Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 118(12): 1628-1638, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29872149

RESUMO

BACKGROUND: The extracellular matrix modulates the hallmarks of cancer. Here we examined the role of agrin-a member of this matrix-in progression of oral squamous cell carcinoma (OSCC). METHODS: We evaluated the immunohistochemical expression of agrin in OSCC and dysplasias. Benign lesions were used as control. In subsequent experiments, we investigated whether the silencing of agrin interferes with tumour expansion both in vitro as well as in vivo. To gain insights into the role of agrin, we identified its protein network (interactome) using mass spectrometry-based proteomics and bioinformatics. Finally, we evaluated the clinical relevance of agrin interactome. RESULTS: Agrin was elevated in malignant and premalignant lesions. Further, we show that agrin silencing interferes with cancer cell motility, proliferation, invasion, colony and tumour spheroid formation, and it also reduces the phosphorylation of FAK, ERK and cyclin D1 proteins in OSCC cells. In orthotopic model, agrin silencing reduces tumour aggressiveness, like vascular and neural invasion. From a clinical perspective, agrin contextual hubs predict a poor clinical prognosis related with overall survival. CONCLUSIONS: Altogether, our results demonstrate that agrin is a histological marker for the progression of oral cancer and is a strong therapeutic target candidate for both premalignant and OSCC lesions.


Assuntos
Agrina/biossíntese , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Progressão da Doença , Células HEK293 , Xenoenxertos , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mucosa Bucal/patologia , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
2.
Histol Histopathol ; 33(7): 717-726, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29405249

RESUMO

The clinical consequences of arterial atherosclerotic lesions depend, apart from their size, on their composition of cellular and extracellular components. While an intact endothelium at the interface of atherosclerotic plaques towards the blood can prevent its erosion, underlying smooth muscle cells within the plaque can reduce the risk of plaque ruptures, due to the deposition of stabilizing extracellular matrix. Basement membranes underlay and support the function of endothelial cells, and embed smooth muscle cells in the media, the source of most smooth muscle cells within atherosclerotic plaques. In the present study mouse atherosclerotic plaques were comparatively analyzed for the basement membrane components laminin, type IV collagen, perlecan, and agrin. Distinct agrin immunofluorescence was found in the peri-luminal area in mouse carotid atherosclerotic plaques. Agrin was also clearly present in the media, with a significant increase in regions directly associated with plaque tissue. In addition, ten human endarterectomy specimens were investigated for this heparan sulfate proteoglycan. No statistically significant differences in agrin immunofluorescence were noticed between five specimens from symptomatic and five from asymptomatic patients. In all these plaques agrin was present in a distinctive manner in a narrow zone partially or almost completely surrounding the lumen. Additionally it was also present around the small lumina of the CD31-positive neovessels. The presence of agrin at locations with particular importance for the growth and stability of atherosclerotic plaques renders this molecule strategically positioned to influence plaque development and vulnerability.


Assuntos
Agrina/biossíntese , Doenças das Artérias Carótidas/patologia , Placa Aterosclerótica/patologia , Agrina/análise , Animais , Humanos , Camundongos
3.
Muscle Nerve ; 57(5): 814-820, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29193204

RESUMO

INTRODUCTION: Agrin is essential for the formation and maintenance of neuromuscular junctions (NMJs). NT-1654 is a C-terminal fragment of mouse neural agrin. In this study, we determined the effects of NT-1654 on the severity of experimental autoimmune myasthenia gravis (EAMG). METHODS: EAMG was induced in female Lewis rats by immunization with the Torpedo acetylcholine receptor (tAChR) and complete Freund's adjuvant (CFA). NT-1654 was dissolved in phosphate-buffered saline (PBS) and injected daily subcutaneously into tAChR immunized rats during the first 10 days after immunization, and then every other day for the following 20 days. RESULTS: We showed that NT-1654 attenuated clinical severity, effectively promoted the clustering of AChRs at NMJs, and alleviated the impairment of NMJ transmission and the reduction of muscle-specific kinase (MuSK) in EAMG rats. DISCUSSION: We demonstrated that NT-1654 attenuated clinical severity, effectively promoted the clustering of AChRs at NMJs, and alleviated the impairment of NMJ transmission and the reduction of muscle-specific kinase (MuSK) in EAMG rats. Muscle Nerve 57: 814-820, 2018.


Assuntos
Agrina/uso terapêutico , Imunização/efeitos adversos , Miastenia Gravis Autoimune Experimental/tratamento farmacológico , Miastenia Gravis Autoimune Experimental/patologia , Fragmentos de Peptídeos/uso terapêutico , Potenciais de Ação/fisiologia , Agrina/biossíntese , Agrina/química , Animais , Autoanticorpos/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletromiografia , Feminino , Adjuvante de Freund/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/terapia , Proteínas do Tecido Nervoso/metabolismo , Neurofibromina 1/metabolismo , Junção Neuromuscular/patologia , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/química , Ratos , Ratos Endogâmicos Lew , Receptores Colinérgicos/imunologia , Receptores Colinérgicos/metabolismo
4.
Ann Rheum Dis ; 75(6): 1228-35, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26290588

RESUMO

OBJECTIVES: Osteoarthritis (OA) is a leading cause of disability for which there is no cure. The identification of molecules supporting cartilage homeostasis and regeneration is therefore a major pursuit in musculoskeletal medicine. Agrin is a heparan sulfate proteoglycan which, through binding to low-density lipoprotein receptor-related protein 4 (LRP4), is required for neuromuscular synapse formation. In other tissues, it connects the cytoskeleton to the basement membrane through binding to α-dystroglycan. Prompted by an unexpected expression pattern, we investigated the role and receptor usage of agrin in cartilage. METHODS: Agrin expression pattern was investigated in human osteoarthritic cartilage and following destabilisation of the medial meniscus in mice. Extracellular matrix (ECM) formation and chondrocyte differentiation was studied in gain and loss of function experiments in vitro in three-dimensional cultures and gain of function in vivo, using an ectopic cartilage formation assay in nude mice. Receptor usage was investigated by disrupting LRP4 and α-dystroglycan by siRNA and blocking antibodies respectively. RESULTS: Agrin was detected in normal cartilage but was progressively lost in OA. In vitro, agrin knockdown resulted in reduced glycosaminoglycan content, downregulation of the cartilage transcription factor SOX9 and other cartilage-specific ECM molecules. Conversely, exogenous agrin supported cartilage differentiation in vitro and ectopic cartilage formation in vivo. In the context of cartilage differentiation, agrin used an unusual receptor repertoire requiring both LRP4 and α-dystroglycan. CONCLUSIONS: We have discovered that agrin strongly promotes chondrocyte differentiation and cartilage formation in vivo. Our results identify agrin as a novel potent anabolic growth factor with strong therapeutic potential in cartilage regeneration.


Assuntos
Agrina/fisiologia , Artrite Experimental/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Distroglicanas/fisiologia , Osteoartrite/metabolismo , Receptores de LDL/fisiologia , Agrina/biossíntese , Agrina/genética , Agrina/farmacologia , Animais , Artrite Experimental/genética , Artrite Experimental/patologia , Cartilagem Articular/patologia , Células Cultivadas , Condrogênese/efeitos dos fármacos , Regulação para Baixo/fisiologia , Técnicas de Silenciamento de Genes , Homeostase/fisiologia , Humanos , Proteínas Relacionadas a Receptor de LDL/fisiologia , Masculino , Camundongos Endogâmicos DBA , Camundongos Knockout , Osteoartrite/genética , Osteoartrite/patologia , Osteogênese/fisiologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Fatores de Transcrição SOX9/biossíntese , Fatores de Transcrição SOX9/genética , Regulação para Cima/fisiologia
5.
Int J Mol Med ; 35(2): 376-82, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25483608

RESUMO

Pituitary adenylate cyclase­activating polypeptide (PACAP) is a type of neuropeptide with multiple biological functions. However, it has a short half­life period in the body, ~3 to 5 min, restricting its further development as a drug that can promote the recovery of nerve injury. In vitro and in vivo experiments have shown that PACAP can repair the epithelial cell on the surface of the injured cornea, as PACAP can act on the trigeminal nerve cell to secrete other active neurotransmitters, which can promote corneal epithelial cell proliferation and differentiation. In the present study, PACAP is connected to the N­terminal agrin domain (NtA) with a genetic engineering method, which allows the function of repairing the injured nerve. Notably, the recombinant polypeptide can interact with laminin, improving the biological effect of PACAP in repairing the injured nerve. In the study, the recombinant protein was constructed by combining PACAP38 and NtA by genetic engineering, and it is expressed in the pronucleus escherichia coli. The recombinant protein, PACAP38­NtA, is obtained with a two­step purification method, including anion­exchange chromatography and Ni­affinity chromatography, with the purity reaching >90%. The in vitro experiment has shown that this recombinant protein not only has the neurotrophy and neural restoration function of PACAP, but also has the function of an anchoring protein as laminin interacts with NtA. According to the in vitro anti­apoptosis, PC12 axon growth and ELISA experiments, this protein has the biological activity of a recombinant protein. PACAP38­NtA also has an anchoring function as NtA and laminin interact with good biological activity.


Assuntos
Agrina , Axônios/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Agrina/biossíntese , Agrina/genética , Agrina/isolamento & purificação , Agrina/farmacologia , Animais , Humanos , Laminina/metabolismo , Células PC12 , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/biossíntese , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/isolamento & purificação , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Ratos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/farmacologia
6.
Exp Neurol ; 261: 646-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25151458

RESUMO

Agrin, a heparan sulfate proteoglycan functioning as a neuro-muscular junction inducer, has been shown to inhibit neuropathic pain in sciatic nerve injury rat models, via phosphorylation of N-Methyl-d-aspartate receptor NR1 subunits in gamma-aminobutyric acid neurons. However, its effects on spinal cord injury-induced neuropathic pain, a debilitating syndrome frequently encountered after various spine traumas, are unknown. In the present investigation, we studied the 50kDa agrin isoform effects in a quisqualic acid dorsal horn injection rat model mimicking spinal cord injury-induced neuropathic pain. Our results indicate that 50kDa agrin decreased only in the dorsal horn of neuropathic animals and increased 50kDa agrin expression in the dorsal horn, via intra-spinal injection of adeno-associated virus serum type two, suppressed spinal cord injury-induced neuropathic pain. Also, the reason why 50kDa agrin only activates the N-Methyl-d-aspartate receptor NR1 subunits in the GABA neurons, but not in sensory neurons, is unknown. Using immunoprecipitation and Western-blot analysis, two dimensional gel separation, and mass spectrometry, we identified several specific proteins in the reaction protein complex, such as neurofilament 200 and mitofusin 2, that are required for the activation of the NR1 subunits of gamma-aminobutyric acid inhibitory neurons by 50kDa agrin. These findings indicate that 50kDa agrin is a promising agent for neuropathic pain treatment.


Assuntos
Agrina/fisiologia , Neuralgia/metabolismo , Neuralgia/terapia , Ácido gama-Aminobutírico/metabolismo , Adenoviridae/genética , Agrina/administração & dosagem , Agrina/biossíntese , Animais , Modelos Animais de Doenças , Agonistas de Aminoácidos Excitatórios/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperalgesia/fisiopatologia , Injeções Espinhais , Masculino , Peso Molecular , Neuralgia/etiologia , Neuralgia/patologia , Medição da Dor , Limiar da Dor/fisiologia , Ácido Quisquálico/toxicidade , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/induzido quimicamente , Traumatismos da Medula Espinal/complicações , Fatores de Tempo
7.
J Neurosci ; 32(11): 3759-64, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22423096

RESUMO

In the adult forebrain, new interneurons are continuously generated and integrated into the existing circuitry of the olfactory bulb (OB). In an attempt to identify signals that regulate this synaptic integration process, we found strong expression of agrin in adult generated neuronal precursors that arrive in the olfactory bulb after their generation in the subventricular zone. While the agrin receptor components MuSK and Lrp4 were below detection level in neuron populations that represent synaptic targets for the new interneurons, the alternative receptor α3-Na(+)K(+)-ATPase was strongly expressed in mitral cells. Using a transplantation approach, we demonstrate that agrin-deficient interneuron precursors migrate correctly into the OB. However, in contrast to wild-type neurons, which form synapses and survive for prolonged periods, mutant neurons do not mature and are rapidly eliminated. Using in vivo brain electroporation of the olfactory system, we show that the transmembrane form of agrin alone is sufficient to mediate integration and demonstrate that excess transmembrane agrin increases the number of dendritic spines. Last, we provide in vivo evidence that an interaction between agrin and α3-Na(+)K(+)-ATPase is of functional importance in this system.


Assuntos
Agrina/fisiologia , Neurogênese/fisiologia , Neurônios/metabolismo , Bulbo Olfatório/metabolismo , Transdução de Sinais/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Fatores Etários , Agrina/biossíntese , Agrina/deficiência , Animais , Células Cultivadas , Feminino , Regulação Enzimológica da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/enzimologia , Bulbo Olfatório/enzimologia , Bulbo Olfatório/crescimento & desenvolvimento , Transdução de Sinais/genética , ATPase Trocadora de Sódio-Potássio/biossíntese , Sinapses/genética
8.
EMBO Mol Med ; 3(8): 465-79, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21674808

RESUMO

Mutations in LAMA2 cause a severe form of congenital muscular dystrophy, called MDC1A. Studies in mouse models have shown that transgenic expression of a designed, miniaturized form of the extracellular matrix molecule agrin ('mini-agrin') or apoptosis inhibition by either overexpression of Bcl2 or application of the pharmacological substance omigapil can ameliorate the disease. Here, we tested whether mini-agrin and anti-apoptotic agents act on different pathways and thus exert additive benefits in MDC1A mouse models. By combining mini-agrin with either transgenic Bcl2 expression or oral omigapil application, we show that the ameliorating effect of mini-agrin, which acts by restoring the mechanical stability of muscle fibres and, thereby, reduces muscle fibre breakdown and concomitant fibrosis, is complemented by apoptosis inhibitors, which prevent the loss of muscle fibres. Treatment of mice with both agents results in improved muscle regeneration and increased force. Our results show that the combination of mini-agrin and anti-apoptosis treatment has beneficial effects that are significantly bigger than the individual treatments and suggest that such a strategy might also be applicable to MDC1A patients.


Assuntos
Agrina/biossíntese , Laminina/deficiência , Distrofias Musculares/tratamento farmacológico , Distrofias Musculares/patologia , Fármacos Neuromusculares/administração & dosagem , Oxepinas/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Agrina/genética , Animais , Modelos Animais de Doenças , Histocitoquímica , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Músculos/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Doenças dos Roedores/tratamento farmacológico , Doenças dos Roedores/patologia , Análise de Sobrevida
9.
Nephron Exp Nephrol ; 115(3): e38-45, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20424482

RESUMO

Angiopoietin-like 3 (ANGPTL3) is a secreted protein of the angiopoietin family and is involved in angiogenesis and lipid metabolism regulation. However, there is little data regarding the role of ANGPTL3 in kidney injury. We recently reported the glomerular distribution of ANGPTL3 in Adriamycin nephropathy in rats. In the present paper, we report expression of ANGPTL3 by murine podocytes in vitro. Puromycin-induced injury of cultured podocytes showed a time-dependent upregulation of ANGPTL3 accompanied by a time-dependent downregulation of perlecan and agrin by Western blot and RT-PCR analysis. In addition, the increased expression of ANGPTL3 following gene transfection upregulated the expression of perlecan and agrin in podocytes. Double immunolabeling demonstrated colocalization of perlecan and ANGPTL3 on podocytes following pcDNA3.1-ANGPTL3 transfection. To explore how ANGPTL3 transfection modulates the effect of puromycin on podocytes, we compared cell adhesion in untreated podocytes and ANGPTL3-transfected podocytes. ANGPTL3 gene transfection significantly ameliorated puromycin-induced podocyte detachment. In conclusion, ANGPTL3 expression is upregulated in puromycin-induced podocyte damage and is associated with the reduction of perlecan and agrin expression.


Assuntos
Injúria Renal Aguda/metabolismo , Angiopoietinas/biossíntese , Podócitos/metabolismo , Injúria Renal Aguda/induzido quimicamente , Agrina/biossíntese , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Animais , Adesão Celular/efeitos dos fármacos , Proteoglicanas de Heparan Sulfato/biossíntese , Camundongos , Podócitos/efeitos dos fármacos , Puromicina Aminonucleosídeo/farmacologia , Transfecção
10.
J Histochem Cytochem ; 58(5): 429-41, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20124094

RESUMO

Heparan sulfate (HS), due to its ability to interact with a multitude of HS-binding factors, is involved in a variety of physiological and pathological processes. Remarkably diverse fine structure of HS, shaped by non-exhaustive enzymatic modifications, influences the interaction of HS with its partners. Here we characterized the HS profile of normal human and rat liver, as well as alterations of HS related to liver fibrogenesis and carcinogenesis, by using sulfation-specific antibodies. The HS immunopattern was compared with the immunolocalization of selected HS proteoglycans. HS samples from normal liver and hepatocellular carcinoma (HCC) were subjected to disaccharide analysis. Expression changes of nine HS-modifying enzymes in human fibrogenic diseases and HCC were measured by quantitative RT-PCR. Increased abundance and altered immunolocalization of HS was paralleled by elevated mRNA levels of HS-modifying enzymes in the diseased liver. The strong immunoreactivity of the normal liver for 3-O-sulfated epitope further increased with disease, along with upregulation of 3-OST-1. Modest 6-O-undersulfation of HCC HS is probably explained by Sulf overexpression. Our results may prompt further investigation of the role of highly 3-O-sulfated and partially 6-O-desulfated HS in pathological processes such as hepatitis virus entry and aberrant growth factor signaling in fibrogenic liver diseases and HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Heparitina Sulfato/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Agrina/biossíntese , Animais , Doença Crônica , Dissacarídeos/metabolismo , Hiperplasia Nodular Focal do Fígado/metabolismo , Glucuronidase/biossíntese , Glucuronidase/genética , Glipicanas/biossíntese , Proteoglicanas de Heparan Sulfato/biossíntese , Humanos , Imuno-Histoquímica , Masculino , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfotransferases/biossíntese , Sulfotransferases/genética , Sindecana-1/biossíntese
11.
Am J Surg Pathol ; 33(6): 874-85, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19194276

RESUMO

Agrin is a recently identified proteoglycan component of vascular and bile duct basement membranes in the liver. The selective deposition of agrin in hepatocellular carcinoma (HCC) microvessels versus sinusoidal walls prompted us to investigate the utility of agrin immunohistochemistry (IHC) in detecting malignant hepatocellular lesions. We focused on the differential diagnostic problems often presented by hepatocellular adenomas (HCAs) and dysplastic nodules. IHC for agrin was performed on 138 formalin-fixed, paraffin-embedded surgical specimens from 93 patients, including cirrhotic liver tissues (25), focal nodular hyperplasia (10), large regenerative nodules (8), low-grade (23) and high-grade (7) dysplastic nodules, small HCC (8), HCC (27), and HCA (30). Agrin immunostaining was compared with that of CD34 and, in selected cases, to glypican-3. The combination of agrin and CD34 sensitively (0.94) and specifically (0.93) identified lesions judged previously as malignant by histology. The majority of benign lesions were clearly agrin-negative, whereas the strength and extent of agrin IHC faithfully reflected dysplasia in "atypical" HCAs and in high-grade dysplastic nodules. Malignant lesions were uniformly positive. In conclusion, as agrin is highly selective for tumor blood vessels, IHC for agrin facilitates the discrimination of benign and malignant hepatocellular lesions. Moreover, whereas glypican-3 in some HCCs may appear in few scattered cells only, agrin is diffusely deposited in virtually all malignant lesions, which may prove advantageous in the evaluation of small specimens such as core biopsies.


Assuntos
Adenoma de Células Hepáticas/diagnóstico , Agrina/biossíntese , Antígenos CD34/biossíntese , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/diagnóstico , Adenoma de Células Hepáticas/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/análise , Carcinoma Hepatocelular/metabolismo , Diagnóstico Diferencial , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade
12.
J Immunol ; 179(11): 7975-83, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18025246

RESUMO

It is shown in this study that the heparan sulfate proteoglycan agrin is overexpressed in T cells isolated from patients with the autoimmune disease systemic lupus erythematosus (SLE). Freshly isolated CD4(+) and CD8(+) subpopulations both exhibited higher expression over healthy controls, which however, gradually declined when cells were cultured in vitro. Agrin expression was induced following in vitro activation of cells via their Ag receptor, or after treatment with IFN-alpha, a cytokine shown to be pathogenic in lupus. Furthermore, serum from SLE patients with active disease was able to induce agrin expression when added to T cells from healthy donors, an increase that was partially blocked by neutralizing anti-IFN-alpha Abs. Cross-linking agrin with mAbs resulted in rapid reorganization of the actin cytoskeleton, activation of the ERK MAPK cascade, and augmentation of anti-CD3-induced proliferation and IL-10 production, indicating that agrin is a functional receptor in T cells. These results demonstrate that agrin expression in human T cells is regulated by cell activation and IFN-alpha, and may have an important function during cell activation with potential implications for autoimmunity.


Assuntos
Agrina/genética , Agrina/metabolismo , Regulação da Expressão Gênica/genética , Lúpus Eritematoso Sistêmico/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Actinas/imunologia , Adulto , Idoso , Agrina/biossíntese , Células Cultivadas , Citoesqueleto/imunologia , Feminino , Humanos , Interferon-alfa/genética , Interferon-alfa/farmacologia , Lúpus Eritematoso Sistêmico/genética , Masculino , Microdomínios da Membrana/química , Microdomínios da Membrana/imunologia , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/imunologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
13.
Hum Pathol ; 38(10): 1508-15, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17640714

RESUMO

Heparan sulfate proteoglycans mediate cell adhesion and control the activities of numerous growth and motility factors. They play a critical role in carcinogenesis and tumor progression. Agrin is a large multidomain heparan sulfate proteoglycan associated with basement membranes in several tissues. The expression of agrin in the liver has recently been described under physiologic and pathologic conditions. However, little is known about its role in malignancies. We aimed to study the mRNA and protein expression of agrin in cholangiocarcinoma (CC) and focused on the differences between CC and hepatocellular carcinoma (HCC). Eighty surgically removed liver specimens were studied by immunohistochemistry. Representative samples were used for immunoblotting. mRNA expression was measured in 32 samples by real-time polymerase chain reaction. By immunohistochemistry, agrin was seen around bile ducts and blood vessels within the portal areas in the normal liver. Although no expression was found within the hepatic lobules, agrin was deposited in the neovascular basement membrane in HCCs. Agrin was abundant in the tumor-specific basement membrane in well-differentiated areas of CCs, whereas with immunostaining, it was fragmented, decreased, or it even disappeared in less differentiated areas and sites of infiltration. By real-time polymerase chain reaction, up-regulation of agrin expression was measured in HCCs compared with that in the normal liver. CC samples showed an even higher expression of agrin. Immunoblotting confirmed these findings. Our results indicate that agrin might play an important role in neoangiogenesis in human HCC, being a part of the newly formed vasculature. In CC, however, agrin might be involved in tumor progression.


Assuntos
Agrina/biossíntese , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Carcinoma Hepatocelular/metabolismo , Colangiocarcinoma/metabolismo , Neoplasias Hepáticas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Membrana Basal/metabolismo , Biomarcadores Tumorais/análise , Western Blotting , Carcinoma Hepatocelular/irrigação sanguínea , Feminino , Expressão Gênica , Proteoglicanas de Heparan Sulfato/biossíntese , Humanos , Imuno-Histoquímica , Fígado/irrigação sanguínea , Fígado/metabolismo , Neoplasias Hepáticas/irrigação sanguínea , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica/metabolismo , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
J Biol Chem ; 281(48): 36835-45, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17012237

RESUMO

Agrin induces the aggregation of postsynaptic proteins at the neuromuscular junction (NMJ). This activity requires the receptor-tyrosine kinase MuSK. Agrin isoforms differ in short amino acid stretches at two sites, called A and B, that are localized in the two most C-terminal laminin G (LG) domains. Importantly, agrin isoforms greatly differ in their activities of inducing MuSK phosphorylation and of binding to alpha-dystroglycan. By using site-directed mutagenesis, we characterized the amino acids important for these activities of agrin. We find that the conserved tripeptide asparagineglutamate-isoleucine in the eight-amino acid long insert at the B-site is necessary and sufficient for full MuSK phosphorylation activity. However, even if all eight amino acids were replaced by alanines, this agrin mutant still has significantly higher MuSK phosphorylation activity than the splice version lacking any insert. We also show that binding to alpha-dystroglycan requires at least two LG domains and that amino acid inserts at the A and the B splice sites negatively affect binding.


Assuntos
Agrina/química , Processamento Alternativo , Músculos/enzimologia , RNA Mensageiro/metabolismo , Receptores Proteína Tirosina Quinases/química , Agrina/biossíntese , Sequência de Aminoácidos , Animais , Sítios de Ligação , Galinhas , Distroglicanas/química , Humanos , Laminina/química , Camundongos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
15.
J Am Soc Nephrol ; 17(9): 2513-20, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16899518

RESUMO

Heparan sulfate (HS) in the glomerular basement membrane (GBM) is important for regulation of the charge-dependent permeability. Heparanase has been implicated in HS degradation in several proteinuric diseases. This study analyzed the role of heparanase in HS degradation in Adriamycin nephropathy (AN), a model of chronic proteinuria-induced renal damage. Expression of heparanase, HS, and the core protein of agrin (to which HS is attached) was determined on kidney sections from rats with AN in different experiments. First, expression was examined in a model of unilateral AN in a time-course study at 6-wk intervals until week 30. Second, rats were treated with the hydroxyl radical scavenger dimethylthiourea (DMTU) during bilateral AN induction. Finally, 6 wk after AN induction, rats were treated with angiotensin II receptor type 1 antagonist (AT1A) or vehicle for 2 wk. Heparanase expression was increased in glomeruli of rats with AN, which correlated with HS reduction at all time points and in all experiments. Treatment with DMTU prevented the increased heparanase expression, the loss of GBM HS, and reduced albuminuria. Finally, treatment of established proteinuria with AT1A significantly reduced heparanase expression and restored glomerular HS. In conclusion, an association between heparanase expression and reduction of glomerular HS in AN was observed. The effects of DMTU suggest a role for reactive oxygen species in upregulation of heparanase. Antiproteinuric treatment by AT1A decreased heparanase expression and restored HS expression. These results suggest involvement of radicals and angiotensin II in the modulation of GBM permeability through HS and heparanase expression.


Assuntos
Doxorrubicina/toxicidade , Membrana Basal Glomerular/enzimologia , Glucuronidase/biossíntese , Nefrose/induzido quimicamente , Proteinúria/induzido quimicamente , Espécies Reativas de Oxigênio/farmacologia , Sistema Renina-Angiotensina/fisiologia , Agrina/biossíntese , Antagonistas de Receptores de Angiotensina , Animais , Indução Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Heparitina Sulfato/metabolismo , Imidazóis/farmacologia , Túbulos Renais/enzimologia , Masculino , Ratos , Ratos Wistar , Tetrazóis/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia
16.
Glia ; 53(5): 501-15, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16369933

RESUMO

To elucidate the molecular mechanisms involved in Schwann cell development, we profiled gene expression in the developing and injured rat sciatic nerve. The genes that showed significant changes in expression in developing and dedifferentiated nerve were validated with RT-PCR, in situ hybridisation, Western blot and immunofluorescence. A comprehensive approach to annotating micro-array probes and their associated transcripts was performed using Biopendium, a database of sequence and structural annotation. This approach significantly increased the number of genes for which a functional insight could be found. The analysis implicates agrin and two members of the collapsin response-mediated protein (CRMP) family in the switch from precursors to Schwann cells, and synuclein-1 and alphaB-crystallin in peripheral nerve myelination. We also identified a group of genes typically related to chondrogenesis and cartilage/bone development, including type II collagen, that were expressed in a manner similar to that of myelin-associated genes. The comprehensive function annotation also identified, among the genes regulated during nerve development or after nerve injury, proteins belonging to high-interest families, such as cytokines and kinases, and should therefore provide a uniquely valuable resource for future research.


Assuntos
Desenvolvimento Embrionário/fisiologia , Bainha de Mielina/fisiologia , Células de Schwann/fisiologia , Agrina/biossíntese , Agrina/genética , Animais , Western Blotting , Bucladesina/farmacologia , Células Cultivadas , Biologia Computacional , Citocinas/biossíntese , Citocinas/genética , Feminino , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Hibridização In Situ , Interleucina-8/biossíntese , Interleucina-8/genética , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Crista Neural/citologia , Crista Neural/embriologia , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Gravidez , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neuropatia Ciática/patologia , Cadeia B de alfa-Cristalina/biossíntese , Cadeia B de alfa-Cristalina/genética , alfa-Sinucleína/biossíntese , alfa-Sinucleína/genética
17.
J Am Soc Nephrol ; 15(1): 33-40, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14694155

RESUMO

In patients with diabetic nephropathy, glomerular staining for heparan sulfate proteoglycans (HSPG) side chains and for agrin is decreased. In the present study, the influence of angiotensin II (AngII) on the production of HSPG in SV40 transformed podocytes was investigated. SV40 transformed human podocytes were cultivated with or without 1 microM AngII, and HSPG production was measured by sequential DEAE-anion exchange chromatography and HPLC-DEAE separation. Expression of agrin was studied by indirect immunofluorescence and Western blot analysis using specific mono- and polyclonal antibodies. DEAE separation of total glycosaminoglycans (GAG) revealed a significant increase of GAG in the culture supernatant and decrease in the cell and matrix layer when podocytes were cultured for 72 h in the presence of AngII. This was particularly found for HS-GAG. Qualitative analysis of HSPG, using gel filtration of HNO(2)-treated fractions, showed that AngII treatment decreased N-sulfation of HS-GAG side chains. Indirect immunofluorescence staining with anti-agrin polyclonal antibody was strongly decreased after AngII stimulation. A reduction in agrin expression in cell extracts could also be detected in Western blot analysis using an mAb. No changes in agrin mRNA were found after AngII stimulation. It is concluded from this study that AngII decreases the amount of HSPG on the cell surface and in the extracellular matrix of podocytes. Because HSPG play a fundamental role in the permselectivity of the glomerular basement membrane, these results thus may explain at least partially the antiproteinuric effects of angiotensin-converting enzyme inhibition in patients with diabetic nephropathy.


Assuntos
Transformação Celular Viral , Receptor Tipo 1 de Angiotensina/fisiologia , Agrina/biossíntese , Células Cultivadas , Células Epiteliais/fisiologia , Glicosaminoglicanos/biossíntese , Heparitina Sulfato/farmacologia , Humanos , Glomérulos Renais/citologia , Proteoglicanas/farmacologia , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Vírus 40 dos Símios , Urotélio/citologia
18.
Mol Cell Neurosci ; 24(4): 1180-96, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14697677

RESUMO

Targeting of proteins to specific subcellular locations within pre- and postsynaptic neurons is essential for synapse formation. The heparan sulfate proteoglycan agrin orchestrates postsynaptic differentiation of the neuromuscular junction and may be involved in synaptic development and signaling in the central nervous system (CNS). Agrin is expressed as transmembrane and secretory isoforms with distinct N-termini. We examined the distribution of recombinant agrin in cultured motor and hippocampal neurons by transfection with agrin-GFP constructs. Immunostaining revealed a vesicular transport compartment within all neurites. Plasma membrane insertion and secretion of recombinant agrin were targeted to axonal growth cones of motor neurons; transmembrane agrin-GFP was targeted predominantly to axons and axonal growth cones in hippocampal neurons. We used agrin deletion mutants to show that axonal targeting of agrin depends on multiple domains that function in an additive fashion, including the very N-terminal portions and the C-terminal half of the molecule.


Assuntos
Agrina/biossíntese , Axônios/metabolismo , Marcação de Genes/métodos , Cones de Crescimento/metabolismo , Proteínas Recombinantes/biossíntese , Agrina/genética , Animais , Células Cultivadas , Galinhas , Mutação , Ratos , Proteínas Recombinantes/genética
19.
News Physiol Sci ; 17: 207-12, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12270958

RESUMO

The heparan sulfate proteoglycan agrin is responsible for the formation, maintenance, and regeneration of the neuromuscular junction. In the central nervous system, agrin is widely expressed and concentrated at interneuronal synapses, but its function during synaptogenesis remains controversial. Instead, evidence for additional functions of agrin during axonal growth, establishment of the blood-brain barrier, and Alzheimer's disease is accumulating.


Assuntos
Agrina/fisiologia , Sistema Nervoso Central/crescimento & desenvolvimento , Sinapses/fisiologia , Agrina/biossíntese , Agrina/genética , Doença de Alzheimer/metabolismo , Animais , Sistema Nervoso Central/fisiologia , Humanos
20.
Mol Cell Neurosci ; 20(3): 525-35, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12139927

RESUMO

Several isoforms of chick agrin, which differ in their activity to aggregate AChRs at the neuromuscular junction, are generated by alternative splicing at splice site B. We analyzed the isoform pattern and the functional properties of agrin in a defined population of CNS neurons. At all developmental stages retinal ganglion cells purified by immunopanning expressed the agrin B0, B11, and B19 isoforms. Single-cell RT-PCR of individual retinal ganglion cells revealed simultaneous expression of B0 and B11 isoforms in about half of the neurons analyzed. Despite the expression of agrin isoforms active in AChR aggregation, ganglion cells did not aggregate AChRs when cocultured with myotubes. Addition of exogenous agrin to myotube-ganglion cell cocultures indicated that AChR aggregation is inhibited. These results demonstrate that a defined population of CNS neurons can simultaneously express several agrin isoforms and that the AChR aggregation activity of agrin might be regulated not only by alternative splicing but also on the protein level.


Assuntos
Agrina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Receptores Colinérgicos/metabolismo , Células Ganglionares da Retina/metabolismo , Agrina/biossíntese , Animais , Células Cultivadas , Embrião de Galinha , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA