Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 869
Filtrar
1.
Nat Commun ; 15(1): 5737, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982157

RESUMO

Exploring the promiscuity of native enzymes presents a promising strategy for expanding their synthetic applications, particularly for catalyzing challenging reactions in non-native contexts. In this study, we explore the promiscuous potential of old yellow enzymes (OYEs) to facilitate the Morita-Baylis-Hillman reaction (MBH reaction), leveraging substrate similarities between MBH reaction and reduction reaction. Using mass spectrometry and spectroscopic techniques, we confirm promiscuity of GkOYE in both MBH and reduction reactions. By blocking H- and H+ transfer pathways, we engineer GkOYE.8, which loses its reduction ability but enhances its MBH activity. The structural basis of MBH reaction catalyzed by GkOYE.8 is obtained through mutation studies and kinetic simulations. Furthermore, enantiocomplementary mutants GkOYE.11 and GkOYE.13 are obtained by directed evolution, exhibiting the ability to accept various aromatic aldehydes and alkenes as substrates. This study demonstrates the potential of leveraging substrate similarities to unlock enzyme functionalities, enabling the catalysis of new-to-nature reactions.


Assuntos
Biocatálise , Especificidade por Substrato , Cinética , Aldeídos/metabolismo , Aldeídos/química , Catálise , Mutação , Alcenos/metabolismo , Alcenos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Engenharia de Proteínas
2.
Sci Adv ; 10(26): eadl2492, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924395

RESUMO

Bioproduction of 1-alkenes from naturally abundant free fatty acids offers a promising avenue toward the next generation of hydrocarbon-based biofuels and green commodity chemicals. UndB is the only known membrane-bound 1-alkene-producing enzyme, with great potential for 1-alkene bioproduction, but the enzyme exhibits limited turnovers, thus restricting its widespread usage. Here, we explore the molecular basis of the limitation of UndB activity and substantially improve its catalytic power. We establish that the enzyme undergoes peroxide-mediated rapid inactivation during catalysis. To counteract this inactivation, we engineered a chimeric membrane enzyme by conjugating UndB with catalase that protected UndB against peroxide and enhanced its number of turnovers tremendously. Notably, our chimeric enzyme is the only example of a membrane enzyme successfully engineered with catalase. We subsequently constructed a whole-cell biocatalytic system and achieved remarkable efficiencies (up to 95%) in the biotransformation of a wide range of fatty acids (both aliphatic and aromatic) into corresponding 1-alkenes with numerous biotechnological applications.


Assuntos
Alcenos , Biocatálise , Catalase , Alcenos/metabolismo , Catalase/genética , Catalase/metabolismo , Ácidos Graxos/metabolismo , Engenharia de Proteínas/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética
3.
Angew Chem Int Ed Engl ; 63(33): e202404312, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38783596

RESUMO

Consistent introduction of novel enzymes is required for developing efficient biocatalysts for challenging biotransformations. Absorbing catalytic modes from organocatalysis may be fruitful for designing new-to-nature enzymes with novel functions. Herein we report a newly designed artificial enzyme harboring a catalytic pyrrolidine residue that catalyzes the asymmetric Michael addition of cyclic ketones to nitroolefins through enamine activation with high efficiency. Diverse chiral γ-nitro cyclic ketones with two stereocenters were efficiently prepared with excellent stereoselectivity (up to 97 % e.e., >20 : 1 d.r.) and good yield (up to 86 %). This work provides an efficient biocatalytic strategy for cyclic ketone functionalization, and highlights the usefulness of artificial enzymes for extending biocatalysis to further non-natural reactions.


Assuntos
Alcenos , Biocatálise , Cetonas , Cetonas/química , Cetonas/metabolismo , Alcenos/química , Alcenos/metabolismo , Estereoisomerismo , Nitrocompostos/química , Nitrocompostos/metabolismo , Aminas/química , Aminas/metabolismo , Estrutura Molecular , Catálise
4.
J Biotechnol ; 390: 13-27, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38761886

RESUMO

Industrial biotechnology and biocatalysis can provide very effective synthetic tools to increase the sustainability of the production of fine chemicals, especially flavour and fragrance (F&F) ingredients, the market demand of which has been constantly increasing in the last years. One of the most important transformations in F&F chemistry is the reduction of CC bonds, typically carried out with metal-catalysed hydrogenations or hydride-based reagents. Its biocatalytic counterpart is a competitive alternative, showcasing a range of advantages such as excellent chemo-, regio- and stereoselectivity, ease of implementation, mild reaction conditions and modest environmental impact. In the present review, the application of biocatalysed alkene reductions (from microbial fermentations with wild-type strains to engineered isolated ene-reductase enzymes) to synthetic processes useful for the F&F industry will be described, highlighting not only the exquisite stereoselectivity achieved, but also the overall improvement when chirality is not involved. Multi-enzymatic cascades involving CC bioreductions are also examined, which allow much greater chemical complexity to be built in one-pot biocatalytic systems.


Assuntos
Biocatálise , Aromatizantes , Aromatizantes/metabolismo , Aromatizantes/química , Perfumes/química , Biotecnologia/métodos , Alcenos/metabolismo , Alcenos/química , Oxirredução
5.
Curr Biol ; 34(12): 2702-2711.e6, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38776901

RESUMO

Studying the independent evolution of similar traits provides valuable insights into the ecological and genetic factors driving phenotypic evolution.1 The transition from outcrossing to self-fertilization is common in plant evolution2 and is often associated with a reduction in floral attractive features such as display size, chemical signals, and pollinator rewards.3 These changes are believed to result from the reallocation of the resources used for building attractive flowers, as the need to attract pollinators decreases.2,3 We investigated the similarities in the evolution of flower fragrance following independent transitions to self-fertilization in Capsella.4,5,6,7,8,9 We identified several compounds that exhibited similar changes in different selfer lineages, such that the flower scent composition reflects mating systems rather than evolutionary history within this genus. We further demonstrate that the repeated loss of ß-ocimene emission, one of the compounds most strongly affected by these transitions, was caused by mutations in different genes. In one of the Capsella selfing lineages, the loss of its emission was associated with a mutation altering subcellular localization of the ortholog of TERPENE SYNTHASE 2. This mutation appears to have been fixed early after the transition to selfing through the capture of variants segregating in the ancestral outcrossing population. The large extent of convergence in the independent evolution of flower scent, together with the evolutionary history and molecular consequences of a causal mutation, suggests that the emission of specific volatiles evolved as a response to changes in ecological pressures rather than resource limitation.


Assuntos
Evolução Molecular , Flores , Odorantes , Autofertilização , Flores/genética , Autofertilização/genética , Odorantes/análise , Polinização , Alcenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Monoterpenos Acíclicos
6.
Chembiochem ; 25(10): e202400066, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567500

RESUMO

P450 enzymes naturally perform selective hydroxylations and epoxidations of unfunctionalized hydrocarbon substrates, among other reactions. The adaptation of P450 enzymes to a particular oxidative reaction involving alkenes is of great interest for the design of new synthetically useful biocatalysts. However, the mechanism that these enzymes utilize to precisely modulate the chemoselectivity and distinguishing between competing alkene double bond epoxidations and allylic C-H hydroxylations is sometimes not clear, which hampers the rational design of specific biocatalysts. In a previous work, a P450 from Labrenzia aggregata (P450LA1) was engineered in the laboratory using directed evolution to catalyze the direct oxidation of trans-ß-methylstyrene to phenylacetone. The final variant, KS, was able to overcome the intrinsic preference for alkene epoxidation to directly generate a ketone product via the formation of a highly reactive carbocation intermediate. Here, additional library screening along this evolutionary lineage permitted to serendipitously detect a mutation that overcomes epoxidation and carbonyl formation by exhibiting a large selectivity of 94 % towards allylic C-H hydroxylation. A multiscalar computational methodology was applied to reveal the molecular basis towards this hydroxylation preference. Enzyme modelling suggests that introduction of a bulky substitution dramatically changes the accessible conformations of the substrate in the active site, thus modifying the enzymatic selectivity towards terminal hydroxylation and avoiding the competing epoxidation pathway, which is sterically hindered.


Assuntos
Alcenos , Biocatálise , Sistema Enzimático do Citocromo P-450 , Oxirredução , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/química , Alcenos/química , Alcenos/metabolismo , Especificidade por Substrato
7.
Chem Rev ; 124(6): 3284-3330, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498932

RESUMO

It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.


Assuntos
Bicamadas Lipídicas , Lipídeos de Membrana , Lipídeos de Membrana/química , Bicamadas Lipídicas/química , Membrana Celular/metabolismo , Membranas/metabolismo , Fosfolipídeos/metabolismo , Alcenos/metabolismo
8.
Environ Microbiol ; 26(2): e16567, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233213

RESUMO

Soluble di-iron monooxygenase (SDIMO) enzymes enable insertion of oxygen into diverse substrates and play significant roles in biogeochemistry, bioremediation and biocatalysis. An unusual SDIMO was detected in an earlier study in the genome of the soil organism Solimonas soli, but was not characterized. Here, we show that the S. soli SDIMO is part of a new clade, which we define as 'Group 7'; these share a conserved gene organization with alkene monooxygenases but have only low amino acid identity. The S. soli genes (named zmoABCD) could be functionally expressed in Pseudomonas putida KT2440 but not in Escherichia coli TOP10. The recombinants made epoxides from C2 C8 alkenes, preferring small linear alkenes (e.g. propene), but also epoxidating branched, carboxylated and chlorinated substrates. Enzymatic epoxidation of acrylic acid was observed for the first time. ZmoABCD oxidised the organochlorine pollutants vinyl chloride (VC) and cis-1,2-dichloroethene (cDCE), with the release of inorganic chloride from VC but not cDCE. The original host bacterium S. soli could not grow on any alkenes tested but grew well on phenol and n-octane. Further work is needed to link ZmoABCD and the other Group 7 SDIMOs to specific physiological and ecological roles.


Assuntos
Gammaproteobacteria , Pseudomonas putida , Cloreto de Vinil , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Alcenos/metabolismo , Gammaproteobacteria/metabolismo , Biodegradação Ambiental , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
9.
Protein Sci ; 33(2): e4893, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160318

RESUMO

Integral membrane enzymes play essential roles in a plethora of biochemical processes. The fatty acid desaturases (FADS)-like superfamily is an important group of integral membrane enzymes that catalyze a wide array of reactions, including hydroxylation, desaturation, and cyclization; however, due to the membrane-bound nature, the majority of these enzymes have remained poorly understood. UndB is a member of the FADS-like superfamily, which catalyzes fatty acid decarboxylation, a chemically challenging reaction at the membrane interface. UndB reaction produces terminal olefins that are prominent biofuel candidates and building blocks of polymers with widespread industrial applications. Despite the great importance of UndB for several biotechnological applications, the enzyme has eluded comprehensive investigation. Here, we report details of the expression, solubilization, and purification of several constructs of UndB to achieve the optimally functional enzyme. We gained important insights into the biochemical, biophysical, and catalytic properties of UndB, including the thermal stability and factors influencing the enzyme activity. Additionally, we established the ability and kinetics of UndB to produce dienes by performing di-decarboxylation of diacids. We found that the reaction proceeds by forming a mono-carboxylic acid intermediate. Our findings shed light on the unexplored biochemical properties of the UndB and extend opportunities for its rigorous mechanistic and structural characterization.


Assuntos
Alcenos , Ácidos Graxos , Alcenos/química , Alcenos/metabolismo , Ácidos Graxos/química , Hidroxilação , Ácidos Carboxílicos
10.
Methods Enzymol ; 693: 111-131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37977728

RESUMO

The Wacker-Tsuji oxidation is an important aerobic oxidation process to synthesize ethanal from ethene and methyl ketones from 1-alkenes. Current challenges in aerobic alkene oxidation include selective carbonyl product formation beyond methyl ketones. This includes the regioselective oxidation of the terminal carbon atom of 1-alkenes, the regioselective ketone formation with internal alkenes as well as the enantioselective alkene to carbonyl oxidation. Recently, the potential of high-valent metal-oxo species for direct alkene to carbonyl oxidation was explored as carbonyl product formation is frequently reported as a side reaction of alkene epoxidation by cytochrome P450s. It was shown that such promiscuous P450s can be engineered via directed evolution to perform alkene to carbonyl oxidation reactions with high activity and selectivity. Here, we report a protocol to convert promiscuous P450s into efficient and selective enzymes for Wacker-type alkene oxidation. One round of directed evolution is described in detail, which includes the generation and handling of site-saturation libraries, recombinant protein expression, library screening in a 96-well plate format and the rescreening of variants with beneficial mutations. These protocols might be useful to engineer various P450s for selective alkene to carbonyl oxidation, and to engineer enzymes in general.


Assuntos
Alcenos , Sistema Enzimático do Citocromo P-450 , Alcenos/metabolismo , Oxirredução , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Cetonas
11.
Methods Enzymol ; 693: 339-374, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37977736

RESUMO

P450 fatty acid decarboxylases are able to utilize hydrogen peroxide as the sole cofactor to decarboxylate free fatty acids to produce α-olefins with abundant applications as drop-in biofuels and important chemical precursors. In this chapter, we review diverse approaches for discovery, characterization, engineering, and applications of P450 fatty acid decarboxylases. Information gained from structural data has been advancing our understandings of the unique mechanisms underlying alkene production, and providing important insights for exploring new activities. To build an efficient olefin-producing system, various engineering strategies have been proposed and applied to this unusual P450 catalytic system. Furthermore, we highlight a select number of applied examples of P450 fatty acid decarboxylases in enzyme cascades and metabolic engineering.


Assuntos
Carboxiliases , Ácidos Graxos , Ácidos Graxos/metabolismo , Alcenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Catálise
12.
Environ Microbiol ; 25(11): 2163-2181, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37321960

RESUMO

Mycolicibacterium gadium IBE100 and Mycobacterium paragordonae IBE200 are aerobic, chemoorganoheterotrophic bacteria isolated from activated sludge from a wastewater treatment plant. They use 2-methylpropene (isobutene, 2-MP) as the sole source of carbon and energy. Here, we postulate a degradation pathway of 2-methylpropene derived from whole genome sequencing, differential expression analysis and peptide-mass fingerprinting. Key genes identified are coding for a 4-component soluble diiron monooxygenase with epoxidase activity, an epoxide hydrolase, and a 2-hydroxyisobutyryl-CoA mutase. In both strains, involved genes are arranged in clusters of 61.0 and 58.5 kbp, respectively, which also contain the genes coding for parts of the aerobic pathway of adenosylcobalamin synthesis. This vitamin is essential for the carbon rearrangement reaction catalysed by the mutase. These findings provide data for the identification of potential 2-methylpropene degraders.


Assuntos
Alcenos , Transferases Intramoleculares , Alcenos/metabolismo , Esgotos , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Carbono
13.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108345

RESUMO

Soybean is a worldwide crop that offers valuable proteins, fatty acids, and phytonutrients to humans but is always damaged by insect pests or pathogens. Plants have captured sophisticated defense mechanisms in resisting the attack of insects and pathogens. How to protect soybean in an environment- or human-friendly way or how to develop plant-based pest control is a hotpot. Herbivore-induced plant volatiles that are released by multiple plant species have been assessed in multi-systems against various insects, of which (E)-ß-ocimene has been reported to show anti-insect function in a variety of plants, including soybean. However, the responsible gene in soybean is unknown, and its mechanism of synthesis and anti-insect properties lacks comprehensive assessment. In this study, (E)-ß-ocimene was confirmed to be induced by Spodoptera litura treatment. A plastidic localized monoterpene synthase gene, designated as GmOCS, was identified to be responsible for the biosynthesis of (E)-ß-ocimene through genome-wide gene family screening and in vitro and in vivo assays. Results from transgenic soybean and tobacco confirmed that (E)-ß-ocimene catalyzed by GmOCS had pivotal roles in repelling a S. litura attack. This study advances the understanding of (E)-ß-ocimene synthesis and its function in crops, as well as provides a good candidate for further anti-insect soybean improvement.


Assuntos
Alcenos , Insetos , Animais , Humanos , Spodoptera/genética , Spodoptera/metabolismo , Monoterpenos Acíclicos , Alcenos/metabolismo , Insetos/metabolismo , Plantas/metabolismo
14.
J Anal Toxicol ; 47(5): 455-463, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36857377

RESUMO

A new class of synthetic cannabinoids termed OXIZIDs has recently emerged on the recreational drug market. In order to continue the detection of new drugs in biological specimens, the identification of metabolites is essential. The aim of this study was to elucidate the metabolites of BZO-4en-POXIZID produced in human liver microsomes (HLMs) and human hepatocyte incubations and to compare the results with closely related analogs using the same experimental setup. Each drug was incubated for 1 h in HLM and BZO-4en-POXIZID was also incubated in human hepatocytes for up to 3 h. Subsequently, the incubates were analyzed by liquid chromatography-high-resolution mass spectrometry. BZO-4en-POXIZID metabolites were obtained in the incubation with HLMs and human hepatocytes, via the metabolic pathways of dihydrodiol formation, hydroxylation, reduction of the alkene bond and glucuronidation. The major metabolic pathway was found to be dihydrodiol formation at the pentenyl tail moiety. BZO-POXIZID, 5 F-BZO-POXIZID, BZO-HEXOXIZID and BZO-CHMOXIZID underwent similar metabolism to those reported in the literature, via the metabolic pathways of N-dealkylation, hydroxylation, ketone formation and oxidative defluorination (to alcohol or carboxylic acid). The results suggest that OXIZIDs are mainly metabolized at the N-alkyl moiety and the major metabolic pathways are hydroxylation when the N-alkyl moiety is a simple hydrocarbon, whereas functional-group-specific pathways (dihydrodiol formation and oxidative defluorination) are preferred when the moiety contains specific functional groups (alkene or fluoro), as has been observed for other synthetic cannabinoids. The major metabolites generated via these major metabolic pathways should serve as useful analytical targets for urine analysis. Furthermore, the higher abundance of glucuronidated metabolite suggests that enzymatic hydrolysis of glucuronides may be necessary for urine analysis to increase phase I metabolite concentration and improve detection.


Assuntos
Canabinoides , Naftalenos , Humanos , Espectrometria de Massas/métodos , Naftalenos/metabolismo , Canabinoides/análise , Alcenos/metabolismo , Microssomos Hepáticos/metabolismo
15.
Anal Chem ; 94(44): 15261-15269, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36282989

RESUMO

Lewy pathologies, which mainly consist of insoluble α-synuclein (α-syn) aggregates, are the hallmarks of Parkinson's disease and many other neurodegenerative diseases termed "synucleinopathies". Detection of Lewy pathologies with optical methods is of interest for preclinical studies, while the α-syn fluorescent probe is still in great demand. By rational design, we obtained a series of D-π-A-based trisubstituted alkenes with acceptable optical properties and high binding affinities to α-syn fibrils. Among these probes, FPQXN and TQXN-2 exhibited high binding affinities (6 and 8 nM, respectively), significant fluorescence enhancements (17.2- and 26.6-fold, respectively), and satisfying quantum yields (36.5% and 10.4%, respectively), which met the need for the in vitro neuropathological staining of Lewy pathologies in the PD brain sections. In addition, TQXN-2 showed great potential in fluorescent discrimination of Lewy pathologies and Aß plaques. Our research provides flexible tools for in vitro detection of α-syn aggregates and offers new structural frameworks for the further development of α-syn fluorescent probes.


Assuntos
Corantes Fluorescentes , Doença de Parkinson , Humanos , Corantes Fluorescentes/metabolismo , Alcenos/metabolismo , alfa-Sinucleína/química , Doença de Parkinson/metabolismo , Placa Amiloide/metabolismo , Encéfalo/metabolismo
16.
Molecules ; 27(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144705

RESUMO

Marine sponges continue to attract remarkable attention as one of the richest pools of bioactive metabolites in the marine environment. The genus Smenospongia (order Dictyoceratida, family Thorectidae) sponges can produce diverse classes of metabolites with unique and unusual chemical skeletons, including terpenoids (sesqui-, di-, and sesterterpenoids), indole alkaloids, aplysinopsins, bisspiroimidazolidinones, chromenes, γ-pyrones, phenyl alkenes, naphthoquinones, and polyketides that possessed diversified bioactivities. This review provided an overview of the reported metabolites from Smenospongia sponges, including their biosynthesis, synthesis, and bioactivities in the period from 1980 to June 2022. The structural characteristics and diverse bioactivities of these metabolites could attract a great deal of attention from natural-product chemists and pharmaceuticals seeking to develop these metabolites into medicine for the treatment and prevention of certain health concerns.


Assuntos
Produtos Biológicos , Naftoquinonas , Policetídeos , Poríferos , Alcenos/metabolismo , Animais , Benzopiranos/metabolismo , Produtos Biológicos/química , Alcaloides Indólicos/química , Naftoquinonas/metabolismo , Preparações Farmacêuticas/metabolismo , Policetídeos/metabolismo , Poríferos/química , Pironas/metabolismo , Terpenos/metabolismo , Terpenos/farmacologia
17.
Plant Sci ; 325: 111462, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36126879

RESUMO

Laccase (LAC) is a blue multicopper oxidase that contains four copper ions, which is involved in lignin polymerization and flavonoid biosynthesis in plants. Although dozens of LAC genes have been identified in Salvia miltiorrhiza Bunge (a model medicinal plant), most have not been functionally characterized. Here, we explored the expression patterns and the functionality of SmLAC25 in S. miltiorrhiza. SmLAC25 has a higher expression level in roots and responds to methyl jasmonate, auxin, abscisic acid, and gibberellin stimuli. The SmLAC25 protein is localized in the cytoplasm and chloroplasts. Recombinant SmLAC25 protein could oxidize coniferyl alcohol and sinapyl alcohol, two monomers of G-lignin and S-lignin. To investigate its function, we generated SmLAC25-overexpressed S. miltiorrhiza plantlets and hairy roots. The lignin content increased significantly in all SmLAC25-overexpressed plantlets and hairy roots, compared with the controls. However, the concentrations of rosmarinic acid and salvianolic acid B decreased significantly in all the SmLAC25-overexpressed lines. Further studies revealed that the transcription levels of some key enzyme genes in the lignin synthesis pathway (e.g., SmCCR and SmCOMT) were significantly improved in the SmLAC25-overexpressed lines, while the expression levels of multiple enzyme genes in the salvianolic acid biosynthesis pathway were inhibited. We speculated that the overexpression of SmLAC25 promoted the metabolic flux of lignin synthesis, which resulted in a decreased metabolic flux to the salvianolic acid biosynthesis pathway.


Assuntos
Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Lignina/metabolismo , Alcenos/metabolismo , Polifenóis/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Metab Eng ; 72: 14-23, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35134557

RESUMO

The objective of this study was to implement direct sunlight-driven conversion of CO2 into a naturally excreted ready-to-use fuel. We engineered four different synthetic metabolic modules for biosynthesis of short-to medium-chain length hydrocarbons in the model cyanobacterium Synechocystis sp. PCC 6803. In module 1, the combination of a truncated clostridial n-butanol pathway with over-expression of the native cyanobacterial aldehyde deformylating oxygenase resulted in small quantities of propane when cultured under closed conditions. Direct conversion of CO2 into propane was only observed in strains with CRISPRi-mediated repression of three native putative aldehyde reductases. In module 2, three different pathways towards pentane were evaluated based on the polyunsaturated fatty acid linoleic acid as an intermediate. Through combinatorial evaluation of reaction ingredients, it was concluded that linoleic acid undergoes a spontaneous non-enzymatic reaction to yield pentane and hexanal. When Synechocystis was added to the reaction, hexanal was converted into 1-hexanol, but there was no further stimulation of pentane biosynthesis even in the Synechocystis strains expressing GmLOX1. For modules 3 and 4, several different acyl-ACP thioesterases were evaluated in combination with two different decarboxylases. Small quantities of 1-heptene and 1-nonene were observed in strains expressing the desaturase-like enzyme UndB from Pseudomonas mendocina in combination with C8-C10 preferring thioesterases ('CaFatB3.5 and 'ChoFatB2.2). When UndB instead was combined with a C12-specific 'UcFatB1 thioesterase, this resulted in a ten-fold increase of alkene biosynthesis. When UndB was replaced with the light-dependent FAP decarboxylase, both undecane and tridecane accumulated, albeit with a 10-fold drop in productivity. Preliminary optimization of the RBS, promoter and gene order in some of the synthetic operons resulted in improved 1-alkene productivity, reaching a titer of 230 mg/L after 10 d with 15% carbon partitioning. In conclusion, the direct bioconversion of CO2 into secreted and ready-to-use hydrocarbon fuel was implemented with several different metabolic systems. Optimal productivity was observed with UndB and a C12 chain-length specific thioesterase, although further optimization of the entire biosynthetic system is still possible.


Assuntos
Pentanos , Synechocystis , Aldeídos/metabolismo , Alcenos/metabolismo , Dióxido de Carbono/metabolismo , Hidrocarbonetos/metabolismo , Ácido Linoleico/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Pentanos/metabolismo , Propano/metabolismo , Synechocystis/genética , Synechocystis/metabolismo
19.
J Ind Microbiol Biotechnol ; 49(2)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-34718648

RESUMO

Alkanes are high-energy molecules that are compatible with enduring liquid fuel infrastructures, which make them highly suitable for being next-generation biofuels. Though biological production of alkanes has been reported in various microorganisms, the reports citing photosynthetic cyanobacteria as natural producers have been the most consistent for the long-chain alkanes and alkenes (C15-C19). However, the production of alkane in cyanobacteria is low, leading to its extraction being uneconomical for commercial purposes. In order to make alkane production economically feasible from cyanobacteria, the titre and yield need to be increased by several orders of magnitude. In the recent past, efforts have been made to enhance alkane production, although with a little gain in yield, leaving space for much improvement. Genetic manipulation in cyanobacteria is considered challenging, but recent advancements in genetic engineering tools may assist in manipulating the genome in order to enhance alkane production. Further, advancement in a basic understanding of metabolic pathways and gene functioning will guide future research for harvesting the potential of these tiny photosynthetically efficient factories. In this review, our focus would be to highlight the current knowledge available on cyanobacterial alkane production, and the potential aspects of developing cyanobacterium as an economical source of biofuel. Further insights into different metabolic pathways and hosts explored so far, and possible challenges in scaling up the production of alkanes will also be discussed.


Assuntos
Cianobactérias , Engenharia Metabólica , Alcanos/metabolismo , Alcenos/metabolismo , Biocombustíveis , Cianobactérias/genética , Cianobactérias/metabolismo
20.
Phys Chem Chem Phys ; 23(48): 27520-27524, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34874373

RESUMO

Anaerobic microbial B12-dependent reductive dehalogenation may pave a way to remediate soil, sediment, and underground water contaminated with halogenated olefins. The chemical reaction is initiated by electron transfer (ET) from supernucleophilic cob(I)alamin (B12s). However, the inherent mechanism as outer-sphere or inner-sphere route is still under debate. To clarify the possibility of an outer-sphere pathway, we calculated free energy barriers of the initial steps of all outer-sphere ET routes by Marcus theory employing density functional theory (DFT). For 18 fluorinated, chlorinated, and brominated ethenes as representative olefins, 164 of 165 reactions with free energy barriers larger than 20 kcal mol-1 are not feasible under physiological dehalogenase conditions. Moreover, electronic structure analysis of perbromoethene with an outer-sphere free energy barrier of 18.2 kcal mol-1 reveals no ET initiation down to Co⋯Br and Co⋯C distances of 3.15 Å. The results demonstrate that the B12-catalyzed reductive dechlorination of olefins in microbes should proceed through an inner-sphere ET pathway.


Assuntos
Alcenos/metabolismo , Vitamina B 12/metabolismo , Alcenos/química , Catálise , Teoria da Densidade Funcional , Transporte de Elétrons , Halogenação , Conformação Molecular , Vitamina B 12/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA