adipose tissue, such as classical adipokines and more recent ones, elements of the immune system infiltrated into the adipose tissue (certain cell types and interleukins), as well as the role of intestinal microbiota and derived metabolites, have been reviewed. Furthermore, anti-obesity mediators that promote the activation of beige adipose tissue, e.g., myokines, thyroid hormones, amino acids, and both long and micro RNAs, are exhaustively examined. Finally, we also analyze therapeutic strategies based on those mediators that have been described to date. In conclusion, novel regulators of obesity, such as microRNAs or microbiota, are being characterized and are promising tools to treat obesity in the future.


Assuntos
Tecido Adiposo , Obesidade , Humanos , Animais , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Adipocinas/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Microbioma Gastrointestinal , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Mediadores da Inflamação/metabolismo , Metabolismo Energético
11.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791266

RESUMO

Sympathetic nervous system (SNS) hyperactivity is mediated by elevated catecholamine (CA) secretion from the adrenal medulla, as well as enhanced norepinephrine (NE) release from peripheral sympathetic nerve terminals. Adrenal CA production from chromaffin cells is tightly regulated by sympatho-inhibitory α2-adrenergic (auto)receptors (ARs), which inhibit both epinephrine (Epi) and NE secretion via coupling to Gi/o proteins. α2-AR function is, in turn, regulated by G protein-coupled receptor (GPCR)-kinases (GRKs), especially GRK2, which phosphorylate and desensitize them, i.e., uncouple them from G proteins. On the other hand, the short-chain free fatty acid (SCFA) receptor (FFAR)-3, also known as GPR41, promotes NE release from sympathetic neurons via the Gi/o-derived free Gßγ-activated phospholipase C (PLC)-ß/Ca2+ signaling pathway. However, whether it exerts a similar effect in adrenal chromaffin cells is not known at present. In the present study, we examined the interplay of the sympatho-inhibitory α2A-AR and the sympatho-stimulatory FFAR3 in the regulation of CA secretion from rat adrenal chromaffin (pheochromocytoma) PC12 cells. We show that FFAR3 promotes CA secretion, similarly to what GRK2-dependent α2A-AR desensitization does. In addition, FFAR3 activation enhances the effect of the physiologic stimulus (acetylcholine) on CA secretion. Importantly, GRK2 blockade to restore α2A-AR function or the ketone body beta-hydroxybutyrate (BHB or 3-hydroxybutyrate), via FFAR3 antagonism, partially suppress CA production, when applied individually. When combined, however, CA secretion from PC12 cells is profoundly suppressed. Finally, propionate-activated FFAR3 induces leptin and adiponectin secretion from PC12 cells, two important adipokines known to be involved in tissue inflammation, and this effect of FFAR3 is fully blocked by the ketone BHB. In conclusion, SCFAs can promote CA and adipokine secretion from adrenal chromaffin cells via FFAR3 activation, but the metabolite/ketone body BHB can effectively inhibit this action.


Assuntos
Catecolaminas , Receptores Adrenérgicos alfa 2 , Receptores Acoplados a Proteínas G , Animais , Células PC12 , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Catecolaminas/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Adipocinas/metabolismo , Células Cromafins/metabolismo , Transdução de Sinais , Norepinefrina/metabolismo , Norepinefrina/farmacologia
12.
Mol Aspects Med ; 97: 101273, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593513

RESUMO

Often associated with obesity, male infertility represents a widespread condition that challenges the wellbeing of the couple. In this article, we provide a comprehensive and critical analysis of studies exploring the association between obesity and male reproductive function, to evaluate the frequency of this association, and establish the effects of increased body weight on conventional and biofunctional sperm parameters and infertility. In an attempt to find possible molecular markers of infertility in obese male patients, the numerous mechanisms responsible for infertility in overweight/obese patients are reviewed in depth. These include obesity-related functional hypogonadism, insulin resistance, hyperinsulinemia, chronic inflammation, adipokines, irisin, gut hormones, gut microbiome, and sperm transcriptome. According to meta-analytic evidence, excessive body weight negatively influences male reproductive health. This can occurr through a broad array of molecular mechanisms. Some of these are not yet fully understood and need to be further elucidated in the future. A better understanding of the effects of metabolic disorders on spermatogenesis and sperm fertilizing capacity is very useful for identifying new diagnostic markers and designing therapeutic strategies for better clinical management of male infertility.


Assuntos
Infertilidade Masculina , Obesidade , Humanos , Masculino , Obesidade/metabolismo , Infertilidade Masculina/etiologia , Infertilidade Masculina/metabolismo , Resistência à Insulina , Espermatozoides/metabolismo , Espermatogênese , Microbioma Gastrointestinal , Adipocinas/metabolismo , Animais
13.
Ann Endocrinol (Paris) ; 85(3): 171-172, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614158

RESUMO

We currently have a large sum of clinical and experimental data documenting the involvement of numerous adipokines in the maintenance of energy homeostasis in healthy individuals and their dysregulation in diseases such as obesity, metabolic syndrome or type 2 diabetes. Despite the impressive discoveries made in this field over many years, much remains to be done before understanding all the physiological and pathological implications, and hoping for the development of other effective and safe therapeutic strategies. Two original adipokines will be taken as examples to illustrate these remarks, chemerin and neuregulin 4.


Assuntos
Adipocinas , Tecido Adiposo , Biomarcadores , Quimiocinas , Obesidade , Humanos , Adipocinas/metabolismo , Adipocinas/fisiologia , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Biomarcadores/análise , Quimiocinas/metabolismo , Quimiocinas/fisiologia , Neurregulinas/metabolismo , Neurregulinas/fisiologia , Neurregulinas/genética , Diabetes Mellitus Tipo 2/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Animais , Síndrome Metabólica/metabolismo
14.
Mol Med Rep ; 29(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606791

RESUMO

Obesity reaches up to epidemic proportions globally and increases the risk for a wide spectrum of co­morbidities, including type­2 diabetes mellitus (T2DM), hypertension, dyslipidemia, cardiovascular diseases, non­alcoholic fatty liver disease, kidney diseases, respiratory disorders, sleep apnea, musculoskeletal disorders and osteoarthritis, subfertility, psychosocial problems and certain types of cancers. The underlying inflammatory mechanisms interconnecting obesity with metabolic dysfunction are not completely understood. Increased adiposity promotes pro­inflammatory polarization of macrophages toward the M1 phenotype, in adipose tissue (AT), with subsequent increased production of pro­inflammatory cytokines and adipokines, inducing therefore an overall, systemic, low­grade inflammation, which contributes to metabolic syndrome (MetS), insulin resistance (IR) and T2DM. Targeting inflammatory mediators could be alternative therapies to treat obesity, but their safety and efficacy remains to be studied further and confirmed in future clinical trials. The present review highlights the molecular and pathophysiological mechanisms by which the chronic low­grade inflammation in AT and the production of reactive oxygen species lead to MetS, IR and T2DM. In addition, focus is given on the role of anti­inflammatory agents, in the resolution of chronic inflammation, through the blockade of chemotactic factors, such as monocytes chemotractant protein­1, and/or the blockade of pro­inflammatory mediators, such as IL­1ß, TNF­α, visfatin, and plasminogen activator inhibitor­1, and/or the increased synthesis of adipokines, such as adiponectin and apelin, in obesity­associated metabolic dysfunction.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome Metabólica , Humanos , Obesidade/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Inflamação/metabolismo , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Mediadores da Inflamação/metabolismo
16.
Int Immunopharmacol ; 132: 112018, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38588630

RESUMO

Obesity is associated with insulin resistance, hypertension, and coronary artery diseases which are grouped as metabolic syndrome. Rather than being a storage for energy, the adipocytes could synthesis and secret diverse hormones and molecules, named as adipokines. Under obese status, the adipocytes are dysfunctional with excessively producing the inflammatory related cytokines, such as interleukin 1 (IL-1), IL-6, and tumor necrosis factor α (TNF-α). Concerning on the vital role of adipokines, it is proposed that one of the critical pathological factors of obesity is the dysfunctional adipocytic pathways. Among these adipokines, acylation stimulating protein, as an adipokine synthesized by adipocytes during the process of cell differentiation, is shown to activate the metabolism of triglyceride (TG) by regulating the catabolism of glucose and free fatty acid (FFA). Recent attention has paid to explore the underlying mechanism whereby acylation stimulating protein influences the biological function of adipocyte and the pathological development of obesity. In the present review, we summarized the progression of acylation stimulating protein in modulating the physiological and hormonal catabolism which affects fat distribution. Furthermore, the potential mechanisms which acylation stimulating protein regulates the metabolism of adipose tissue and the process of metabolic syndrome were also summarized.


Assuntos
Síndrome Metabólica , Obesidade , Humanos , Síndrome Metabólica/metabolismo , Animais , Obesidade/metabolismo , Obesidade/patologia , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adipocinas/metabolismo , Progressão da Doença
17.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673906

RESUMO

Air pollution poses a significant global health risk, with fine particulate matter (PM2.5) such as diesel exhaust particles (DEPs) being of particular concern due to their potential to drive systemic toxicities through bloodstream infiltration. The association between PM2.5 exposure and an increased prevalence of metabolic disorders, including obesity, metabolic syndrome, and type 2 diabetes mellitus (T2DM), is evident against a backdrop of rising global obesity and poor metabolic health. This paper examines the role of adipose tissue in mediating the effects of PM2.5 on metabolic health. Adipose tissue, beyond its energy storage function, is responsive to inhaled noxious stimuli, thus disrupting metabolic homeostasis and responding to particulate exposure with pro-inflammatory cytokine release, contributing to systemic inflammation. The purpose of this study was to characterize the metabolic response of adipose tissue in mice exposed to either DEPs or room air (RA), exploring both the adipokine profile and mitochondrial bioenergetics. In addition to a slight change in fat mass and a robust shift in adipocyte hypertrophy in the DEP-exposed animals, we found significant changes in adipose mitochondrial bioenergetics. Furthermore, the DEP-exposed animals had a significantly higher expression of adipose inflammatory markers compared with the adipose from RA-exposed mice. Despite the nearly exclusive focus on dietary factors in an effort to better understand metabolic health, these results highlight the novel role of environmental factors that may contribute to the growing global burden of poor metabolic health.


Assuntos
Tecido Adiposo , Inflamação , Mitocôndrias , Material Particulado , Emissões de Veículos , Animais , Emissões de Veículos/toxicidade , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos , Material Particulado/efeitos adversos , Material Particulado/toxicidade , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Metabolismo Energético/efeitos dos fármacos , Adipocinas/metabolismo , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/toxicidade , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos
18.
Reprod Biol Endocrinol ; 22(1): 38, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575956

RESUMO

The present study aimed to examine the effects of progranulin and omentin on basic ovarian cell functions. For this purpose, we investigated the effects of the addition of progranulin and omentin (0, 0.1, 1, or 10 ng/ml) on the viability, proliferation, apoptosis and steroidogenesis of cultured rabbit ovarian granulosa cells. To determine the importance of the interrelationships between granulosa cells and theca cells, we compared the influence of progranulin and omentin on progesterone and estradiol release in cultured granulosa cells and ovarian fragments containing both granulosa cells and theca cells. Cell viability, proliferation, cytoplasmic apoptosis and release of progesterone and estradiol were measured by Cell Counting Kit-8 (CCK-8), BrdU incorporation, cell death detection, and ELISA. Both progranulin and omentin increased granulosa cell viability and proliferation and decreased apoptosis. Progranulin increased progesterone release by granulosa cells but reduced progesterone output by ovarian fragments. Progranulin decreased estradiol release by granulosa cells but increased it in ovarian fragments. Omentin reduced progesterone release in both models. Omentin reduced estradiol release by granulosa cells but promoted this release in ovarian fragments. The present observations are the first to demonstrate that progranulin and omentin can be direct regulators of basic ovarian cell functions. Furthermore, the differences in the effects of these adipokines on steroidogenesis via granulosa and ovarian fragments indicate that these peptides could target both granulosa and theca cells.


Assuntos
Adipocinas , Progesterona , Feminino , Animais , Coelhos , Progesterona/metabolismo , Progranulinas/metabolismo , Progranulinas/farmacologia , Adipocinas/metabolismo , Adipocinas/farmacologia , Ovário/metabolismo , Células da Granulosa/metabolismo , Estradiol/metabolismo , Apoptose , Células Cultivadas , Proliferação de Células
19.
Reproduction ; 167(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513348

RESUMO

In brief: Dairy cattle experience a period of infertility postpartum that is caused in part by the development of IGF1/insulin resistance. This study suggests that an adipokine, FNDC3A, reduces IGF1-dependent glycolysis and may contribute to postpartum infertility. Abstract: Dairy cows go through a period of subfertility after parturition, triggered in part by a disruption of energy homeostasis. The mobilization of body fat alters the secretion of adipokines, which have been shown to impact ovarian function. Fibronectin type III domain-containing 3A (FNDC3A) is a recently discovered adipokine-myokine, and FNDC3A mRNA abundance in subcutaneous adipose tissue is increased postpartum in cattle. In this study, we hypothesized that FNDC3A may compromise granulosa cell function in cattle and investigated this using a well-established in vitro cell culture model. Here, we demonstrate the presence of FNDC3A protein associated with extracellular vesicles in follicular fluid and in plasma, suggesting an endocrine role for this adipokine. FNDC3A protein and mRNA was also detected in the bovine ovary (cortex, granulosa and theca cells, cumulus, oocyte and corpus luteum). Abundance of FNDC3A mRNA in granulosa cells from small follicles was increased by in vitro treatment with the adipokines leptin and TNF but not by visfatin, resistin, adiponectin, chemerin or IGF1. Addition of recombinant FNDC3A at physiological doses (10 ng/mL) to granulosa cells decreased IGF1-dependent progesterone but not estradiol secretion and IGF1-dependent lactate secretion and abundance of GLUT3 and GLUT4 mRNA. This concentration of FNDC3A increased cell viability, abundance of mRNA encoding a putative receptor FOLR1, and increased phosphorylation of Akt. Collectively, these data suggest that FNDC3A may regulate folliculogenesis in cattle by modulating IGF1-dependent granulosa cell steroidogenesis and glucose metabolism.


Assuntos
Células da Granulosa , Infertilidade , Animais , Bovinos , Feminino , Adipocinas/metabolismo , Células da Granulosa/metabolismo , Infertilidade/metabolismo , Lactatos/metabolismo , Progesterona/metabolismo , RNA Mensageiro/metabolismo , Receptor 1 de Folato/metabolismo , Fibronectinas/metabolismo , Exossomos/genética , Exossomos/metabolismo
20.
Psychoneuroendocrinology ; 164: 107026, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507869

RESUMO

BACKGROUND: Adverse childhood experiences (ACE) elevate the risk of both major depressive disorder (MDD) and metabolic diseases. The underlying pathophysiology might include alterations of adipokine levels as a consequence of ACE. In this study, we used a full-factorial design to investigate the levels of select adipokines in women with ACE-only (n = 23), MDD-only (n = 27), ACE+MDD (n = 25) and healthy controls (HC, n = 29) to identify metabolic makers associated with vulnerability and resilience of developing MDD after ACE exposure. METHODS: Serum levels of adiponectin, leptin, adiponectin-to-leptin (A/L) ratio, and retinol binding protein 4 (RBP4) were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS: Adiponectin levels did not differ between groups. Individuals with vs. without MDD showed higher leptin serum concentrations. As predicted, A/L ratio indicated lower values in individuals with vs. without ACE. RBP4 showed a more nuanced pattern with reduced levels in the ACE-only and MDD-only groups compared to HC. Furthermore, the ACE-only group showed lower RBP4 concentrations compared to ACE+MDD. These results were not accounted by BMI or medication status. CONCLUSION: Our results do not support the utility of adiponectin and leptin as predictors of vulnerability or resilience of developing MDD after ACE. In contrast, RBP4 might play a role in resilience towards the development of MDD following ACE. Further research on this more recently discovered adipokine seems warranted.


Assuntos
Experiências Adversas da Infância , Transtorno Depressivo Maior , Humanos , Feminino , Adipocinas/metabolismo , Leptina , Adiponectina/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...