Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.449
Filtrar
1.
PLoS One ; 19(5): e0298827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722949

RESUMO

Glutathione peroxidase 2 (GPX2) is a selenium-dependent enzyme and protects cells against oxidative damage. Recently, GPX2 has been identified as a candidate gene for backfat and feed efficiency in pigs. However, it is unclear whether GPX2 regulates the development of porcine preadipocytes and skeletal muscle cells. In this study, adenoviral gene transfer was used to overexpress GPX2. Our findings suggest that overexpression of GPX2 gene inhibited proliferation of porcine preadipocytes. And the process is accompanied by the reduction of the p-p38. GPX2 inhibited adipogenic differentiation and promoted lipid degradation, while ERK1/2 was reduced and p-p38 was increased. Proliferation of porcine skeletal muscle cells was induced after GPX2 overexpression, was accompanied by activation in JNK, ERK1/2, and p-p38. Overexpression methods confirmed that GPX2 has a promoting function in myoblastic differentiation. ERK1/2 pathway was activated and p38 was suppressed during the process. This study lays a foundation for the functional study of GPX2 and provides theoretical support for promoting subcutaneous fat reduction and muscle growth.


Assuntos
Adipócitos , Glutationa Peroxidase , Sistema de Sinalização das MAP Quinases , Animais , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Adipócitos/metabolismo , Adipócitos/citologia , Suínos , Diferenciação Celular/genética , Proliferação de Células , Adipogenia/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia
2.
Sci Rep ; 14(1): 10924, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740866

RESUMO

Bovine intramuscular fat (IMF), commonly referred to as marbling, is regulated by lipid metabolism, which includes adipogenesis, lipogenesis, glycerolipid synthesis, and lipolysis. In recent years, breeding researchers have identified single nucleotide polymorphisms (SNPs) as useful marker-assisted selection tools for improving marbling scores in national breeding programs. These included causal SNPs that induce phenotypic variation. MicroRNAs (miRNAs) are small highly conserved non-coding RNA molecules that bind to multiple non-coding regions. They are involved in post-transcriptional regulation. Multiple miRNAs may regulate a given target. Previously, three SNPs in the GPAM 3' UTR and four miRNAs were identified through in silico assays. The aim of this study is to verify the binding ability of the four miRNAs to the SNPs within the 3'UTR of GPAM, and to identify the regulatory function of miR-375 in the expression of genes related to lipid metabolism in mammalian adipocytes. It was verified that the four miRNAs bind to the GPAM 3'UTR, and identified that the miR-375 sequence is highly conserved. Furthermore, it was founded that miR-375 upregulated the GPAM gene, C/EBPα, PPARγ and lipid metabolism-related genes and promoted lipid droplet accumulation in 3T3-L1 cells. In conclusion, these results suggest that miR-375 is a multifunctional regulator of multiple lipid metabolism-related genes and may aid in obesity research as a biomarker.


Assuntos
Regiões 3' não Traduzidas , Células 3T3-L1 , Metabolismo dos Lipídeos , MicroRNAs , Polimorfismo de Nucleotídeo Único , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Camundongos , Metabolismo dos Lipídeos/genética , Bovinos , Regulação da Expressão Gênica , Adipócitos/metabolismo , Adipogenia/genética
3.
Anim Sci J ; 95(1): e13951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38703069

RESUMO

Intramuscular fat (IMF) is a crucial determinant of meat quality and is influenced by various regulatory factors. Despite the growing recognition of the important role of long noncoding RNAs (lncRNAs) in IMF deposition, the mechanisms underlying buffalo IMF deposition remain poorly understood. In this study, we identified and characterized a lncRNA, lncFABP4, which is transcribed from the antisense strand of fatty acid-binding protein 4 (FABP4). lncFABP4 inhibited cell proliferation in buffalo intramuscular preadipocytes. Moreover, lncFABP4 significantly increased intramuscular preadipocyte differentiation, as indicated by an increase in the expression of the adipogenic markers peroxisome proliferator-activated receptor gamma (PPARG), CCAAT enhancer binding protein alpha (C/EBPα), and FABP4. Mechanistically, lncFABP4 was found to have the potential to regulate downstream gene expression by participating in protein-protein interaction pathways. These findings contribute to further understanding of the intricate mechanisms through which lncRNAs modulate intramuscular adipogenesis in buffaloes.


Assuntos
Adipócitos , Adipogenia , Búfalos , Diferenciação Celular , Proliferação de Células , Proteínas de Ligação a Ácido Graxo , PPAR gama , RNA Longo não Codificante , Animais , Búfalos/genética , Búfalos/metabolismo , Adipogenia/genética , Adipócitos/metabolismo , Adipócitos/citologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética , PPAR gama/metabolismo , PPAR gama/genética , Expressão Gênica , Células Cultivadas , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Qualidade dos Alimentos
4.
Mol Genet Genomics ; 299(1): 48, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700639

RESUMO

Intramuscular fat (IMF) is a critical factor in beef quality. IMF is mainly distributed between muscle fibres and its accumulation can affect the marbling and meat quality of beef. IMF formation and deposition is a complex process and in recent years a group of non-coding RNAs (ncRNAs), known as circRNAs, have been discovered to play an important role in regulating intramuscular fat deposition. CircRNAs form a covalent loop structure after reverse splicing of precursor mRNAs. They can act by adsorbing miRNAs, thereby reducing their repressive effects on downstream target genes. Based on high-throughput sequencing of circRNAs in intramuscular fat of Qinchuan and Japanese black cattle, we identified a novel circSSBP2 that is differentially expressed between the two species and associated with adipogenesis. We show that circSSBP2 knockdown promotes bovine intramuscular preadipocyte proliferation, whereas overexpression inhibits bovine intramuscular preadipocyte proliferation. We also show that circSSBP2 can act as a molecular sponge for miR-2400 and that miR-2400 overexpression promotes bovine intramuscular preadipocyte proliferation. Furthermore, N-myc downstream-regulated gene 1 (NDRG1) was identified as a direct target gene of miR-2400, and NDRG1 interference promoted the proliferation of bovine intramuscular preadipocytes. In conclusion, our results suggest that circSSBP2 inhibits the proliferation of bovine intramuscular preadipocytes by regulating the miR-2400/NDRG1 axis.


Assuntos
Adipócitos , Adipogenia , Proteínas de Ciclo Celular , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Bovinos , Adipócitos/metabolismo , Adipócitos/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Adipogenia/genética , RNA Circular/genética , Regulação da Expressão Gênica
5.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38702075

RESUMO

Excess abdominal fat is a sexually dimorphic risk factor for cardio-metabolic disease and is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Whereas this trait is highly heritable, few causal genes are known. We aimed to identify novel drivers of WHRadjBMI using systems genetics. We used two independent cohorts of adipose tissue gene expression and constructed sex- and depot-specific Bayesian networks to model gene-gene interactions from 8,492 genes. Using key driver analysis, we identified genes that, in silico and putatively in vitro, regulate many others. 51-119 key drivers in each network were replicated in both cohorts. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We overexpressed or down-regulated seven key driver genes in human subcutaneous pre-adipocytes. Key driver genes ANAPC2 and RSPO1 inhibited adipogenesis, whereas PSME3 increased adipogenesis. RSPO1 increased Wnt signaling activity. In differentiated adipocytes, MIGA1 and UBR1 down-regulation led to mitochondrial dysfunction. These five genes regulate adipocyte function, and we hypothesize that they regulate fat distribution.


Assuntos
Adipócitos , Adipogenia , Distribuição da Gordura Corporal , Humanos , Adipócitos/metabolismo , Masculino , Feminino , Adipogenia/genética , Índice de Massa Corporal , Adulto , Redes Reguladoras de Genes , Pessoa de Meia-Idade , Teorema de Bayes , Relação Cintura-Quadril , Tecido Adiposo/metabolismo , Via de Sinalização Wnt/genética , Regulação da Expressão Gênica/genética , Biologia de Sistemas/métodos
6.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612723

RESUMO

Bone morphogenetic protein 2 (BMP2) has been reported to regulate adipogenesis, but its role in porcine beige adipocyte formation remains unclear. Our data reveal that BMP2 is significantly induced at the early stages of porcine beige adipocyte differentiation. Additionally, supplementing rhBMP2 during the early stages, but not the late stages of differentiation, significantly enhances porcine SVF adipogenesis, thermogenesis, and proliferation. Furthermore, compared to the empty plasmid-transfected-SVFs, BMP2-overexpressed SVFs had the enhanced lipid accumulation and thermogenesis, while knockdown of BMP2 in SVFs exhibited the opposite effect. The RNA-seq of the above three types of cells revealed the enrichment of the annotation of thermogenesis, brown cell differentiation, etc. In addition, the analysis also highlights the significant enrichment of cell adhesion, the MAPK cascade, and PPARγ signaling. Mechanistically, BMP2 positively regulates the adipogenic and thermogenic capacities of porcine beige adipocytes by activating PPARγ expression through AKT/mTOR and MAPK signaling pathways.


Assuntos
Adipogenia , Proteínas Proto-Oncogênicas c-akt , Suínos , Animais , Adipogenia/genética , Proteína Morfogenética Óssea 2/genética , PPAR gama , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(5): 159492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575107

RESUMO

Obesity is one of the significant health challenges in the world and is highly associated with abnormal adipogenesis. TG-interacting factor 1 (TGIF1) is essential for differentiating murine adipocytes and human adipose tissue-derived stem cells. However, the mode of action needs to be better elucidated. To investigate the roles of TGIF1 in differentiation in-depth, CRISPR/Cas9 knockout technology was performed to generate TGIF1-silenced preadipocytes. The absence of TGIF1 in 3 T3-F442A preadipocytes abolished lipid accumulation throughout the differentiation using Oil Red O staining. Conversely, we established 3 T3-F442A preadipocytes stably expressing TGIF1 and doxycycline-inducible TGIF1 in TGIF1-silenced 3 T3-F442A preadipocytes. Remarkably, the induction of TGIF1 by doxycycline during the initial differentiation phase successfully promoted lipid accumulation in TGIF1-silenced 3 T3-F442A cells. We further explored the mechanisms of TGIF1 in early differentiation. We demonstrated that TGIF1 promoted the mitotic clonal expansion via upregulation of CCAAT/enhancer-binding proteins ß expression, interruption with peroxisome proliferators activated receptor γ downstream regulation, and inhibition of p27kip1 expression. In conclusion, we strengthen the pivotal roles of TGIF1 in early differentiation, which might contribute to resolving obesity-associated metabolic syndromes.


Assuntos
Adipócitos , Adipogenia , Diferenciação Celular , Mitose , PPAR gama , Adipócitos/metabolismo , Adipócitos/citologia , Camundongos , Animais , Adipogenia/genética , PPAR gama/metabolismo , PPAR gama/genética , Mitose/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Humanos
8.
Int J Biol Macromol ; 267(Pt 1): 131507, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604419

RESUMO

Vascular endothelial growth factor B (VEGFB), a member of the VEGF family, exhibits limited angiogenic activity in mammals but plays an unexpected role in targeting lipids to peripheral tissues. However, its role in lipid metabolism in fish is unknown. In this study, the vegfb gene was cloned and characterized from spotted sea bass (Lateolabrax maculatus). It encodes 254 amino acids and possesses the typical characteristics of the Vegfb family, demonstrating high homology with those from other vertebrate species. The vegfb gene exhibits the highest expression levels in the liver, followed by the gills, intestine, and adipose tissues in spotted sea bass. In vivo, high-lipid diets decreased vegfb expression and increased lipid deposition in liver of fish. In vitro, palmitic acid + oleic acid treatment or vegfb knockdown significantly increased TG and TC contents, promoting lipid droplet deposition in hepatocytes. Vegfb overexpression has the opposite effects, inhibiting lipid deposition and downregulating fatty acid transport and adipogenesis genes. In contrast, the vegfb knockdown significantly upregulated the expression levels of c/ebpα, plin2, and dgat1 (P < 0.05). These results demonstrate that Vegfb may play an important role in reducing lipid deposition by regulating fatty acid transport and adipogenesis in the hepatocytes of spotted sea bass.


Assuntos
Bass , Metabolismo dos Lipídeos , Fator B de Crescimento do Endotélio Vascular , Animais , Bass/genética , Bass/metabolismo , Metabolismo dos Lipídeos/genética , Fator B de Crescimento do Endotélio Vascular/metabolismo , Fator B de Crescimento do Endotélio Vascular/genética , Clonagem Molecular , Sequência de Aminoácidos , Filogenia , Fígado/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Adipogenia/genética
9.
BMC Genomics ; 25(1): 358, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605318

RESUMO

BACKGROUND: Hox gene family is an important transcription factor that regulates cell process, and plays a role in the process of adipocytes differentiation and fat deposition. Previous transcriptome sequencing studies have indicated that the Homeobox A9 gene (HOXA9) is a candidate gene for regulating the process of bovine lipid metabolism, but the function and specific mechanism of action remain unclear. Therefore, this study aims to explore the role of HOXA9 in the proliferation, differentiation and apoptosis of bovine preadipocytes through gain-of-function and lose-of-function. RESULT: It found HOXA9 highly expressed in bovine adipose tissue, and its expression level changed significantly during adipocytes differentiation process. It gave a hint that HOXA9 may be involved in the process of bovine lipid metabolism. The results of HOXA9 gain-of-function experiments indicated that HOXA9 appeared to act as a negative regulator not only in the differentiation but also in the proliferation of bovine preadipocytes, which is mainly reflected that overexpression of HOXA9 down-regulate the mRNA and protein expression level of PPARγ, CEBPα and FABP4 (P < 0.05). The mRNA expression level of CDK1, CDK2, PCNA, CCNA2, CCNB1, CCND1 and CCNE2, as well as the protein expression of CDK2 also significantly decreased. The decrease of lipid droplets content was the main characteristic of the phenotype (P < 0.01), which further supported the evidence that HOXA9 was a negative regulator of preadipocytes differentiation. The decrease of cell proliferation rate and EdU positive rate, as well as the limitation of transition of preadipocytes from G0/G1 phase to S phase also provided evidence for the inhibition of proliferation. Apart from this above, we noted an interesting phenomenon that overexpression of HOXA9 showed in a significant upregulation of both mRNA and protein level of apoptosis markers, accompanied by a significant increase in cell apoptosis rate. These data led us not to refute the fact that HOXA9 played an active regulatory role in apoptosis. HOXA9 loss-of-function experiments, however, yielded the opposite results. Considering that HOXA9 acts as a transcription factor, we predicted its target genes. Dual luciferase reporter assay system indicated that overexpression of HOXA9 inhibits activity of PCNA promoter. CONCLUSION: Taken together, we demonstrated for the first time that HOXA9 played a role as a negative regulatory factor in the differentiation and proliferation of preadipocytes, but played a positive regulatory role in apoptosis, and it may play a regulatory role by targeting PCNA. This study provides basic data for further exploring the regulatory network of intramuscular fat deposition in bovine.


Assuntos
Adipócitos , Genes Homeobox , Animais , Bovinos , Adipócitos/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Diferenciação Celular/genética , Proliferação de Células , Fatores de Transcrição/metabolismo , Apoptose/genética , RNA Mensageiro/metabolismo , Adipogenia/genética
10.
Cells ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667324

RESUMO

After exposure to cold stress, animals enhance the production of beige adipocytes and expedite thermogenesis, leading to improved metabolic health. Although brown adipose tissue in rodents is primarily induced by ß3-adrenergic receptor (ADRB3) stimulation, the activation of major ß-adrenergic receptors (ADRBs) in pigs has been a topic of debate. To address this, we developed overexpression vectors for ADRB1, ADRB2, and ADRB3 and silenced the expression of these receptors to observe their effects on the adipogenic differentiation stages of porcine preadipocytes. Our investigation revealed that cold stress triggers the transformation of subcutaneous white adipose tissue to beige adipose tissue in pigs by modulating adrenergic receptor levels. Meanwhile, we found that ADRB3 promotes the transformation of white adipocytes into beige adipocytes. Notably, ADRB3 enhances the expression of beige adipose tissue marker genes, consequently influencing cellular respiration and metabolism by regulating lipolysis and mitochondrial expression. Therefore, ADRB3 may serve as a pivotal gene in animal husbandry and contribute to the improvement of cold intolerance in piglets.


Assuntos
Adipócitos Bege , Temperatura Baixa , Receptores Adrenérgicos beta 3 , Animais , Receptores Adrenérgicos beta 3/metabolismo , Receptores Adrenérgicos beta 3/genética , Adipócitos Bege/metabolismo , Suínos , Adipogenia/genética , Lipólise , Termogênese/genética , Diferenciação Celular , Mitocôndrias/metabolismo
11.
J Agric Food Chem ; 72(19): 11094-11110, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38661523

RESUMO

Research on adipogenesis will help to improve the meat quality of livestock. Long noncoding RNAs (lncRNAs) are involved in mammalian adipogenesis as epigenetic modulators. In this study, we analyzed lncRNA expression during bovine adipogenesis and detected 195 differentially expressed lncRNAs, including lncRNA BlncAD1, which was significantly upregulated in mature bovine adipocytes. Gain- and loss-of-function experiments confirmed that BlncAD1 promoted the proliferation, apoptosis, and differentiation of bovine preadipocytes. RNA pull-down revealed that the nonmuscle myosin 10 (MYH10) is a potential binding protein of BlncAD1. Then, we elucidated that loss of BlncAD1 caused increased ubiquitination of MYH10, which confirmed that BlncAD1 regulates adipogenesis by enhancing the stability of the MYH10 protein. Western blotting was used to demonstrate that BlncAD1 activated the PI3K/Akt signaling pathway. Bioinformatic analysis and dual-luciferase reporter assays indicated that BlncAD1 competitively absorbed miR-27a-5p. The overexpression and interference of miR-27a-5p in bovine preadipocytes displayed that miR-27a-5p inhibited proliferation, apoptosis, and differentiation. Further results suggested that miR-27a-5p targeted the CDK6 gene and that BlncAD1 controlled the proliferation of bovine preadipocytes by modulating the miR-27a-5p/CDK6 axis. This study revealed the complex mechanisms of BlncAD1 underlying bovine adipogenesis for the first time, which would provide useful information for genetics and breeding improvement of Chinese beef cattle.


Assuntos
Adipócitos , Adipogenia , Quinase 6 Dependente de Ciclina , MicroRNAs , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , RNA Longo não Codificante , Transdução de Sinais , Animais , Bovinos/genética , Bovinos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Adipogenia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Adipócitos/metabolismo , Adipócitos/citologia , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Diferenciação Celular , Proliferação de Células , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Apoptose
12.
BMC Genomics ; 25(1): 407, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664635

RESUMO

BACKGROUND: Unraveling the intricate and tightly regulated process of adipogenesis, involving coordinated activation of transcription factors and signaling pathways, is essential for addressing obesity and related metabolic disorders. The molecular pathways recruited by mesenchymal stem cells (MSCs) during adipogenesis are also dependent on the different sources of the cells and genetic backgrounds of donors, which contribute to the functional heterogeneity of the stem cells and consequently affect the developmental features and fate of the cells. METHODS: In this study, the alteration of transcripts during differentiation of synovial mesenchymal stem cells (SMSCs) derived from fibrous synovium (FS) and adipose synovial tissue (FP) of two pig breeds differing in growth performance (German Landrace (DL)) and fat deposition (Angeln Saddleback (AS)) was investigated. SMSCs from both tissues and breeds were stimulated to differentiate into adipocytes in vitro and sampled at four time points (day 1, day 4, day 7 and day 14) to obtain transcriptomic data. RESULTS: We observed numerous signaling pathways related to the cell cycle, cell division, cell migration, or cell proliferation during early stages of adipogenesis. As the differentiation process progresses, cells begin to accumulate intracellular lipid droplets and changes in gene expression patterns in particular of adipocyte-specific markers occur. PI3K-Akt signaling and metabolic pathways changed most during adipogenesis, while p53 signaling and ferroptosis were affected late in adipogenesis. When comparing MSCs from FS and FP, only a limited number of differentially expressed genes (DEGs) and enriched signaling pathways were identified. Metabolic pathways, including fat, energy or amino acid metabolism, were highly enriched in the AS breed SMSCs compared to those of the DL breed, especially at day 7 of adipogenesis, suggesting retention of the characteristic metabolic features of their original source, demonstrating donor memory in culture. In contrast, the DL SMSCs were more enriched in immune signaling pathways. CONCLUSIONS: Our study has provided important insights into the dynamics of adipogenesis and revealed metabolic shifts in SMSCs associated with different cell sources and genetic backgrounds of donors. This emphasises the critical role of metabolic and genetic factors as important indications and criteria for donor stem cell selection.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Animais , Adipogenia/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Suínos , Transdução de Sinais , Diferenciação Celular , Perfilação da Expressão Gênica , Transcriptoma , Membrana Sinovial/metabolismo , Membrana Sinovial/citologia , Adipócitos/metabolismo , Adipócitos/citologia , Células Cultivadas , Cruzamento
13.
Biomolecules ; 14(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38672517

RESUMO

Obesity stands as a significant risk factor for type 2 diabetes, hyperlipidemia, and cardiovascular diseases, intertwining increased inflammation and decreased adipogenesis with metabolic disorders. Studies have highlighted the correlation between Caspase-1 and inflammation in obesity, elucidating its essential role in the biological functions of adipose tissue. However, the impact of Caspase-1 on adipogenesis and the underlying mechanisms remain largely elusive. In our study, we observed a positive correlation between Caspase-1 expression and obesity and its association with adipogenesis. In vivo experiments revealed that, under normal diet conditions, Caspase-1 deficiency improved glucose homeostasis, stimulated subcutaneous adipose tissue expansion, and enhanced adipogenesis. Furthermore, our findings indicate that Caspase-1 deficiency promotes the expression of autophagy-related proteins and inhibits autophagy with 3-MA or CQ blocked Caspase-1 deficiency-induced adipogenesis in vitro. Notably, Caspase-1 deficiency promotes adipogenesis via Atg7-mediated autophagy activation. In addition, Caspase-1 deficiency resisted against high-fat diet-induced obesity and glucose intolerance. Our study proposes the downregulation of Caspase-1 as a promising strategy for mitigating obesity and its associated metabolic disorders.


Assuntos
Adipogenia , Proteína 7 Relacionada à Autofagia , Autofagia , Caspase 1 , Inflamação , Obesidade , Adipogenia/genética , Animais , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Camundongos , Caspase 1/metabolismo , Caspase 1/genética , Caspase 1/deficiência , Obesidade/metabolismo , Obesidade/patologia , Obesidade/genética , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Masculino , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Células 3T3-L1 , Camundongos Knockout
14.
J Transl Med ; 22(1): 363, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632591

RESUMO

Interleukin-33 (IL-33), an emerging cytokine within the IL-1 family, assumes a pivotal function in the control of obesity. However, the specific mechanism of its regulation of obesity formation remains unclear. In this study, we found that the expression level of IL-33 increased in visceral adipose tissue in mice fed with a high-fat diet (HFD) compared with that in mice fed with a normal diet (ND). In vitro, we also found the expression level of IL-33 was upregulated during the adipogenesis of 3T3-L1 cells. Functional test results showed that knockdown of IL-33 in 3T3-L1 cells differentiation could promote the accumulation of lipid droplets, the content of triglyceride and the expression of adipogenic-related genes (i.e. PPAR-γ, C/EBPα, FABP4, LPL, Adipoq and CD36). In contrast, overexpression of IL-33 inhibits adipogenic differentiation. Meanwhile, the above tests were repeated after over-differentiation of 3T3-L1 cells induced by oleic acid, and the results showed that IL-33 played a more significant role in the regulation of adipogenesis. To explore the mechanism, transcriptome sequencing was performed and results showed that IL-33 regulated the PPAR signaling pathway in 3T3-L1 cells. Further, Western blot and confocal microscopy showed that the inhibition of IL-33 could promote PPAR-γ expression by inhibiting the Wnt/ß-catenin signal in 3T3-L1 cells. This study demonstrated that IL-33 was an important regulator of preadipocyte differentiation and inhibited adipogenesis by regulating the Wnt/ß-catenin/PPAR-γ signaling pathway, which provided a new insight for further research on IL-33 as a new intervention target for metabolic disorders.


Assuntos
Adipogenia , Interleucina-33 , Via de Sinalização Wnt , Animais , Camundongos , Adipócitos/metabolismo , Adipogenia/genética , beta Catenina/metabolismo , Diferenciação Celular , Interleucina-33/metabolismo , Obesidade/metabolismo , PPAR gama/genética , PPAR gama/metabolismo
15.
Sci Rep ; 14(1): 6656, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509237

RESUMO

The feed-forward loop between the transcription factors Ppar-gamma and C/ebp-alpha is critical for lineage commitment during adipocytic differentiation. Ppar-gamma interacts with epigenetic cofactors to activate C/ebp-alpha and the downstream adipocytic gene expression program. Therefore, knowledge of the epigenetic cofactors associated with Ppar-gamma, is central to understanding adipocyte differentiation in normal differentiation and disease. We found that Prmt6 is present with Ppar-gamma on the Ppar-gamma and C/ebp-alpha promoter. It contributes to the repression of C/ebp-alpha expression, in part through its ability to induce H3R2me2a. During adipocyte differentiation, Prmt6 expression is reduced and the methyltransferase leaves the promoters. As a result, the expression of Ppar-gamma and C/ebp-alpha is upregulated and the adipocytic gene expression program is established. Inhibition of Prmt6 by a small molecule enhances adipogenesis, opening up the possibility of epigenetic manipulation of differentiation. Our data provide detailed information on the molecular mechanism controlling the Ppar-gamma-C/ebp-alpha feed-forward loop. Thus, they advance our understanding of adipogenesis in normal and aberrant adipogenesis.


Assuntos
Adipogenia , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/metabolismo , Adipogenia/genética , PPAR alfa/metabolismo , Regulação da Expressão Gênica , Adipócitos/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , PPAR gama/genética , PPAR gama/metabolismo , Células 3T3-L1
16.
Adipocyte ; 13(1): 2330355, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38527945

RESUMO

Adipogenic differentiation and thermogenesis in brown adipose tissue (BAT) undergo dynamic processes, altering phenotypes and gene expressions. Proper reference genes in gene expression analysis are crucial to mitigate experimental variances and ensure PCR efficacy. Unreliable reference genes can lead to erroneous gene expression quantification, resulting in data misinterpretation. This study focused on identifying suitable reference genes for mouse brown adipocyte research, utilizing brown adipocytes from the Ucp1-luciferase ThermoMouse model. Comparative analysis of gene expression data under adipogenesis and thermogenesis conditions was conducted, validating 13 housekeeping genes through various algorithms, including DeltaCq, BestKeeper, geNorm, Normfinder, and RefFinder. Tbp and Rer1 emerged as optimal references for Ucp1 and Pparg expression in brown adipogenesis, while Tbp and Ubc were ideal for the expression analysis of these target genes in thermogenesis. Conversely, certain conventional references, including Actb, Tubb5, and Gapdh, proved unstable as reference genes under both conditions. These findings stress the critical consideration of reference gene selection in gene expression analysis within specific biological systems to ensure accurate conclusions.


Assuntos
Adipócitos Marrons , Tecido Adiposo Marrom , Camundongos , Animais , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Adipogenia/genética , Perfilação da Expressão Gênica , Termogênese/genética
17.
Cell Mol Biol Lett ; 29(1): 45, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553665

RESUMO

BACKGROUND: Both glucocorticoid receptor and peroxisome proliferator-activated receptor-γ (PPARγ) play a critical role in adipocyte differentiation. Mifepristone is not only an antagonist of the glucocorticoid receptor but also an agonist of PPARγ. Therefore, the present study investigated the effect of mifepristone on adipocyte differentiation. METHODS: Mouse 3T3-L1 cells were used as a model for adipocyte differentiation. The lipid droplet formation was evaluated with Bodipy493/503 staining and the expression of adipocyte markers [adiponectin and adipocyte fatty acid binding protein-4 (Fabp4)] was evaluated with quantitative PCR and immunoblot analyses for indication of adipocyte differentiation. siRNA and neutralizing antibodies were used to elucidate the molecular mechanism of mifepristone-induced adipocyte differentiation. Luciferase reporter assay was used to examine the effect of mifepristone on the promoter activity of PPAR-response element (PPRE). The DNA microarray analysis was used to characterize the transcriptome of the mifepristone-induced adipocytes. In vivo adipogenic effect of mifepristone was examined in mice. RESULTS: Mifepristone not only enhanced adipocyte differentiation induced by the conventional protocol consisting of insulin, dexamethasone and 3-isobutyl-1-methylxanthine but also induced adipocyte differentiation alone, as evidenced by lipid droplets formation and induction of the expression of adiponectin and Fabp4. These effects were inhibited by an adiponectin-neutralizing antibody and a PPARγ antagonist. Mifepristone activated the promoter activity of PPRE in a manner sensitive to PPARγ antagonist. A principal component analysis (PCA) of DNA microarray data revealed that the mifepristone-induced adipocytes represent some characteristics of the in situ adipocytes in normal adipose tissues to a greater extent than those induced by the conventional protocol. Mifepristone administration induced an increase in the weight of epididymal, perirenal and gluteofemoral adipose tissues. CONCLUSIONS: Mifepristone alone is capable of inducing adipocyte differentiation in 3T3-L1 cells and adipogenesis in vivo. PPARγ plays a critical role in the mifepristone-induced adipocyte differentiation. Mifepristone-induced adipocytes are closer to the in situ adipocytes than those induced by the conventional protocol. The present study proposes a single treatment with mifepristone as a novel protocol to induce more physiologically relevant adipocytes in 3T3-L1 cells than the conventional protocol.


Assuntos
Adiponectina , Mifepristona , Camundongos , Animais , Adiponectina/metabolismo , Adiponectina/farmacologia , Mifepristona/farmacologia , Mifepristona/metabolismo , PPAR gama/metabolismo , Células 3T3-L1 , Receptores de Glucocorticoides/metabolismo , Diferenciação Celular , Adipogenia/genética , Adipócitos/metabolismo
18.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474122

RESUMO

Alternative splicing (AS) plays a crucial role in regulating gene expression, function, and diversity. However, limited reports exist on the identification and comparison of AS in Eastern and Western pigs. Here, we analyzed 243 transcriptome data from eight tissues, integrating information on transcription factors (TFs), selection signals, splicing factors (SFs), and quantitative trait loci (QTL) to comprehensively study alternative splicing events (ASEs) in pigs. Five ASE types were identified, with Mutually Exclusive Exon (MXE) and Skipped Exon (SE) ASEs being the most prevalent. A significant portion of genes with ASEs (ASGs) showed conservation across all eight tissues (63.21-76.13% per tissue). Differentially alternative splicing genes (DASGs) and differentially expressed genes (DEGs) exhibited tissue specificity, with blood and adipose tissues having more DASGs. Functional enrichment analysis revealed coDASG_DEGs in adipose were enriched in pathways associated with adipose deposition and immune inflammation, while coDASG_DEGs in blood were enriched in pathways related to immune inflammation and metabolism. Adipose deposition in Eastern pigs might be linked to the down-regulation of immune-inflammation-related pathways and reduced insulin resistance. The TFs, selection signals, and SFs appeared to regulate ASEs. Notably, ARID4A (TF), NSRP1 (SF), ANKRD12, IFT74, KIAA2026, CCDC18, NEXN, PPIG, and ROCK1 genes in adipose tissue showed potential regulatory effects on adipose-deposition traits. NSRP1 could promote adipogenesis by regulating alternative splicing and expression of CCDC18. Conducting an in-depth investigation into AS, this study has successfully identified key marker genes essential for pig genetic breeding and the enhancement of meat quality, which will play important roles in promoting the diversity of pork quality and meeting market demand.


Assuntos
Adipogenia , Processamento Alternativo , Suínos , Animais , Adipogenia/genética , Melhoramento Vegetal , Transcriptoma , Inflamação , Perfilação da Expressão Gênica
19.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474216

RESUMO

Excessive lipid accumulation in adipocytes is a primary contributor to the development of metabolic disorders, including obesity. The consumption of bioactive compounds derived from natural sources has been recognized as being safe and effective in preventing and alleviating obesity. Therefore, we aimed to explore the antilipidemic effects of pennogenin 3-O-ß-chacotrioside (P3C), a steroid glycoside, on hypertrophied 3T3-L1 adipocytes. Oil Red O and Nile red staining demonstrated a P3C-induced reduction in lipid droplet accumulation. Additionally, the increased expression of adipogenic and lipogenic factors, including PPARγ and C/EBPα, during the differentiation process was significantly decreased by P3C treatment at both the protein and mRNA levels. Furthermore, P3C treatment upregulated the expression of fatty acid oxidation-related genes such as PGC1α and CPT1a. Moreover, mitochondrial respiration and ATP generation increased following P3C treatment, as determined using the Seahorse XF analyzer. P3C treatment also increased the protein expression of mitochondrial oxidative phosphorylation in hypertrophied adipocytes. Our findings suggest that P3C could serve as a natural lipid-lowering agent, reducing lipogenesis and enhancing mitochondrial oxidative capacity. Therefore, P3C may be a promising candidate as a therapeutic agent for obesity-related diseases.


Assuntos
Adipogenia , Metabolismo dos Lipídeos , Camundongos , Animais , Adipogenia/genética , Obesidade/metabolismo , Hipertrofia , Lipídeos/farmacologia , Estresse Oxidativo , Células 3T3-L1 , PPAR gama/metabolismo
20.
Int J Biol Macromol ; 264(Pt 2): 130737, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460642

RESUMO

Muscle development and intramuscular fat (IMF) deposition are intricate physiological processes characterized by multiple gene expressions and interactions. In this research, the phenotypic variations in the breast muscle of Jingyuan chickens were examined at three different time points: 42, 126, and 180 days old. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were performed to identify differentially methylated genes (DMGs) responsible for regulating muscle development and IMF deposition. The findings indicate a significant increase in breast muscle weight (BMW), myofiber diameter, and cross-sectional area, as well as IMF content, in correlation with the progressive number of growing days in Jingyuan chickens. The findings also revealed that 380 hypo-methylated and 253 hyper-methylated DMGs were identified between the three groups of breast muscle. Module gene and DMG association analysis identified m6A methylation-mediated multiple DMGs associated with muscle development and fat metabolism. In vitro cell modeling analysis reveals stage-specific differences in the expression of CUBN, MEGF10, BOP1, and BMPR2 during the differentiation of myoblasts and intramuscular preadipocytes. Cycloleucine treatment significantly inhibited the expression levels of CUBN, BOP1, and BMPR2, and promoted the expression of MEGF10. These results suggest that m6A methylation-mediated CUBN, MEGF10, BOP1, and BMPR2 can serve as potential candidate genes for regulating muscle development and IMF deposition, and provide an important theoretical basis for further investigation of the functional mechanism of m6A modification involved in adipogenesis.


Assuntos
Adipogenia , Galinhas , Animais , Galinhas/genética , Galinhas/metabolismo , Adipogenia/genética , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Desenvolvimento Muscular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...