Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
JCI Insight ; 9(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646935

RESUMO

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with F508del being the most prevalent mutation. The combination of CFTR modulators (potentiator and correctors) has provided benefit to CF patients carrying the F508del mutation; however, the safety and effectiveness of in utero combination modulator therapy remains unclear. We created a F508del ferret model to test whether ivacaftor/lumacaftor (VX-770/VX-809) therapy can rescue in utero and postnatal pathologies associated with CF. Using primary intestinal organoids and air-liquid interface cultures of airway epithelia, we demonstrate that the F508del mutation in ferret CFTR results in a severe folding and trafficking defect, which can be partially restored by treatment with CFTR modulators. In utero treatment of pregnant jills with ivacaftor/lumacaftor prevented meconium ileus at birth in F508del kits and sustained postnatal treatment of CF offspring improved survival and partially protected from pancreatic insufficiency. Withdrawal of ivacaftor/lumacaftor treatment from juvenile CF ferrets reestablished pancreatic and lung diseases, with altered pulmonary mechanics. These findings suggest that in utero intervention with a combination of CFTR modulators may provide therapeutic benefits to individuals with F508del. This CFTR-F508del ferret model may be useful for testing therapies using clinically translatable endpoints.


Assuntos
Aminofenóis , Aminopiridinas , Benzodioxóis , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Furões , Quinolonas , Animais , Feminino , Gravidez , Aminofenóis/uso terapêutico , Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Benzodioxóis/uso terapêutico , Benzodioxóis/farmacologia , Agonistas dos Canais de Cloreto/uso terapêutico , Agonistas dos Canais de Cloreto/farmacologia , Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Modelos Animais de Doenças , Combinação de Medicamentos , Mutação , Quinolonas/farmacologia , Quinolonas/uso terapêutico
2.
Ann Intern Med ; 175(11): 1543-1551, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36315944

RESUMO

BACKGROUND: In cystic fibrosis (CF), renal base excretion is impaired. Accordingly, challenged urine bicarbonate excretion may be an in vivo biomarker of cystic fibrosis transmembrane conductance regulator (CFTR) function. OBJECTIVE: To evaluate the association between challenged bicarbonate excretion and clinical characteristics at baseline, quantify the CFTR modulator drug elexacaftor/tezacaftor/ivacaftor-induced changes of challenged bicarbonate excretion after 6 months of treatment, and characterize the intraindividual variation in healthy adults. DESIGN: Prospective observational study. SETTING: Cystic fibrosis clinic, Aarhus University Hospital, Denmark. PATIENTS: Fifty adult patients with CF starting CFTR modulator therapy with elexacaftor/tezacaftor/ivacaftor between May 2020 and June 2021. MEASUREMENTS: Quantification of urine bicarbonate excretion after an acute oral sodium bicarbonate challenge before and 6 months after elexacaftor/tezacaftor/ivacaftor treatment. RESULTS: At baseline, challenged urine bicarbonate excretion was associated with several CF disease characteristics. Bicarbonate excretion was higher in patients with residual function mutations. A higher bicarbonate excretion was associated with better lung function, pancreatic sufficiency, and lower relative risk for chronic pseudomonas infections. Elexacaftor/tezacaftor/ivacaftor treatment increased bicarbonate excretion by 3.9 mmol/3 h (95% CI, 1.6 to 6.1 mmol/3 h), reaching about 70% of that seen in healthy control participants. In healthy control participants, individual bicarbonate excretion at each visit correlated with the individual mean bicarbonate excretion. The median coefficient of variation was 31%. LIMITATION: Single-center study without a placebo-controlled group. CONCLUSION: Although further studies are needed to address the performance and sensitivity of this approach, this early-stage evaluation shows that challenged urine bicarbonate excretion may offer a new, simple, and safe quantification of CFTR function and the extent of its pharmacologic improvement. Elexacaftor/tezacaftor/ivacaftor partially restores renal CFTR function in patients with CF, likely resulting in decreased risk for electrolyte disorders and metabolic alkalosis. PRIMARY FUNDING SOURCE: Innovation Fund Denmark.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Adulto , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/farmacologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Bicarbonatos/metabolismo , Bicarbonatos/uso terapêutico , Agonistas dos Canais de Cloreto/farmacologia , Agonistas dos Canais de Cloreto/uso terapêutico , Combinação de Medicamentos , Mutação
3.
Microbiol Spectr ; 10(5): e0145422, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154176

RESUMO

The introduction of mutation-specific combination therapy with the cystic fibrosis transmembrane conductance regulator (CFTR) modulators elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) has substantially improved lung function and quality of life of people with cystic fibrosis (CF). Collecting deep cough swabs and induced sputum, this postapproval study examined the effect of 14- and 50-week treatment with ELX/TEZ/IVA on the airway microbial metagenome of pancreatic- insufficient CF patients aged 12 years and older. Compared to pretreatment, the total bacterial load decreased, the individual species were more evenly distributed in the community, and the individual microbial metagenomes became more similar in their composition. However, the microbial network remained vulnerable to fragmentation. The initial shift of the CF metagenome was attributable to the ELX/TEZ/IVA-mediated gain of CFTR activity followed by a diversification driven by a group of commensals at the 1-year time point that are typical for healthy airways. IMPORTANCE Shotgun metagenome sequencing of respiratory secretions with spike-in controls for normalization demonstrated that 1 year of high-efficient CFTR modulation with elexacaftor/tezacaftor/ivacaftor extensively reduced the bacterial load. Longer observation periods will be necessary to resolve whether the partial reversion of the basic defect that is achieved with ELX/TEZ/IVA is sufficient in the long run to render the CF lungs robust against the recolonization with common opportunistic pathogens.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Agonistas dos Canais de Cloreto/uso terapêutico , Agonistas dos Canais de Cloreto/farmacologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/farmacologia , Metagenoma , Mutação , Qualidade de Vida , Criança , Adolescente
4.
J Cyst Fibros ; 21(2): 243-245, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348870

RESUMO

Superior efficacy of elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) over tezacaftor/ivacaftor (TEZ/IVA) in people with cystic fibrosis (CF) and Phe508del/Phe508del genotype was shown in clinical trials. We utilized intestinal organoid approach to compare in vitro responses to these 2 CFTR modulator drug combinations and to check potential inter-individual variability in therapeutic response to the triple combination. Organoids from 17 subjects with Phe508del/Phe508del were screened with forskolin induced swelling assay. Significantly larger swelling, when exposed to ELX/TEZ/IVA as compared to TEZ/IVA, was observed in 16 of them. However, 1 sample showed no additional effect of ELX. The finding of unique CFTR variants in this sample indicates that genetic traits other than CF-causing CFTR mutation are worth exploring as they may have an impact on the definitive modulator drug response.


Assuntos
Fibrose Cística , Organoides , Aminofenóis/farmacologia , Aminofenóis/uso terapêutico , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Agonistas dos Canais de Cloreto/farmacologia , Agonistas dos Canais de Cloreto/uso terapêutico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Combinação de Medicamentos , Humanos , Indóis , Mutação , Pirazóis , Piridinas , Pirrolidinas , Quinolonas
5.
J Cyst Fibros ; 21(3): 537-543, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34922851

RESUMO

BACKGROUND: In cystic fibrosis (CF), loss of CF transmembrane conductance regulator (CFTR)-dependent bicarbonate secretion precipitates the accumulation of viscous mucus in the lumen of respiratory and gastrointestinal epithelial tissues. We investigated whether the combination of elexacaftor (ELX), ivacaftor (IVA) and tezacaftor (TEZ), apart from its well-documented effect on chloride transport, also restores Phe508del-CFTR-mediated bicarbonate transport. METHODS: Epithelial monolayers were cultured from intestinal and biliary (cholangiocyte) organoids of homozygous Phe508del-CFTR patients and controls. Transcriptome sequencing was performed, and bicarbonate and chloride transport were assessed in the presence or absence of ELX/IVA/TEZ, using the intestinal current measurement technique. RESULTS: ELX/IVA/TEZ markedly enhanced bicarbonate and chloride transport across intestinal epithelium. In biliary epithelium, it failed to enhance CFTR-mediated bicarbonate transport but effectively rescued CFTR-mediated chloride transport, known to be requisite for bicarbonate secretion through the chloride-bicarbonate exchanger AE2 (SLC4A2), which was highly expressed by cholangiocytes. Biliary but not intestinal epithelial cells expressed an alternative anion channel, anoctamin-1/TMEM16A (ANO1), and secreted bicarbonate and chloride upon purinergic receptor stimulation. CONCLUSIONS: ELX/IVA/TEZ has the potential to restore both chloride and bicarbonate secretion across CF intestinal and biliary epithelia and may counter luminal hyper-acidification in these tissues.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Aminofenóis/farmacologia , Benzodioxóis , Bicarbonatos , Agonistas dos Canais de Cloreto/farmacologia , Antiportadores de Cloreto-Bicarbonato/genética , Cloretos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Combinação de Medicamentos , Células Epiteliais , Humanos , Indóis , Organoides , Pirazóis , Piridinas , Pirrolidinas , Quinolonas
6.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34769402

RESUMO

Cystic fibrosis (CF) is caused by loss of function of the CFTR chloride channel. A substantial number of CF patients carry nonsense mutations in the CFTR gene. These patients cannot directly benefit from pharmacological correctors and potentiators that have been developed for other types of CFTR mutations. We evaluated the efficacy of combinations of drugs targeting at various levels the effects of nonsense mutations: SMG1i to protect CFTR mRNA from nonsense-mediated decay (NMD), G418 and ELX-02 for readthrough, VX-809 and VX-445 to promote protein maturation and function, PTI-428 to enhance CFTR protein synthesis. We found that the extent of rescue and sensitivity to the various agents is largely dependent on the type of mutation, with W1282X and R553X being the mutations most and least sensitive to pharmacological treatments, respectively. In particular, W1282X-CFTR was highly responsive to NMD suppression by SMG1i but also required treatment with VX-445 corrector to show function. In contrast, G542X-CFTR required treatment with readthrough agents and VX-809. Importantly, we never found cooperativity between the NMD inhibitor and readthrough compounds. Our results indicate that treatment of CF patients with nonsense mutations requires a precision medicine approach with the design of specific drug combinations for each mutation.


Assuntos
Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Códon sem Sentido , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Degradação do RNAm Mediada por Códon sem Sentido/efeitos dos fármacos , Pirazóis/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Brônquios/efeitos dos fármacos , Agonistas dos Canais de Cloreto/farmacologia , Fibrose Cística/genética , Fibrose Cística/patologia , Células Epiteliais/efeitos dos fármacos , Humanos
7.
Sci Rep ; 11(1): 19810, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615919

RESUMO

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), which lead to early death due to progressive lung disease. The development of small-molecule modulators that directly interact with CFTR to aid in protein folding ("correctors") and/or increase channel function ("potentiators") have proven to be highly effective in the therapeutic treatment of CF. Notably, incorporation of the next-generation CFTR corrector, elexacaftor, into a triple combination therapeutic (marketed as Trikafta) has shown tremendous clinical promise in treating CF caused by F508del-CFTR. Here, we report on a newly-described role of elexacaftor as a CFTR potentiator. We explore the acute and chronic actions, pharmacology, and efficacy of elexacaftor as a CFTR potentiator in restoring function to multiple classes of CFTR mutations. We demonstrate that the potentiating action of elexacaftor exhibits multiplicative synergy with the established CFTR potentiator ivacaftor in rescuing multiple CFTR class defects, indicating that a new combination therapeutic of ivacaftor and elexacaftor could have broad impact on CF therapies.


Assuntos
Aminofenóis/farmacologia , Benzodioxóis/farmacologia , Agonistas dos Canais de Cloreto/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística , Indóis/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Quinolinas/farmacologia , Células Cultivadas , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Combinação de Medicamentos , Humanos
8.
Cell Mol Life Sci ; 78(23): 7813-7829, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34714360

RESUMO

Protein misfolding is involved in a large number of diseases, among which cystic fibrosis. Complex intra- and inter-domain folding defects associated with mutations in the cystic fibrosis transmembrane regulator (CFTR) gene, among which p.Phe508del (F508del), have recently become a therapeutical target. Clinically approved correctors such as VX-809, VX-661, and VX-445, rescue mutant protein. However, their binding sites and mechanisms of action are still incompletely understood. Blind docking onto the 3D structures of both the first membrane-spanning domain (MSD1) and the first nucleotide-binding domain (NBD1), followed by molecular dynamics simulations, revealed the presence of two potential VX-809 corrector binding sites which, when mutated, abrogated rescue. Network of amino acids in the lasso helix 2 and the intracellular loops ICL1 and ICL4 allosterically coupled MSD1 and NBD1. Corrector VX-445 also occupied two potential binding sites on MSD1 and NBD1, the latter being shared with VX-809. Binding of both correctors on MSD1 enhanced the allostery between MSD1 and NBD1, hence the increased efficacy of the corrector combination. These correctors improve both intra-domain folding by stabilizing fragile protein-lipid interfaces and inter-domain assembly via distant allosteric couplings. These results provide novel mechanistic insights into the rescue of misfolded proteins by small molecules.


Assuntos
Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Fibrose Cística/tratamento farmacológico , Mutação , Dobramento de Proteína/efeitos dos fármacos , Pirazóis/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Sítios de Ligação , Agonistas dos Canais de Cloreto/farmacologia , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Quimioterapia Combinada , Células HEK293 , Humanos , Domínios Proteicos , Estrutura Terciária de Proteína
9.
PLoS One ; 16(7): e0254251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234379

RESUMO

Pentameric ligand-gated ion channels (pLGICs) activated by the inhibitory neurotransmitter γ-aminobutyric acid (GABA) are expressed widely in both vertebrate and invertebrate species. One of the best characterised insect GABA-gated chloride channels is RDL, an abbreviation of 'resistance to dieldrin', that was originally identified by genetic screening in Drosophila melanogaster. Here we have cloned the analogous gene from the bumblebee Bombus terrestris audax (BtRDL) and examined its pharmacological properties by functional expression in Xenopus oocytes. Somewhat unexpectedly, the sensitivity of BtRDL to GABA, as measured by its apparent affinity (EC50), was influenced by heterologous expression conditions. This phenomenon was observed in response to alterations in the amount of cRNA injected; the length of time that oocytes were incubated before functional analysis; and by the presence or absence of a 3' untranslated region. In contrast, similar changes in expression conditions were not associated with changes in apparent affinity with RDL cloned from D. melanogaster (DmRDL). Changes in apparent affinity with BtRDL were also observed following co-expression of a chaperone protein (NACHO). Similar changes in apparent affinity were observed with an allosteric agonist (propofol) and a non-competitive antagonist (picrotoxinin), indicating that expression-depended changes are not restricted to the orthosteric agonist binding site. Interestingly, instances of expression-dependent changes in apparent affinity have been reported previously for vertebrate glycine receptors, which are also members of the pLGIC super-family. Our observations with BtRDL are consistent with previous data obtained with vertebrate glycine receptors and indicates that agonist and antagonist apparent affinity can be influenced by the level of functional expression in a variety of pLGICs.


Assuntos
Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/metabolismo , Drosophila melanogaster/metabolismo , Ácido gama-Aminobutírico/metabolismo , Regiões 3' não Traduzidas/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Abelhas/metabolismo , Agonistas dos Canais de Cloreto/farmacologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Feminino , Picrotoxina/análogos & derivados , Picrotoxina/farmacologia , Propofol/farmacologia , Receptores de Glicina/metabolismo , Sesterterpenos , Xenopus laevis/metabolismo
10.
Am J Physiol Gastrointest Liver Physiol ; 320(6): G1123-G1130, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949881

RESUMO

Cystic fibrosis is a deadly multiorgan disorder caused by loss of function mutations in the gene that encodes for the cystic fibrosis transmembrane conductance regulator (CFTR) chloride/bicarbonate ion channel. More than 1,700 CFTR genetic variants exist that can cause CF, and majority of these are extremely rare. Because of genetic and environmental influences, CF patients exhibit large phenotypic variation. These factors make clinical trials difficult and largely impractical due to limited and heterogeneous patient pools. Also, the benefit of approved small-molecule CF modulators in a large number of rare mutation patients remains unknown. The goal of this study is to perform a comprehensive bench-side study using in vitro patient enteroids and in vivo mice implanted human intestinal organoids (HIOs) to test CF modulator-Ivacaftor response for a rare CF mutation patient. Based on the positive Ivacaftor response in the enteroids, the patient was enrolled in a (N = 1) clinical trial and showed improved clinical outcomes upon Ivacaftor treatment. HIO implantation model allowed in vivo modulator dosing and provided an elegant human organ-based demonstration of bench-to-bedside testing of modulator effects. Additionally, using the CF HIO model the role of CFTR function in the maturation of human intestine was reported for the first time. In all, we demonstrate that these models effectively serve to translate data from the lab to the clinic and back so that patient-specific therapies could be easily identified and disease-relevant developmental abnormalities in CF organs could be studied and addressed.NEW & NOTEWORTHY In this study, we report an example of laboratory models informing clinical care for rare CF mutation patient, with subsequent recapitulation of clinical benefit in a unique and disease relevant, human-derived in vivo model, effectively translating data from the lab to the clinic and back. This extensive work outlines a potential platform to identify patient-specific therapies and to understand relevant developmental abnormalities associated with CF disease.


Assuntos
Aminofenóis/uso terapêutico , Agonistas dos Canais de Cloreto/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Mutação , Quinolonas/uso terapêutico , Aminofenóis/farmacologia , Animais , Criança , Agonistas dos Canais de Cloreto/farmacologia , Fibrose Cística/genética , Humanos , Camundongos , Organoides/efeitos dos fármacos , Medicina de Precisão , Quinolonas/farmacologia
11.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L119-L129, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34009038

RESUMO

In vitro biomarkers to assess cystic fibrosis transmembrane conductance regulator activity are desirable for precision modulator selection and as a tool for clinical trials. Here, we describe an organoid swelling assay derived from human nasal epithelia using commercially available reagents and equipment and an automated imaging process. Cells were collected in nasal brush biopsies, expanded in vitro, and cultured as spherical organoids or as monolayers. Organoids were used in a functional swelling assay with automated measurements and analysis, whereas monolayers were used for short-circuit current measurements to assess ion channel activity. Clinical data were collected from patients on modulators. Relationships between swelling data and short-circuit current, as well as between swelling data and clinical outcome measures, were assessed. The organoid assay measurements correlated with short-circuit current measurements for ion channel activity. The functional organoid assay distinguished individual responses as well as differences between groups. The organoid assay distinguished incremental drug responses to modulator monotherapy with ivacaftor and combination therapy with ivacaftor, tezacaftor, and elexacaftor. The swelling activity paralleled the clinical response. In conclusion, an in vitro biomarker derived from patients' cells can be used to predict responses to drugs and is likely to be useful as a preclinical tool to aid in the development of novel treatments and as a clinical trial outcome measure for a variety of applications, including gene therapy or editing.


Assuntos
Aminofenóis/farmacologia , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Indóis/farmacologia , Mucosa Nasal/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Quinolonas/farmacologia , Estudos de Casos e Controles , Agonistas dos Canais de Cloreto/farmacologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Transporte de Íons , Mutação , Mucosa Nasal/efeitos dos fármacos , Organoides/efeitos dos fármacos , Organoides/metabolismo
12.
Mol Genet Genomic Med ; 9(4): e1656, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33713579

RESUMO

BACKGROUND: New drugs that target the basic defect in cystic fibrosis (CF) patients may now be used in a large number of patients carrying responsive mutations. Nevertheless, further research is needed to extend the benefit of these treatments to patients with rare mutations that are still uncharacterized in vitro and that are not included in clinical trials. For this purpose, ex vivo models are necessary to preliminary assessing the effect of CFTR modulators in these cases. METHOD: We report the clinical effectiveness of lumacaftor/ivacaftor therapy prescribed to a CF child with a rare genetic profile (p.Phe508del/p.Gly970Asp) after testing the drug on nasal epithelial cells. We observed a significant drop of the sweat chloride value, as of the lung clearance index. A longer follow-up period is needed to define the effects of therapy on pancreatic status, although an increase of the fecal elastase values was found. CONCLUSION: Drug response obtained on nasal epithelial cells correlates with changes in vivo therapeutic endpoints and can be a predictor of clinical efficacy of novel drugs especially in pediatric patients.


Assuntos
Aminofenóis/uso terapêutico , Aminopiridinas/uso terapêutico , Benzodioxóis/uso terapêutico , Agonistas dos Canais de Cloreto/uso terapêutico , Fibrose Cística/tratamento farmacológico , Genótipo , Quinolonas/uso terapêutico , Aminofenóis/administração & dosagem , Aminofenóis/farmacologia , Aminopiridinas/administração & dosagem , Aminopiridinas/farmacologia , Benzodioxóis/administração & dosagem , Benzodioxóis/farmacologia , Células Cultivadas , Pré-Escolar , Agonistas dos Canais de Cloreto/administração & dosagem , Agonistas dos Canais de Cloreto/farmacologia , Cloretos/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Mutação de Sentido Incorreto , Mucosa Nasal/citologia , Elastase Pancreática/metabolismo , Quinolonas/administração & dosagem , Quinolonas/farmacologia
13.
Pediatr Pulmonol ; 56 Suppl 1: S79-S89, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33434412

RESUMO

Since the discovery of the gene responsible for cystic fibrosis (CF) in 1989, hopes have been pinned on a future with novel therapies tackling the basis of the disease rather than its symptoms. These have become a reality over the last decade with the development through to the clinic of CF transmembrane conductance regulator (CFTR) modulators. These are oral drugs which improve CFTR protein function through either increasing the time the channel pore is open (potentiators) or facilitating its trafficking through the cell to its location on the cell membrane (correctors). The first potentiator, ivacaftor, is now licensed and available clinically in many parts of the world. It is highly effective with impressive clinical impact in the lungs and gastrointestinal tract; longer-term data from patient registries show fewer exacerbations, a slower rate of lung function loss and reduced need for transplantation in patients receiving ivacaftor. However, as a single drug, it is suitable for only a small minority of patients. The commonest CFTR mutation, F508del, requires both correction and potentiation for clinical efficacy. Two dual-agent drugs (lumacaftor/ivacaftor and tezacaftor/ivacaftor) have progressed through to licensing, although their short term impact is more modest than that of ivacaftor; this is likely due to only partial correction of protein misfolding and trafficking. Most recently, triple compounds have been developed: two different corrector molecules (elexacaftor and tezacaftor) which, by addressing different regions in the misfolded F508del protein, more effectively improve trafficking. In addition to large improvements in clinical outcomes in people with two copies of F508del, the combination is sufficiently effective that it works in patients with only one copy of F508del and a second, nonmodulator responsive mutation. For the first time, we thus have a drug suitable for around 85% of people with CF. Even more gains are likely to be possible when these drugs can be used in younger children, although more sensitive outcome measures are needed for this age group. Special consideration is needed for people with very rare mutations; those with nonmodulatable mutation combinations will likely require gene or messenger RNA-based therapeutic approaches, many of which are being explored. Although this progress is hugely to be celebrated, we still have more work to do. The international collaboration between trials networks, pharma, patient organizations, registries, and people with CF is something we are all rightly proud of, but innovative trial design and implementation will be needed if we are to continue to build on this progress and further develop drugs for people with CF.


Assuntos
Aminofenóis/uso terapêutico , Agonistas dos Canais de Cloreto/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Quinolonas/uso terapêutico , Aminofenóis/administração & dosagem , Aminofenóis/farmacologia , Aminopiridinas/administração & dosagem , Benzodioxóis/administração & dosagem , Criança , Agonistas dos Canais de Cloreto/administração & dosagem , Agonistas dos Canais de Cloreto/farmacologia , Ensaios Clínicos como Assunto , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Quimioterapia Combinada , Humanos , Indóis/administração & dosagem , Mutação , Pirazóis/administração & dosagem , Piridinas/administração & dosagem , Pirrolidinas/administração & dosagem , Quinolonas/administração & dosagem , Quinolonas/farmacologia
14.
J Cyst Fibros ; 20(3): 452-459, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32674984

RESUMO

BACKGROUND: The c.3700A>G mutation, a rare cystic fibrosis (CF)-causing CFTR mutation found mainly in the Middle East, produces full-length transcript encoding a missense mutation (I1234V-CFTR), and a cryptic splice site that deletes 6 amino acids in nucleotide binding domain 2 (I1234del-CFTR). METHODS: FRT cell models expressing I1234V-CFTR and I1234del-CFTR were generated. We also studied an I1234del-CFTR-expressing gene-edited human bronchial (16HBE14o-) cell model, and primary cultures of nasal epithelial cells from a c.3700A>G homozygous subject. To identify improved mutation-specific CFTR modulators, high-throughput screening was done using I1234del-CFTR-expressing FRT cells. Motivated by the in vitro findings, Trikafta was tested in two c.3700A>G homozygous CF subjects. RESULTS: FRT cells expressing full-length I1234V-CFTR had similar function to that of wildtype CFTR. I1234del-CFTR showed reduced activity, with modest activation seen with potentiators VX-770 and GLPG1837, correctors VX-809, VX-661 and VX-445, and low-temperature incubation. Screening identified novel arylsulfonyl-piperazine and spiropiperidine-quinazolinone correctors, which when used in combination with VX-445 increased current ~2-fold compared with the VX-661/VX-445 combination. The combination of VX-770 with arylsulfonamide-pyrrolopyridine, piperidine-pyridoindole or pyrazolo-quinoline potentiators gave 2-4-fold greater current than VX-770 alone. Combination potentiator (co-potentiator) efficacy was also seen in gene-edited I1234del-CFTR-expressing human bronchial epithelial cells. In two CF subjects homozygous for the c.3700A>G mutation, one subject had a 27 mmol/L decrease in sweat chloride and symptomatic improvement on Trikafta, and a second subject showed a small improvement in lung function. CONCLUSIONS: These results support the potential benefit of CFTR modulators, including co-potentiators, for CF caused by the c.3700A>G mutation.


Assuntos
Agonistas dos Canais de Cloreto/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Proteínas Mutantes/efeitos dos fármacos , Mutação de Sentido Incorreto , Aminofenóis , Aminopiridinas , Benzodioxóis , Células Cultivadas , Humanos , Indóis , Pirazóis , Piridinas , Pirrolidinas , Quinolonas
15.
Eur J Med Chem ; 209: 112888, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33092904

RESUMO

We previously identified a spiro [piperidine-4,1-pyrido [3,4-b]indole] class of co-potentiators that function in synergy with existing CFTR potentiators such as VX-770 or GLGP1837 to restore channel activity of a defined subset of minimal function cystic fibrosis transmembrane conductance regulator (CFTR) mutants. Here, structure-activity studies were conducted to improve their potency over the previously identified compound, 20 (originally termed CP-A01). Targeted synthesis of 37 spiro [piperidine-4,1-pyrido [3,4-b]indoles] was generally accomplished using versatile two or three step reaction protocols with each step having high efficiency. Structure-activity relationship studies established that analog 2i, with 6'-methoxyindole and 2,4,5-trifluorobenzyl substituents, had the greatest potency for activation of N1303K-CFTR, with EC50 ∼600 nM representing an ∼17-fold improvement over the original compound identified in a small molecule screen.


Assuntos
Agonistas dos Canais de Cloreto/química , Agonistas dos Canais de Cloreto/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/agonistas , Indóis/química , Indóis/farmacologia , Aminofenóis/farmacologia , Animais , Linhagem Celular , Agonistas dos Canais de Cloreto/síntese química , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Indóis/síntese química , Modelos Moleculares , Mutação , Piperidinas/síntese química , Piperidinas/química , Piperidinas/farmacologia , Quinolonas/farmacologia , Ratos , Relação Estrutura-Atividade
16.
Fitoterapia ; 147: 104736, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33010370

RESUMO

Calcium-activated chloride channels (CaCCs) as a kind of widely expressed ion channels play crucial roles in a variety of physiological regulation. TMEM16A has been identified as the molecular basis of CaCCs in numerous cell types and is considered a new drug target for many diseases. Regulating the function of TMEM16A through small molecule modulators has become a new strategy to improve respiratory and digestive dysfunction and even tumor therapy. Herein, we obtained 5 sesquiterpenoids, named curzerenone, curdione, furanodienone, curcumol and germacrone with TMEM16A inhibition and revealed their mechanism of action by fluorescent and electrophysiological assays. Cell-based YFP fluorescence data demonstrated that 5 compounds inhibited TMEM16A-mediated I- influx in a dose-dependent manner. To explore the mechanism of 5 compounds on CaCCs, FRT cells with high expression of TMEM16A, HBE, HT-29 and T84 cells and mouse colons were used in short-circuit current assay. Our results showed that 5 compounds inhibited the Ca2+-activated Cl- currents generated by the Eact, ATP and UTP stimulation, and this inhibitory effect was related not only to the direct inhibition of channel opening, but also the inhibition of intracellular Ca2+ concentration and K+ channel activity. In addition to CaCCs, these 5 compounds also had definite inhibitory activities against cystic fibrosis transmembrane regulator (CFTR) at the cellular level. In summary, these compounds have the potential to regulate the activites of TMEM16A/CaCCs and CFTR channels in vitro, providing a new class of lead compounds for the development of drugs for diseases related to chloride channel dysfunction.


Assuntos
Agonistas dos Canais de Cloreto/farmacologia , Canais de Cloreto/metabolismo , Sesquiterpenos/farmacologia , Animais , Anoctamina-1/antagonistas & inibidores , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Furanos , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/antagonistas & inibidores , Ratos , Sesquiterpenos de Germacrano
17.
Int J Mol Sci ; 21(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599772

RESUMO

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein is expressed at the apical plasma membrane (PM) of different epithelial cells. The most common mutation responsible for the onset of cystic fibrosis (CF), F508del, inhibits the biosynthesis and transport of the protein at PM, and also presents gating and stability defects of the membrane anion channel upon its rescue by the use of correctors and potentiators. This prompted a multiple drug strategy for F508delCFTR aimed simultaneously at its rescue, functional potentiation and PM stabilization. Since ganglioside GM1 is involved in the functional stabilization of transmembrane proteins, we investigated its role as an adjuvant to increase the effectiveness of CFTR modulators. According to our results, we found that GM1 resides in the same PM microenvironment as CFTR. In CF cells, the expression of the mutated channel is accompanied by a decrease in the PM GM1 content. Interestingly, by the exogenous administration of GM1, it becomes a component of the PM, reducing the destabilizing effect of the potentiator VX-770 on rescued CFTR protein expression/function and improving its stabilization. This evidence could represent a starting point for developing innovative therapeutic strategies based on the co-administration of GM1, correctors and potentiators, with the aim of improving F508del CFTR function.


Assuntos
Adjuvantes Imunológicos/farmacologia , Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Fibrose Cística/tratamento farmacológico , Gangliosídeo G(M1)/farmacologia , Quinolonas/farmacologia , Adjuvantes Imunológicos/química , Aminofenóis/química , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/patologia , Agonistas dos Canais de Cloreto/química , Agonistas dos Canais de Cloreto/farmacologia , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Gangliosídeo G(M1)/química , Humanos , Mutação , Quinolonas/química , Terapias em Estudo
18.
Cells ; 9(8)2020 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722648

RESUMO

Lubiprostone, a 20-carbon synthetic fatty acid used for the treatment of constipation, is thought to act through an action on Cl- channel ClC-2. Short chain fatty acids (SCFAs) are produced and absorbed in the distal intestine. We explore whether SCFAs affect ClC-2, re-examine a possible direct effect of lubiprostone on ClC-2, and use mice deficient in ClC-2 to stringently address the hypothesis that the epithelial effect of lubiprostone targets this anion channel. Patch-clamp whole cell recordings of ClC-2 expressed in mammalian cells are used to assay SCFA and lubiprostone effects. Using chamber measurements of ion current in mice deficient in ClC-2 or CFTR channels served to analyze the target of lubiprostone in the distal intestinal epithelium. Intracellular SCFAs had a dual action on ClC-2, partially inhibiting conduction but, importantly, facilitating the voltage activation of ClC-2. Intra- or extracellular lubiprostone had no effect on ClC-2 currents. Lubiprostone elicited a secretory current across colonic epithelia that was increased in mice deficient in ClC-2, consistent with the channel's proposed proabsorptive function, but absent from those deficient in CFTR. Whilst SCFAs might exert a physiological effect on ClC-2 as part of their known proabsorptive effect, ClC-2 plays no part in the lubiprostone intestinal effect that appears mediated by CFTR activation.


Assuntos
Agonistas dos Canais de Cloreto/uso terapêutico , Canais de Cloreto/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Lubiprostona/uso terapêutico , Canais de Cloro CLC-2 , Agonistas dos Canais de Cloreto/farmacologia , Células HEK293 , Humanos , Lubiprostona/farmacologia
19.
Nucleic Acids Res ; 48(13): 7454-7467, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32520327

RESUMO

Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, encoding an anion channel that conducts chloride and bicarbonate across epithelial membranes. Mutations that disrupt pre-mRNA splicing occur in >15% of CF cases. One common CFTR splicing mutation is CFTR c.3718-2477C>T (3849+10 kb C>T), which creates a new 5' splice site, resulting in splicing to a cryptic exon with a premature termination codon. Splice-switching antisense oligonucleotides (ASOs) have emerged as an effective therapeutic strategy to block aberrant splicing. We test an ASO targeting the CFTR c.3718-2477C>T mutation and show that it effectively blocks aberrant splicing in primary bronchial epithelial (hBE) cells from CF patients with the mutation. ASO treatment results in long-term improvement in CFTR activity in hBE cells, as demonstrated by a recovery of chloride secretion and apical membrane conductance. We also show that the ASO is more effective at recovering chloride secretion in our assay than ivacaftor, the potentiator treatment currently available to these patients. Our findings demonstrate the utility of ASOs in correcting CFTR expression and channel activity in a manner expected to be therapeutic in patients.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Splicing de RNA , Aminofenóis/farmacologia , Brônquios/citologia , Linhagem Celular Tumoral , Células Cultivadas , Agonistas dos Canais de Cloreto/farmacologia , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/efeitos dos fármacos , Humanos , Transporte de Íons/efeitos dos fármacos , Mutação , Quinolonas/farmacologia
20.
PLoS One ; 15(5): e0233439, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469934

RESUMO

In epithelial cells, the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated Cl- channel, plays a key role in water and electrolytes secretion. A dysfunctional CFTR leads to the dehydration of the external environment of the cells and to the production of viscous mucus in the airways of cystic fibrosis patients. Here, we applied the quadriwave lateral shearing interferometry (QWLSI), a quantitative phase imaging technique based on the measurement of the light wave shift when passing through a living sample, to study water transport regulation in human airway epithelial CFBE and CHO cells expressing wild-type, G551D- and F508del-CFTR. We were able to detect phase variations during osmotic challenges and confirmed that cellular volume changes reflecting water fluxes can be detected with QWLSI. Forskolin stimulation activated a phase increase in all CFBE and CHO cell types. This phase variation was due to cellular volume decrease and intracellular refractive index increase and was completely blocked by mercury, suggesting an activation of a cAMP-dependent water efflux mediated by an endogenous aquaporin (AQP). AQP3 mRNAs, not AQP1, AQP4 and AQP5 mRNAs, were detected by RT-PCR in CFBE cells. Readdressing the F508del-CFTR protein to the cell surface with VX-809 increased the detected water efflux in CHO but not in CFBE cells. However, VX-770, a potentiator of CFTR function, failed to further increase the water flux in either G551D-CFTR or VX-809-corrected F508del-CFTR expressing cells. Our results show that QWLSI could be a suitable technique to study water transport in living cells. We identified a CFTR and cAMP-dependent, mercury-sensitive water transport in airway epithelial and CHO cells that might be due to AQP3. This water transport appears to be affected when CFTR is mutated and independent of the chloride channel function of CFTR.


Assuntos
Aquaporina 3/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mucosa Respiratória/metabolismo , Água/metabolismo , Aminofenóis/farmacologia , Animais , Aquaporina 3/genética , Transporte Biológico Ativo/efeitos dos fármacos , Fenômenos Biofísicos , Brônquios/citologia , Brônquios/metabolismo , Células CHO , Linhagem Celular , Agonistas dos Canais de Cloreto/farmacologia , Colforsina/farmacologia , Cricetulus , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Humanos , Microscopia de Interferência , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Osmose , Quinolonas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mucosa Respiratória/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...