Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731500

RESUMO

A robust, well-functioning immune system is the cornerstone of good health. Various factors may influence the immune system's effectiveness, potentially leading to immune system failure. This review aims to provide an overview of the structure and action of immunomodulators isolated from African medicinal plants. The research was conducted according to PRISMA guidelines. Full-text access research articles published in English up to December 2023, including plant characteristics, isolated phytochemicals, and immuno-modulatory activities, were screened. The chemical structures of the isolated compounds were generated using ChemDraw® (version 12.0.1076), and convergent and distinctive signaling pathways were highlighted. These phytochemicals with demonstrated immunostimulatory activity include alkaloids (berberine, piperine, magnoflorine), polysaccharides (pectin, glucan, acemannan, CALB-4, GMP90-1), glycosides (syringin, cordifolioside, tinocordiside, aucubin), phenolic compounds (ferulic acid, vanillic acid, eupalitin), flavonoids (curcumin, centaurein, kaempferin, luteolin, guajaverin, etc.), terpenoids (oleanolic acid, ursolic acid, betulinic acid, boswellic acids, corosolic acid, nimbidin, andrographolides). These discussed compounds exert their effects through various mechanisms, targeting the modulation of MAPKs, PI3K-Akt, and NF-kB. These mechanisms can support the traditional use of medicinal plants to treat immune-related diseases. The outcomes of this overview are to provoke structural action optimization, to orient research on particular natural chemicals for managing inflammatory, infectious diseases and cancers, or to boost vaccine immunogenicity.


Assuntos
Compostos Fitoquímicos , Plantas Medicinais , Plantas Medicinais/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , África , Animais
2.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731567

RESUMO

A neutral Polygonatum cyrtonema polysaccharide (NPCP) was isolated and purified from Polygonatum cyrtonema by various chromatographic techniques, including DEAE-52 and Sephadex-G100 chromatography. The structure of NPCP was characterized by HPLC, HPGPC, GC-MS, FT-IR, NMR, and SEM. Results showed that NPCP is composed of glucose (55.4%) and galactose (44.6%) with a molecular weight of 3.2 kDa, and the sugar chain of NPCP was →1)-α-D-Glc-(4→1)-ß-D-Gal-(3→. In vitro bioactivity experiments demonstrated that NPCP significantly enhanced macrophages proliferation and phagocytosis while inhibiting the M1 polarization induced by LPS as well as the M2 polarization induced by IL-4 and IL-13 in macrophages. Additionally, NPCP suppressed the secretion of IL-6 and TNF-α in both M1 and M2 cells but promoted the secretion of IL-10. These results suggest that NPCP could serve as an immunomodulatory agent with potential applications in anti-inflammatory therapy.


Assuntos
Macrófagos , Fagocitose , Polygonatum , Polissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Polygonatum/química , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Animais , Fagocitose/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Células RAW 264.7 , Citocinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Peso Molecular
3.
PLoS One ; 19(5): e0302913, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728358

RESUMO

In the fight against antimicrobial resistance, host defense peptides (HDPs) are increasingly referred to as promising molecules for the design of new antimicrobial agents. In terms of their future clinical use, particularly small, synthetic HDPs offer several advantages, based on which their application as feed additives has aroused great interest in the poultry sector. However, given their complex mechanism of action and the limited data about the cellular effects in production animals, their investigation is of great importance in these species. The present study aimed to examine the immunomodulatory activity of the synthetic HDP Pap12-6 (PAP) solely and in inflammatory environments evoked by lipoteichoic acid (LTA) and polyinosinic-polycytidylic acid (Poly I:C), in a primary chicken hepatocyte-non-parenchymal cell co-culture. Based on the investigation of the extracellular lactate dehydrogenase (LDH) activity, PAP seemed to exert no cytotoxicity on hepatic cells, suggesting its safe application. Moreover, PAP was able to influence the immune response, reflected by the decreased production of interleukin (IL)-6, IL-8, and "regulated on activation, normal T cell expressed and secreted"(RANTES), as well as the reduced IL-6/IL-10 ratio in Poly I:C-induced inflammation. PAP also diminished the levels of extracellular H2O2 and nuclear factor erythroid 2-related factor 2 (Nrf2) when applied together with Poly I:C and in both inflammatory conditions, respectively. Consequently, PAP appeared to display potent immunomodulatory activity, preferring to act towards the cellular anti-inflammatory and antioxidant processes. These findings confirm that PAP might be a promising alternative for designing novel antimicrobial immunomodulatory agents for chickens, thereby contributing to the reduction of the use of conventional antibiotics.


Assuntos
Galinhas , Hepatócitos , Lipopolissacarídeos , Poli I-C , Animais , Hepatócitos/efeitos dos fármacos , Hepatócitos/imunologia , Hepatócitos/metabolismo , Poli I-C/farmacologia , Lipopolissacarídeos/farmacologia , Fatores Imunológicos/farmacologia , Ácidos Teicoicos/farmacologia , Células Cultivadas , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Técnicas de Cocultura , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Citocinas/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia
4.
Cancer Med ; 13(10): e7287, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770637

RESUMO

Although the development of immunotherapies has been revolutionary in the treatment of several cancers, many cancer types remain unresponsive to immune-based treatment and are largely managed by chemotherapy drugs. However, chemotherapeutics are not infallible and are frequently rendered ineffective as resistance develops from prolonged exposure. Recent investigations have indicated that some chemotherapy drugs have additional functions beyond their normative cytotoxic capacity and are in fact immune-modifying agents. Of the pharmaceuticals with identified immune-editing properties, gemcitabine is well-studied and of interest to clinicians and scientists alike. Gemcitabine is a chemotherapy drug approved for the treatment of multiple cancers, including breast, lung, pancreatic, and ovarian. Because of its broad applications, relatively low toxicity profile, and history as a favorable combinatory partner, there is promise in the recharacterization of gemcitabine in the context of the immune system. Such efforts may allow the identification of suitable immunotherapeutic combinations, wherein gemcitabine can be used as a priming agent to improve immunotherapy efficacy in traditionally insensitive cancers. This review looks to highlight documented immunomodulatory abilities of one of the most well-known chemotherapy agents, gemcitabine, relating to its influence on cells and proteins of the immune system.


Assuntos
Desoxicitidina , Gencitabina , Neoplasias , Humanos , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Desoxicitidina/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Imunoterapia/métodos , Imunomodulação/efeitos dos fármacos , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Antimetabólitos Antineoplásicos/farmacologia , Agentes de Imunomodulação/uso terapêutico , Agentes de Imunomodulação/farmacologia
5.
Front Immunol ; 15: 1377470, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698839

RESUMO

Atherosclerosis (AS) is recognized as a chronic inflammatory condition characterized by the accumulation of lipids and inflammatory cells within the damaged walls of arterial vessels. It is a significant independent risk factor for ischemic cardiovascular disease, ischemic stroke, and peripheral arterial disease. Despite the availability of current treatments such as statins, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and lifestyle modifications for prevention, AS remains a leading cause of morbidity and economic burden worldwide. Thus, there is a pressing need for the development of new supplementary and alternative therapies or medications. Huangqin (Scutellaria baicalensis Georgi. [SBG]), a traditional Chinese medicine, exerts a significant immunomodulatory effect in AS prevention and treatment, with baicalin being identified as one of the primary active ingredients of traditional Chinese medicine. Baicalin offers a broad spectrum of pharmacological activities, including the regulation of immune balance, antioxidant and anti-inflammatory effects, and improvement of lipid metabolism dysregulation. Consequently, it exerts beneficial effects in both AS onset and progression. This review provides an overview of the immunomodulatory properties and mechanisms by which baicalin aids in AS prevention and treatment, highlighting its potential as a clinical translational therapy.


Assuntos
Aterosclerose , Flavonoides , Humanos , Flavonoides/uso terapêutico , Flavonoides/farmacologia , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/imunologia , Animais , Agentes de Imunomodulação/uso terapêutico , Agentes de Imunomodulação/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia
6.
Int Immunopharmacol ; 133: 112021, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626549

RESUMO

BACKGROUND: Diabetic retinopathy (DR) stands as a prevalent secondary complication of diabetes, notably Type 1 Diabetes Mellitus (T1D), characterized by immune system involvement potentially impacting the retinal immune response mediated by microglia. Early stages of DR witness blood-retinal barrier permeabilization, facilitating peripheral immune cell interaction with the retinal immune system. Kaempferol (Kae), known for its potent anti-inflammatory activity, presents a promising avenue in DR treatment by targeting the immune mechanisms underlying its onset and progression. Our investigation delves into the molecular intricacies of innate immune cell interaction during DR progression and the attenuation of inflammatory processes pivotal to its pathology. METHODS: Employing in vitro studies, we exposed HAPI microglial and J774.A1 macrophage cells to pro-inflammatory stimuli in the presence or absence of Kae. Ex vivo and in vivo experiments utilized BB rats, a T1D animal model. Retinal explants from BB rats were cultured with Kae, while intraperitoneal Kae injections were administered to BB rats for 15 days. Quantitative PCR, Western blotting, immunofluorescence, and Spectral Domain - Optical Coherence Tomography (SD-OCT) facilitated survival assessment, cellular signaling analysis, and inflammatory marker determination. RESULTS: Results demonstrate Kae significantly mitigates inflammatory processes across in vitro, ex vivo, and in vivo DR models, primarily targeting immune cell responses. Kae administration notably inhibits proinflammatory responses during DR progression while promoting an anti-inflammatory milieu, chiefly through microglia-mediated synthesis of Arginase-1 and Hemeoxygenase-1(HO-1). In vivo, Kae administration effectively preserves retinal integrity amid DR progression. CONCLUSIONS: Our findings elucidate the interplay between retinal and systemic immune cells in DR progression, underscoring a differential treatment response predominantly orchestrated by microglia's anti-inflammatory action. Kae treatment induces a phenotypic and functional shift in immune cells, delaying DR progression, thereby spotlighting microglial cells as a promising therapeutic target in DR management.


Assuntos
Retinopatia Diabética , Quempferóis , Macrófagos , Microglia , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/imunologia , Retinopatia Diabética/patologia , Microglia/efeitos dos fármacos , Microglia/imunologia , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Progressão da Doença , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/imunologia , Retina/efeitos dos fármacos , Retina/patologia , Retina/imunologia , Linhagem Celular , Masculino , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/uso terapêutico , Modelos Animais de Doenças
7.
Expert Opin Drug Deliv ; 21(4): 627-638, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38682272

RESUMO

INTRODUCTION: Currently, cancer immunotherapy is widely used as a groundbreaking method that can completely cure advanced cancers. However, this new immunotherapy has the challenge of low patient response, which is often due to many patients' tumors having an immunosuppressive environment, known as cold tumors. AREAS COVERED: This review aims to introduce various nanomedicine-derived combinational cancer immunotherapy that can transform cold tumor into hot tumors. Initially, we discuss new technologies for combinational immunotherapy based on multifunctional nanomedicines that can deliver combinational immunogenic cell death (ICD) inducers, immune checkpoint blockades (ICBs) and immune modulators (IMs) to targeted tumor tissues at the same time. Ultimately, we highlight how multifunctional nanomedicines for combinational cancer immunotherapy can be used to transform cold tumor into hot tumors against advanced cancers. EXPERT OPINION: Nanomedicine-derived combinational cancer immunotherapy for delivering multiple ICD inducers, ICBs, and IMs at the same time is recognized as a new potential technology that can activate tumor immunity and simultaneously increase the therapeutic efficacy of immune cells that can transform effectively the cold tumors into hot tumors. Finally, nanomedicine-derived combinational cancer immunotherapy can solve the serious problems of low therapeutic efficacy that occurs when treating single drug or simple combinational drugs in cancer immunotherapy.


Assuntos
Imunoterapia , Nanomedicina , Neoplasias , Humanos , Imunoterapia/métodos , Nanomedicina/métodos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Animais , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Morte Celular Imunogênica/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Agentes de Imunomodulação/administração & dosagem , Agentes de Imunomodulação/uso terapêutico , Agentes de Imunomodulação/química , Agentes de Imunomodulação/farmacologia , Microambiente Tumoral , Terapia Combinada
8.
Urologiia ; (1): 71-79, 2024 Mar.
Artigo em Russo | MEDLINE | ID: mdl-38650409

RESUMO

INTRODUCTION: Immune defense mechanisms, including a decrease in the functional activity of monocytes/macrophages, neutrophils, as well as a violation of the balance of pro- and anti-inflammatory cytokines, are important in the development of chronic abacterial prostatitis (CAP). The discovery of the cytokine system and the determination of their biological role in the development and functioning of the immune system and in the pathogenesis of a wide range of human diseases led to the development of a new direction in immunotherapy - cytokine therapy. The aim of the study was to evaluate the effectiveness of various regimens of the use of the immunomodulatory drug Superlimf in the prevention of recurrence of CAP. MATERIALS AND METHODS: The study included 90 patients with category IIIa CAP (NIH, 1995). All patients underwent basic complex therapy was performed, which included behavioral therapy, taking an 1-adrenoblocker, an antibacterial drug from the fluoroquinolone group for 28 days, as well as the drug Superlimph 10 ME 1 suppository rectally 2 times a day for 20 days. Dynamic follow-up was recommended for patients of group (CG) in the next 12 months. In the main group 1 (MG1), patients underwent basic complex therapy, after which a preventive courses of Superlimph 10 ME 1 suppository 1 time per day for 10 days every three months for 12 months was prescribed. In the main group 2 (MG2), patients also underwent basic complex therapy, after which a preventive courses of Superlimph 10 ME of 1 suppository was prescribed 2 times a day for 10 days every three months for 12 months. The effectiveness of the treatment was evaluated after 4 weeks (visit 2). Long-term treatment results were assessed after 3 months (visit 3), 6 months (visit 4), and 12 months (visit 5). RESULTS: The study groups were homogeneous, and the results of examinations obtained before treatment did not differ statistically significantly (p>0.05). At visit 2, 4 weeks after the start of therapy, a statistically significant positive dynamics of the studied indicators in the main groups and CG was recorded. Thus, the average score on the IPSS scale decreased by 56.4% from the initial value, on the Qol scale - by 57.7%, on the NIH-CPSI scale - 70.2%. The number of leukocytes in the prostate secretion decreased to the normal level to 7.9 in the field of vision, which is 86.2% less than the initial value. The average Qmax value also increased to a normal value of 15.2ml/s, which is 51.3% higher than the initial value (p<0.001). In this study, for the first time, a comparative analysis of two different regimens of preventive administration of the drug Superlimf was carried out. In MG1, the drug was prescribed to patients at a dose of 10 ME 1 time a day, in MG2 - 10 ME 2 times a day. The data obtained indicate a comparable effectiveness of both dosage regimens after 3 months of therapy. However, after 6 months and 12 months, the results in MG2 were statistically significantly better than in MG1. In addition, during 12 months of therapy, the number of relapses in MG2 was 2.3 times less. According to ultrasound examination, the volume of the prostate gland in CG, after a significant (p<0.001) decrease against the background of basic complex therapy, increased by 24.6% from visit 2 to visit 5, whereas in MG2 the average value of this indicator did not significantly change. And according to the Doppler study, by the end of the observation period at visit 5, hemodynamic parameters in CG were statistically significantly worse than in MG1 and MG2. CONCLUSION: Thus, the use of Superlymph in patients with CAP as a preventive therapy every 3 months results to a longer preservation of the therapeutic effect and improved hemodynamics in the prostate. In addition, preventive courses of Superlymph 10 units 2 times a day for 10 days led to an increase in the duration of the relapse-free period and a decrease in the number of recurrences within 12 months by 7 times, while preventive courses of Superlymph 10 units 1 time per day for 10 days decreased risk of recurrence by 3 times. According to our results, the most effective preventive scheme in patients with CAP is the use of Superlymph 10 units, 1 suppository 2 times a day for 10 days every 3 months.


Assuntos
Prostatite , Humanos , Masculino , Prostatite/tratamento farmacológico , Prostatite/prevenção & controle , Prostatite/imunologia , Adulto , Pessoa de Meia-Idade , Doença Crônica , Agentes de Imunomodulação/administração & dosagem , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/uso terapêutico , Recidiva , Prevenção Secundária/métodos
9.
APMIS ; 132(6): 452-464, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563150

RESUMO

Multiple sclerosis (MS) is a condition where the central nervous system loses its myelin coating due to autoimmune inflammation. The experimental autoimmune encephalomyelitis (EAE) simulates some aspects of human MS. Boswellic acids are natural compounds derived from frankincense extract, known for their anti-inflammatory properties. The purpose of this research was to investigate therapeutic potential of boswellic acids. Mice were divided into three groups: low-dose (LD), high-dose (HD), and control groups (CTRL). Following EAE induction, the mice received daily doses of boswellic acid for 25 days. Brain tissue damage, clinical symptoms, and levels of TGF-ß, IFN-γ, and IL-17 cytokines in cell cultured supernatant of lymphocytes were assessed. Gene expression of transcription factors in brain was measured using real-time PCR. The levels of brain demyelination were significantly lower in the treatment groups compared to the CTRL group. Boswellic acid reduced the severity and duration of EAE symptoms. Furthermore, boswellic acid decreased the amounts of IFN-γ and IL-17, also the expression of T-bet and ROR-γt in brain. On the contrary, it increased the levels of TGF-ß and the expression FoxP3 and GATA3. Our findings suggest that boswellic acids possess therapeutic potential for EAE by modulating the immune response and reducing inflammation.


Assuntos
Encefalomielite Autoimune Experimental , Triterpenos , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Camundongos , Feminino , Camundongos Endogâmicos C57BL , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/metabolismo , Encéfalo/imunologia , Citocinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/uso terapêutico , Interleucina-17/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
10.
Molecules ; 29(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675613

RESUMO

Acne is a chronic inflammatory skin disease with a recurring nature that seriously impacts patients' quality of life. Currently, antibiotic resistance has made it less effective in treating acne. However, Paris polyphylla (P. polyphylla) is a valuable medicinal plant with a wide range of chemical components. Of these, P. polyphylla saponins modulate the effects in vivo and in vitro through antibacterial, anti-inflammatory, immunomodulatory, and antioxidant effects. Acne is primarily associated with inflammatory reactions, abnormal sebum function, micro-ecological disorders, hair follicle hyperkeratosis, and, in some patients, immune function. Therefore, the role of P. polyphylla saponins and their values in treating acne is worthy of investigation. Overall, this review first describes the distribution and characteristics of P. polyphylla and the pathogenesis of acne. Then, the potential mechanisms of P. polyphylla saponins in treating acne are listed in detail (reduction in the inflammatory response, antibacterial action, modulation of immune response and antioxidant effects, etc.). In addition, a brief description of the chemical composition of P. polyphylla saponins and its available extraction methods are described. We hope this review can serve as a quick and detailed reference for future studies on their potential acne treatment.


Assuntos
Acne Vulgar , Antibacterianos , Anti-Inflamatórios , Antioxidantes , Saponinas , Humanos , Acne Vulgar/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/química , Saponinas/farmacologia , Saponinas/química , Saponinas/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Animais , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Fatores Imunológicos/química , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/uso terapêutico , Agentes de Imunomodulação/isolamento & purificação , Melanthiaceae/química , Liliaceae/química
11.
J Agric Food Chem ; 72(17): 9856-9866, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635925

RESUMO

The purpose of this study was to identify ovalbumin-derived immunomodulatory peptides by in vitro cell experiments, de novo sequencing, and molecular docking. Ovalbumin hydrolysates were prepared by two enzymes (alkaline protease and papain) individually, sequentially, or simultaneously, respectively. The simultaneous enzymatic hydrolysate (OVAH) had a high degree of hydrolysis (38.12 ± 0.48%) and exhibited immune-enhancing and anti-inflammatory activities. A total of 160 peptides were identified by LC-MS/MS in OVAH. Three novel peptides NVMEERKIK, ADQARELINS, and WEKAFKDE bound to TLR4-MD2 through hydrogen bonds and hydrophobic interactions with high binding affinity and binding energies of -181.40, -178.03, and -168.12 kcal/mol, respectively. These three peptides were synthesized and validated for two-way immunomodulatory activity. NVMEERKIK exhibiting the strongest immunomodulatory activity, increased NO and TNF-α levels by 128.69 and 38.01%, respectively, in normal RAW264.7 cells and reduced NO and TNF-α levels by 27.31 and 39.13%, respectively, in lipopolysaccharide-induced inflammatory RAW264.7 cells. Overall, this study first revealed that ovalbumin could be used as an immunomodulatory source for controlling inflammatory factor secretion.


Assuntos
Simulação de Acoplamento Molecular , Ovalbumina , Peptídeos , Ovalbumina/imunologia , Ovalbumina/química , Camundongos , Animais , Células RAW 264.7 , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/imunologia , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Agentes de Imunomodulação/química , Agentes de Imunomodulação/farmacologia , Sequência de Aminoácidos , Espectrometria de Massas em Tandem , Óxido Nítrico/metabolismo , Óxido Nítrico/imunologia , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia
12.
J Microbiol Biotechnol ; 34(4): 880-890, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38379288

RESUMO

The immunomodulatory effects of Euglena gracilis (Euglena) and its bioactive component, ß-1,3-glucan (paramylon), have been clarified through various studies. However, the detailed mechanisms of the immune regulation remain to be elucidated. This study was designed not only to investigate the immunomodulatory effects but also to determine the genetic mechanisms of Euglena and ß-glucan in cyclophosphamide (CCP)-induced immunosuppressed mice. The animals were orally administered saline, Euglena (800 mg/kg B.W.) or ß-glucan (400 mg/kg B.W.) for 19 days, and CCP (80 mg/kg B.W.) was subsequently administered to induce immunosuppression in the mice. The mice exhibited significant decreases in body weight, organ weight, and the spleen index. However, there were significant improvements in the spleen weight and the spleen index in CCP-induced mice after the oral administration of Euglena and ß-glucan. Transcriptome analysis of the splenocytes revealed immune-related differentially expressed genes (DEGs) regulated in the Euglena- and ß-glucantreated groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that pathways related with interleukin (IL)-17 and cAMP play significant roles in regulating T cells, B cells, and inflammatory cytokines. Additionally, Ptgs2, a major inflammatory factor, was exclusively expressed in the Euglena-treated group, suggesting that Euglena's beneficial components, such as carotenoids, could regulate these genes by influencing immune lymphocytes and inflammatory cytokines in CCP-induced mice. This study validated the immunomodulatory effects of Euglena and highlighted its underlying mechanisms, suggesting a positive contribution to the determination of phenotypes associated with immune-related diseases and the research and development of immunotherapies.


Assuntos
Ciclofosfamida , Euglena gracilis , Perfilação da Expressão Gênica , Baço , Transcriptoma , beta-Glucanas , Animais , Euglena gracilis/genética , Camundongos , Baço/imunologia , Baço/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , beta-Glucanas/farmacologia , beta-Glucanas/administração & dosagem , Glucanos/farmacologia , Masculino , Fatores Imunológicos/farmacologia , Agentes de Imunomodulação/farmacologia , Citocinas/metabolismo , Hospedeiro Imunocomprometido
14.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373516

RESUMO

The use of deer antlers dates back thousands of years in Chinese history. Deer antlers have antitumor, anti-inflammatory, and immunomodulatory properties and can be used in treating neurological diseases. However, only a few studies have reported the immunomodulatory mechanism of deer antler active compounds. Using network pharmacology, molecular docking, and molecular dynamics simulation techniques, we analyzed the underlying mechanism by which deer antlers regulate the immune response. We identified 4 substances and 130 core targets that may play immunomodulatory roles, and the beneficial and non-beneficial effects in the process of immune regulation were analyzed. The targets were enriched in pathways related to cancer, human cytomegalovirus infection, the PI3K-Akt signaling pathway, human T cell leukemia virus 1 infection, and lipids and atherosclerosis. Molecular docking showed that AKT1, MAPK3, and SRC have good binding activity with 17 beta estradiol and estrone. Additionally, the molecular dynamics simulation of the molecular docking result using GROMACS software (version: 2021.2) was performed and we found that the AKT1-estrone complex, 17 beta estradiol-AKT1 complex, estrone-MAPK3 complex, and 17 beta estradiol-MAPK3 complex had relatively good binding stability. Our research sheds light on the immunomodulatory mechanism of deer antlers and provides a theoretical foundation for further exploration of their active compounds.


Assuntos
Chifres de Veado , Cervos , Agentes de Imunomodulação , Medicina Tradicional Chinesa , Humanos , Animais , Chifres de Veado/química , Farmacologia em Rede , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Agentes de Imunomodulação/química , Agentes de Imunomodulação/farmacologia , Terapia de Alvo Molecular , Mapas de Interação de Proteínas
16.
J Ethnopharmacol ; 299: 115674, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064149

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zukamu granules (ZKMG), as the preferred drug for the treatment of colds in Uygur medical theory, has been used for 1500 years. It is also widely used in China and included in the National Essential Drugs List (2018 edition). It has unique anti-inflammatory, antitussive and analgesic effects. AIM OF THE STUDY: Aiming at the research of traditional Chinese medicine (TCM) with the characteristics of overall regulation of body diseases and the immune regulation mechanism with the concept of integrity, this paper put forward the integrated application of network composite module analysis and animal experiment verification to study the immune regulation mechanism of TCM. MATERIALS AND METHODS: The active components and targets of ZKMG were predicted, and network module analysis was performed to explore their potential immunomodulatory mechanisms. Then acute lung injury (ALI) mice and idiopathic pulmonary fibrosis (IPF) rats were used as pathological models to observe the effects of ZKMG on the pathological conditions of infected ALI and IPF rats, determine the contents of Th1, Th2 characteristic cytokines and immunoglobulins, and study the intervention of GATA3/STAT6 signal pathway. RESULTS: The results of network composite module analysis showed that ZKMG contained 173 pharmacodynamic components and 249 potential targets, and four key modules were obtained. The immunomodulatory effects of ZKMG were related to T cell receptor signaling pathway. The validation results of bioeffects that ZKMG could carry out bidirectional immune regulation on Th1/Th2 cytokines in the stage of ALI and IPF, so as to play the role of regulating immune homeostasis and organ protection. CONCLUSIONS: The network composite module analysis and verification method is an exploration to study the immune regulation mechanism of TCM by combining the network module prediction analysis with animal experiments, which provides a reference for subsequent research.


Assuntos
Lesão Pulmonar Aguda , Antitussígenos , Medicamentos de Ervas Chinesas , Agentes de Imunomodulação , Animais , Camundongos , Ratos , Lesão Pulmonar Aguda/tratamento farmacológico , Analgésicos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antitussígenos/uso terapêutico , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos Essenciais/uso terapêutico , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/uso terapêutico , Farmacologia em Rede/métodos , Receptores de Antígenos de Linfócitos T/uso terapêutico
17.
Biomed Res Int ; 2022: 3645038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937400

RESUMO

Background: Lepidium sativum (garden cress) is a member of the Brassicaceae family that has been utilized for medicinal and culinary purposes in centuries. Anti-inflammatory, antioxidant, immunomodulatory, hepatoprotective, antihypertensive, antiasthmatic, and hypoglycemic properties are found in various portions of the plant. The anti-inflammatory, antioxidant, and immunomodulatory effects of L. sativum were the subject of this review. Methods: The required information was gathered by searching the Web of Science, PubMed, and Scopus databases for the terms anti-inflammatory, antioxidant, immunomodulatory, immune system, and Lepidium sativum. Up until February 2022, the search was conducted. Results: TNF-, IL-6, IL-1, NO, iNOS, and HO-1 levels were reduced, indicating that L. sativum has anti-inflammatory and immunomodulatory properties. Flavonoids, alkaloids, cyanogenic glycosides, tannins, glucosinolates, sterols, and triterpenes are the key chemical components that contribute to the anti-inflammatory effects. In peritoneal neutrophils, L. sativum reduced oxidative stress by scavenging free radicals, as evidenced by a drop in superoxide anion and an increase in glutathione. Conclusion: The anti-inflammatory, antioxidant, and immunomodulatory activities of L. sativum could be explored in clinical trials to treat inflammatory and immune system illnesses.


Assuntos
Anti-Inflamatórios , Antioxidantes , Agentes de Imunomodulação , Lepidium sativum , Extratos Vegetais , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Agentes de Imunomodulação/farmacologia , Lepidium sativum/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia
18.
Biomaterials ; 288: 121677, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35927088

RESUMO

Chemotherapy promotes phosphatidylserine (PS) externalization in tumors undergoing apoptosis, forms an immunosuppressive tumor microenvironment (TME), and inhibits dendritic cell (DC) maturation and antigen presentation by binding PS receptors expressed in DCs, thereby limiting naive T cell education and activation. In this study, we demonstrate a selective nanocarrier system composed of annexin A5-labeled poly (lactide-co-glycolide) nanoparticles (PLGA_NPs) encapsulating tumor specific antigen or neoantigen, to target apoptotic tumor cells expressing PS as an innate immune checkpoint inhibitor (ICI) that induces active cancer immunotherapy. Moreover, PLGA_NPs enhanced tumor-specific antigen-based cytotoxic T cell immunity via the original function of DCs by converting the tumor antigen-rich environment. Therefore, chemotherapy combined with an immunomodulatory nanocarrier system demonstrated an enhanced anticancer immune response by increasing survival rates, immune-activating cells, and pro-inflammatory cytokines in the spleen and TME. In contrast, the tumor mass, immune-suppressive cells, and anti-inflammatory cytokines were decreased. Furthermore, the combination of a nanocarrier system with other ICIs against large tumors showed therapeutic efficacy by immunosuppression in the TME and further amplified the anticancer immunity of interferon gamma+ (IFN-γ) CD8+ (cluster of differentiation 8) T cells. Taken together, our Annexin A5-labeled PLGA-NPs can be applied in various combination therapeutic techniques for cancer immunotherapy.


Assuntos
Agentes de Imunomodulação/farmacologia , Nanopartículas , Neoplasias , Anexina A5 , Apresentação de Antígeno , Antígenos de Neoplasias/metabolismo , Apoptose , Citocinas/metabolismo , Células Dendríticas , Humanos , Imunoterapia/métodos , Ácido Láctico , Neoplasias/tratamento farmacológico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Microambiente Tumoral
19.
Eur J Pharmacol ; 925: 174998, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35533739

RESUMO

OBJECTIVE: To assess which immunosuppressive drugs have been investigated and proven efficacious in patients with cardiovascular disease (CVD) or type 2 diabetes (T2D) without preexisting immune mediated disorders to validate in vitro and animal model findings on low grade inflammation (bedside-to-bench). METHODS: Clinical trials on immunosuppressive drugs in CVD or T2D were found in PubMed. Studies on patients with preexisting immune mediated inflammatory disease were excluded. A total of 19 clinical trials testing canakinumab, anakinra, methotrexate, colchicine, hydroxychloroquine, etanercept and sulfasalazine were found. RESULTS: Canakinumab and colchicine significantly reduced the risk of CVD, whereas methotrexate did not. Sulfasalazine showed no effect on vascular function. Anakinra and hydroxychloroquine had a positive effect on glycemic control and ß-cell function in T2D. Etanercept had no effect in patients with T2D. CONCLUSION: The observed results indicate that immunosuppressive drugs specifically targeting IL-1ß hold promise for dampening CVD and T2D. These findings validate in vitro and animal models showing involvement of the IL-1-axis in the pathogenesis of CVD and T2D. The use of immunosuppressive drugs targeting the chronic inflammation in these diseases could be a possible future treatment strategy as an add-on to the existing pharmacological treatment of CVD and T2D. However, potential treatment effects, adverse events and cost-effectiveness should be carefully considered with importance for drug development.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Agentes de Imunomodulação , Imunossupressores , Inflamação , Interleucina-1beta , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Colchicina/farmacologia , Colchicina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Etanercepte/farmacologia , Etanercepte/uso terapêutico , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/uso terapêutico , Terapia de Imunossupressão , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Inflamação/tratamento farmacológico , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-1/antagonistas & inibidores , Interleucina-1beta/antagonistas & inibidores , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Sulfassalazina/farmacologia , Sulfassalazina/uso terapêutico
20.
J Pediatr Gastroenterol Nutr ; 75(1): 97-103, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35442233

RESUMO

OBJECTIVES: Human milk reduces the incidence of necrotizing enterocolitis (NEC). Prior studies have demonstrated that exogenous surfactant protein-A (SP-A) modulates intestinal inflammation, reduces NEC-like pathology in SP-A-deficient (SPAKO) pups, and may contribute to breast milk's immunomodulatory potential. We hypothesize that SP-A is present in milk and impacts inflammatory responses in the terminal ileum of neonatal mice. METHODS: Human milk was collected at postpartum days 1-3 and 28. Mouse milk was collected at postpartum days 1-10. SP-A was detected in milk through immunoprecipitation and western blot analysis. The impact of murine wild-type (WT) milk on SPAKO pup ileum was evaluated in a model of intestinal inflammation via cross-rearing experiments. Terminal ileum was evaluated for inflammatory cytokine and toll-like receptor 4 (TLR4) mRNA expression via quantitative real-time RT-PCR. RESULTS: SP-A was detected in human milk and wild type (WT) mouse milk, but not in SPAKO mouse milk. Expression of TLR4, interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α was decreased in SPAKO pups reared with WT dams compared to SPAKO pups reared with SPAKO dams, with a peak effect at day of life 14. When inflammation was induced using a lipopolysaccharide-induced model of inflammation, expression of TLR4, IL-1ß, IL-6, CXCL-1, and TNF-α was significantly lower in SPAKO pups reared with WT dams compared to SPAKO pups reared with SPAKO dams. CONCLUSIONS: SP-A is present in human and murine milk and plays a role in lowering inflammation in murine pup terminal ileum. Both baseline inflammation and induced inflammatory responses are reduced via exposure to SP-A in milk with the effect amplified in inflammatory conditions.


Assuntos
Enterocolite Necrosante , Leite Humano , Proteína A Associada a Surfactante Pulmonar , Receptor 4 Toll-Like , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Enterocolite Necrosante/etiologia , Enterocolite Necrosante/imunologia , Feminino , Humanos , Agentes de Imunomodulação/farmacologia , Recém-Nascido , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-6 , Camundongos , Leite Humano/efeitos dos fármacos , Leite Humano/imunologia , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/imunologia , Tensoativos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...