Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.030
Filtrar
1.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38664064

RESUMO

Thermo-acidic pretreatment of lignocellulosic biomass is required to make it amenable to microbial metabolism and results in generation of furfural due to breakdown of pentose sugars. Furfural is toxic to microbial metabolism and results in reduced microbial productivity and increased production costs. This study asks if deletion of yghZ gene which encodes a NADPH-dependent aldehyde reductase enzyme results in improved furfural tolerance in Escherichia coli host. The ∆yghZ strain-SSK201-was tested for tolerance to furfural in presence of 5% xylose as a carbon source in AM1 minimal medium. At 96 h and in presence of 1.0 g/L furfural, the culture harboring strain SSK201 displayed 4.5-fold higher biomass, 2-fold lower furfural concentration and 15.75-fold higher specific growth rate (µ) as compared to the parent strain SSK42. The furfural tolerance advantage of SSK201 was retained when the carbon source was switched to glucose in AM1 medium and was lost in rich LB medium. The findings have potential to be scaled up to a hydrolysate culture medium, which contains furan inhibitors and lack nutritionally rich components, under bioreactor cultivation and observe growth advantage of the ∆yghZ host. It harbors potential to generate robust industrial strains which can convert lignocellulosic carbon into metabolites of interest in a cost-efficient manner.


Assuntos
Carbono , Escherichia coli , Furaldeído , Xilose , Xilose/metabolismo , Furaldeído/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Carbono/metabolismo , Aldeído Redutase/metabolismo , Aldeído Redutase/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Deleção de Genes , Biomassa , Glucose/metabolismo
2.
J Hazard Mater ; 470: 134212, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583205

RESUMO

Elevated levels of cadmium (Cd) have the ability to impede plant development. Aldo-keto reductases (AKRs) have been demonstrated in a number of plant species to improve tolerance to a variety of abiotic stresses by scavenging cytotoxic aldehydes; however, only a few AKRs have been identified to improve Cd tolerance. The OsAKR1 gene was extracted and identified from rice here. After being exposed to Cd, the expression of OsAKR1 dramatically rose in both roots and shoots, although more pronounced in roots. According to a subcellular localization experiment, the nucleus and cytoplasm are where OsAKR1 is primarily found. Mutants lacking OsAKR1 exhibited Cd sensitive phenotype than that of the wild-type (WT) Nipponbare (Nip), and osakr1 mutants exhibited reduced capacity to scavenge methylglyoxal (MG). Furthermore, osakr1 mutants exhibited considerably greater hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels, and increased catalase (CAT) activity in comparison to Nip. The expression of three isomeric forms of CAT was found to be considerably elevated in osakr1 mutants during Cd stress, as demonstrated by quantitative real-time PCR analysis, when compared to Nip. These results imply that OsAKR1 controlled rice's ability to withstand Cd by scavenging harmful aldehydes and turning on the reactive oxygen species (ROS) scavenging mechanism.


Assuntos
Aldo-Ceto Redutases , Cádmio , Oryza , Oryza/genética , Oryza/metabolismo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Cádmio/toxicidade , Cádmio/metabolismo , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , Aldeídos/metabolismo , Catalase/metabolismo , Catalase/genética , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Malondialdeído/metabolismo , Estresse Fisiológico , Aldeído Pirúvico/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Inativação Metabólica
3.
Chem Biol Interact ; 392: 110905, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373627

RESUMO

Aldose reductase is a member of the 1B1 subfamily of aldo-keto reductase gene superfamily. The action of aldose reductase (AR) has been implicated in the pathogenesis of a variety of disease states, most notably complications of diabetes mellitus including neuropathy, retinopathy, nephropathy, and cataracts. To explore for mechanistic roles for AR in disease pathogenesis, we established mutant strains produced using Crispr-Cas9 to inactivate the AKR1B3 gene in C57BL6 mice. Phenotyping AR-knock out (ARKO) strains confirmed previous reports of reduced accumulation of tissue sorbitol levels. Lens epithelial cells in ARKO mice showed markedly reduced epithelial-to-mesenchymal transition following lens extraction in a surgical model of cataract and posterior capsule opacification. A previously unreported phenotype of preputial sebaceous gland swelling was observed frequently in male ARKO mice homozygous for the mutant AKR1B3 allele. This condition, which was shown to be accompanied by infiltration of proinflammatory CD3+ lymphocytes, was not observed in WT mice or mice heterozygous for the mutant allele. Despite this condition, reproductive fitness of the ARKO strain was indistinguishable from WT mice housed under identical conditions. These studies establish the utility of a new strain of AKR1B3-null mice created to support mechanistic studies of cataract and diabetic eye disease.


Assuntos
Opacificação da Cápsula , Catarata , Cristalino , Animais , Masculino , Camundongos , Aldeído Redutase/genética , Opacificação da Cápsula/patologia , Catarata/genética , Catarata/patologia , Incidência , Inflamação/patologia , Cristalino/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glândulas Sebáceas
4.
Exp Mol Med ; 56(1): 220-234, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38200154

RESUMO

Diabetes might be associated with increased cancer risk, with several studies reporting hyperglycemia as a primary oncogenic stimulant. Since glucose metabolism is linked to numerous metabolic pathways, it is difficult to specify the mechanisms underlying hyperglycemia-induced cancer progression. Here, we focused on the polyol pathway, which is dramatically activated under hyperglycemia and causes diabetic complications. We investigated whether polyol pathway-derived fructose facilitates hyperglycemia-induced gastric cancer metastasis. We performed bioinformatics analysis of gastric cancer datasets and immunohistochemical analyses of gastric cancer specimens, followed by transcriptomic and proteomic analyses to evaluate phenotypic changes in gastric cancer cells. Consequently, we found a clinical association between the polyol pathway and gastric cancer progression. In gastric cancer cell lines, hyperglycemia enhanced cell migration and invasion, cytoskeletal rearrangement, and epithelial-mesenchymal transition (EMT). The hyperglycemia-induced acquisition of metastatic potential was mediated by increased fructose derived from the polyol pathway, which stimulated the nuclear ketohexokinase-A (KHK-A) signaling pathway, thereby inducing EMT by repressing the CDH1 gene. In two different xenograft models of cancer metastasis, gastric cancers overexpressing AKR1B1 were found to be highly metastatic in diabetic mice, but these effects of AKR1B1 were attenuated by KHK-A knockdown. In conclusion, hyperglycemia induces fructose formation through the polyol pathway, which in turn stimulates the KHK-A signaling pathway, driving gastric cancer metastasis by inducing EMT. Thus, the polyol and KHK-A signaling pathways could be potential therapeutic targets to decrease the metastatic risk in gastric cancer patients with diabetes.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Polímeros , Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Proteômica , Transdução de Sinais , Hiperglicemia/complicações , Frutoquinases/genética , Frutoquinases/metabolismo , Frutose/metabolismo , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Aldeído Redutase/farmacologia
5.
Free Radic Biol Med ; 210: 430-447, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056576

RESUMO

Cisplatin is a frequently used chemotherapeutic medicine for cancer treatment. Permanent hearing loss is one of the most serious side effects of cisplatin, but there are few FDA-approved medicines to prevent it. We applied high-through screening and target fishing and identified aldose reductase, a key enzyme of the polyol pathway, as a novel target for treating cisplatin ototoxicity. Cisplatin treatment significantly increased the expression level and enzyme activity of aldose reductase in the cochlear sensory epithelium. Genetic knockdown or pharmacological inhibition of aldose reductase showed a significant protective effect on cochlear hair cells. Cisplatin-induced overactivation of aldose reductase led to the decrease of NADPH/NADP+ and GSH/GSSG ratios, as well as the increase of oxidative stress, and contributed to hair cell death. Results of target prediction, molecular docking, and enzyme activity detection further identified that Tiliroside was an effective inhibitor of aldose reductase. Tiliroside was proven to inhibit the enzymatic activity of aldose reductase via competitively interfering with the substrate-binding region. Both Tiliroside and another clinically approved aldose reductase inhibitor, Epalrestat, inhibited cisplatin-induced oxidative stress and subsequent cell death and thus protected hearing function. These findings discovered the role of aldose reductase in the pathogenesis of cisplatin-induced deafness and identified aldose reductase as a new target for the prevention and treatment of hearing loss.


Assuntos
Cisplatino , Perda Auditiva , Humanos , Cisplatino/efeitos adversos , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Simulação de Acoplamento Molecular , Avaliação Pré-Clínica de Medicamentos , Perda Auditiva/induzido quimicamente
8.
Planta ; 258(6): 107, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897513

RESUMO

MAIN CONCLUSION: The present investigation profoundly asserted the catalytic potential of plant-based aldo-ketoreductase, postulating its role in polyketide biosynthesis and providing new insights for tailored biosynthesis of vital plant polyketides for therapeutics. Plants hold great potential as a future source of innovative biocatalysts, expanding the possibilities within chemical reactions and generating a variety of benefits. The aldo-keto reductase (AKR) superfamily includes a huge collection of NAD(P)H-dependent oxidoreductases that carry out a variety of redox reactions essential for biosynthesis, detoxification, and intermediary metabolism. The present study involved the isolation, cloning, and purification of a novel aldo-ketoreductase (AvAKR) from the leaves of Aloe vera (Aloe barbadensis Miller) by heterologous gene expression in Escherichia coli based on the unigene sequences of putative ketoreductase and cDNA library screening by oligonucleotide hybridization. The in-silico structural analysis, phylogenetic relationship, and molecular modeling were outranged to approach the novelty of the sequence. Additionally, agroinfiltration of the candidate gene tagged with a green fluorescent protein (GFP) was employed for transient expression in the Nicotiana benthamiana to evaluate the sub-cellular localization of the candidate gene. The AvAKR preferred cytoplasmic localization and shared similarities with the known plant AKRs, keeping the majority of the conserved active-site residues in the AKR superfamily enzymes. The enzyme facilitated the NADPH-dependent reduction of various carbonyl substrates, including benzaldehyde and sugars, proclaiming a broad spectrum range. Our study successfully isolated and characterized a novel aldo-ketoreductase (AvAKR) from Aloe vera, highlighting its versatile NADPH-dependent carbonyl reduction proficiency therewith showcasing its potential as a versatile biocatalyst in diverse redox reactions.


Assuntos
Aldeído Redutase , Aloe , Aldo-Ceto Redutases/genética , Aldeído Redutase/genética , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aloe/genética , Aloe/metabolismo , Filogenia , NADP/genética , Plantas/metabolismo
9.
Turk J Gastroenterol ; 34(12): 1197-1205, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823316

RESUMO

BACKGROUND/AIMS: Gastric cancer is a prevalent malignancy with unfavorable prognosis partially resulting from its high metastasis rate. Clarifying the molecular mechanism of gastric cancer occurrence and progression for improvement of therapeutic efficacy and prognosis is needed. The study tended to delineate the role and regulatory mechanism of aldo-keto reductase 1B10 (AKR1B10) in gastric cancer progression. MATERIALS AND METHODS: The relationship of AKR1B10 expression with survival rate in gastric cancer was analyzed through Kaplan-Meier analysis. The mRNA levels of AKR1B10 and integrin subunit alpha 5 (ITGA5) in gastric cancer tissues and cell lines were measured by real-time quantitative polymerase chain reaction. Protein levels of AKR1B10 and integrin subunit alpha 5 were assayed via western blot. The molecular relationship between AKR1B10 and ITGA5 was analyzed by co-immunoprecipitation assay. Cell viability was assayed through Cell Counting Kit-8, invasion and migration of tumor cells was assessed through wound healing and transwell assays. Transwell assay was utilized to detect invasion. The adhesion of gastric cancer cells was detected using cell adhesion assays. RESULTS: The results unveiled that integrin subunit alpha 5 was upregulated, while AKR1B10 was downregulated in gastric cancer tissues and cells. Overexpressing AKR1B10 hindered gastric cancer cell proliferation, migration, invasion and adhesion. It was striking that we certified the inhibitory effect of AKR1B10 on integrin subunit alpha 5 expression and their (AKR1B10 and ITGA5)) negative relationship via bioinformatics method, real-time quantitative polymerase chain reaction, and co-immunoprecipitation assays. Via rescue experiments, it was concluded that AKR1B10 served as tumor suppressor potentially by ITGA5 expression in gastric cancer. CONCLUSION: Our results indicated that AKR1B10 inhibited migration, invasion, and adhesion of gastric cancer cells via modulation of ITGA5.


Assuntos
Aldo-Ceto Redutases , Integrinas , Neoplasias Gástricas , Humanos , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Aldo-Ceto Redutases/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Gástricas/patologia
10.
Drug Metab Dispos ; 51(12): 1569-1577, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37722844

RESUMO

Enzymes catalyzing the reduction reaction of xenobiotics are mainly members of the aldo-keto reductase (AKR) and short-chain dehydrogenase/reductase (SDR) superfamilies. The intestine, together with the liver, is responsible for first-pass effects and is an organ that determines the bioavailability of orally administered drugs. In this study, we evaluated the mRNA and protein expression levels of 12 AKR isoforms (AKR1A1, AKR1B1, AKR1B10, AKR1B15, AKR1C1, AKR1C2, AKR1C3, AKR1C4, AKR1D1, AKR1E2, AKR7A2, and AKR7A3) and 7 SDR isoforms (CBR1, CBR3, CBR4, DCXR, DHRS4, HSD11B1, and HSD17B12) in each region of the human intestine using next-generation sequencing and data-independent acquisition proteomics. At both the mRNA and protein levels, most AKR isoforms were highly expressed in the upper regions of the intestine, namely the duodenum and jejunum, and then declined toward the rectum. Among the members in the SDR superfamily, CBR1 and DHRS4 were highly expressed in the upper regions, whereas the expression levels of the other isoforms were almost uniform in all regions. Significant positive correlations between mRNA and protein levels were observed in AKR1A1, AKR1B1, AKR1B10, AKR1C3, AKR7A2, AKR7A3, CBR1, and CBR3. The mRNA level of AKR1B10 was highest, followed by AKR7A3 and CBR1, each accounting for more than 10% of the sum of all AKR and SDR levels in the small intestine. This expression profile in the human intestine was greatly different from that in the human liver, where AKR1C isoforms are predominantly expressed. SIGNIFICANCE STATEMENT: In this study comprehensively determined the mRNA and protein expression profiles of aldo-keto reductase (AKR) and short-chain dehydrogenase/reductase isoforms involved in xenobiotic metabolism in the human intestine and found that most of them are highly expressed in the upper region, where AKR1B10, AKR7A3, and CBR1 are predominantly expressed. Since the intestine is significantly involved in the metabolism of orally administered drugs, the information provided here is valuable for pharmacokinetic studies in drug development.


Assuntos
Redutases-Desidrogenases de Cadeia Curta , Humanos , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Isoformas de Proteínas/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Intestinos
11.
Biotechnol Bioeng ; 120(12): 3543-3556, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641876

RESUMO

Aldo-keto reductases (AKRs) are important biocatalysts that can be used to synthesize chiral pharmaceutical alcohols. In this study, the catalytic activity and stereoselectivity of a NADPH-dependent AKR from Kluyveromyces dobzhanskii (KdAKR) toward t-butyl 6-chloro (5S)-hydroxy-3-oxohexanoate ((5S)-CHOH) were improved by mutating its residues in the loop regions around the substrate-binding pocket. And the thermostability of KdAKR was improved by a consensus sequence method targeted on the flexible regions. The best mutant M6 (Y28A/L58I/I63L/G223P/Y296W/W297H) exhibited a 67-fold higher catalytic efficiency compared to the wild-type (WT) KdAKR, and improved R-selectivity toward (5S)-CHOH (dep value from 47.6% to >99.5%). Moreover, M6 exhibited a 6.3-fold increase in half-life (t1/2 ) at 40°C compared to WT. Under the optimal conditions, M6 completely converted 200 g/L (5S)-CHOH to diastereomeric pure t-butyl 6-chloro-(3R, 5S)-dihydroxyhexanoate ((3R, 5S)-CDHH) within 8.0 h, with a space-time yield of 300.7 g/L/day. Our results deepen the understandings of the structure-function relationship of AKRs, providing a certain guidance for the modification of other AKRs.


Assuntos
Caproatos , Kluyveromyces , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/química , Catálise , Aldeído Redutase/genética
12.
Cell Mol Biol (Noisy-le-grand) ; 69(5): 156-162, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571887

RESUMO

Numerous studies have proved that epithelial-mesenchymal transition (EMT) of lung epithelial cells is one of the important causes of radiation-induced pulmonary fibrosis (RIPF). Aldose reductase (AR) is a monomer enzyme in the polyglycolic metabolic pathway and belongs to the aldo-keno reductase protein superfamily. Our previous studies have found that AR as one of the most significantly up-regulated genes was associated with the development of bleomycin-induced PF in rats. It is not clear whether aldose reductase is related to the regulation of radiation-induced EMT and mediates RIPF. AR-knockout mice, wild-type mice and lung epithelial cells were induced by radiation to establish a RIPF animal model and EMT system, to explore whether AR is mediation to RIPF through the EMT pathway. In vivo, AR deficiency significantly alleviated radiation-induced histopathological changes, reduced collagen deposition and inhibited collagen I, matrix metalloproteinase 2 (MMP2) and Twist1 expression. In addition, AR knockout up-regulated E-cadherin expression and up-regulated α-SMA and Vimentin expression. In vitro, AR, collagen I and MMP2 expression were increased in lung epithelial cells after radiation, which was accompanied by Twist1 expression up-regulation and EMT changes evidenced by decreased E-cadherin expression and increased α-SMA and Vimentin expression. Knockdown or inhibition of AR inhibited the expressions of Twist1, MMP2 and collagen I, and reduced cell migration and reversed radiation-induced EMT. These results indicated that aldose reductase may be related to radiation-induced lung epithelial cells EMT, and that inhibition of aldose reductase might be a promising treatment for RIPF.


Assuntos
Fibrose Pulmonar , Camundongos , Ratos , Animais , Fibrose Pulmonar/genética , Fibrose Pulmonar/induzido quimicamente , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Vimentina/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Pulmão/patologia , Colágeno/genética , Colágeno/metabolismo , Caderinas/genética , Caderinas/metabolismo , Transição Epitelial-Mesenquimal/genética
13.
Theriogenology ; 209: 243-250, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37480702

RESUMO

The survival, motility and capacitation of sperm in the female reproductive tract are important prerequisites for fertilization. The uterus is the main location for sperm capacitation. One of the most important physiological functions of the endometrial epithelium is to create a suitable uterine environment under the regulation of ovarian hormones, to ensure sperm capacitation. The composition of uterine fluid directly affects sperm capacitation. Fructose is an important component of semen that supports sperm viability and motility. Aldose reductase, a rate-limiting enzyme in the polyol pathway, metabolizes sorbitol and fructose, thereby supplying cells with necessary energy for functional activities. Existing studies have reported the presence aldose reductase in the endometrium, leading us to hypothesize that its expression in endometrial epithelium might promote sperm capacitation by maintaining the uterine environment. Yet, the mechanism of regulation has not been clarified. In this study, we investigated the expression of aldose reductase in mouse endometrial epithelium and its potential role in sperm capacitation. We initially investigated the periodic characteristics of glucose, fructose and sorbitol in uterine fluid. We then studied the temporal and spatial characteristics of aldose reductase in the endometrial epithelium. Next, we examined the effect of aldose reductase on glucose, fructose and sorbitol in uterine fluid. Finally, we explored the effect of aldose reductase on sperm capacitation and fertilization. The results showed that glucose and fructose content in uterine fluid and the expression of aldose reductase fluctuated periodically during physiological periods. Inhibition of aldose reductase in the endometrial epithelium interfered with sperm capacitation and fertilization by reducing the fructose levels in the uterine fluid. To conclude, the aldose reductase-mediated polyol pathway in endometrial epithelial cells is essential to maintain an appropriate fructose environment in the uterine fluid for sperm capacitation and fertilization.


Assuntos
Doenças Uterinas , Feminino , Masculino , Animais , Camundongos , Aldeído Redutase/genética , Capacitação Espermática , Sêmen , Células Epiteliais , Doenças Uterinas/veterinária , Frutose/farmacologia , Glucose/farmacologia
14.
Microb Biotechnol ; 16(9): 1858-1871, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37449952

RESUMO

Erythritol is produced in yeasts via the reduction of erythrose into erythritol by erythrose reductases (ERs). However, the genes codifying for the ERs involved in this reaction have not been described in any Saccharomyces species yet. In our laboratory, we recently showed that, during alcoholic fermentation, erythritol is differentially produced by Saccharomyces cerevisiae and S. uvarum species, the latter being the largest producer. In this study, by using BLAST analysis and phylogenetic approaches the genes GRE3, GCY1, YPR1, ARA1 and YJR096W were identified as putative ERs in Saccharomyces cerevisiae Then, these genes were knocked out in our S. uvarum strain (BMV58) with higher erythritol biosynthesis compared to control S. cerevisiae wine strain, to evaluate their impact on erythritol synthesis and global metabolism. Among the mutants, the single deletion of GRE3 markedly impacts erythritol production, although ΔYPR1ΔGCY1ΔGRE3 was the combination that most decreased erythritol synthesis. Consistent with the increased production of fermentative by-products involved in redox balance in the Saccharomyces uvarum strain BMV58, erythritol synthesis increases at higher sugar concentrations, hinting it might be a response to osmotic stress. However, the expression of GRE3 in the S. uvarum strain was found to peak just before the start of the stationary phase, being consistent with the observation that erythritol increases at the start of the stationary phase, when there is low sugar in the medium and nitrogen sources are depleted. This suggests that GRE3 plays its primary function to help the yeast cells to maintain the redox balance during the last phases of fermentation.


Assuntos
Eritritol , Saccharomyces , Eritritol/metabolismo , Fermentação , Homeostase , Osmorregulação , Oxirredução , Filogenia , Saccharomyces/genética , Saccharomyces/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Açúcares/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo
15.
DNA Cell Biol ; 42(7): 372-389, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37285280

RESUMO

Infiltrated immune cells are an important constitute of tumor microenvironment, which exert complex effects on gastric cancer (GC) pathogenesis and progression. By using weighted gene co-expression network analysis, integrating the data from The Cancer Genome Atlas-stomach adenocarcinoma and GSE62254, we identify Aldo-Keto Reductase Family 1 Member B (AKR1B1) as a hub gene for immune regulation in GC. Notably, AKR1B1 is associated with higher immune infiltration and worse histologic grade of GC. In addition, AKR1B1 is an independent factor for predicting the survival rate of GC patients. In vitro experiments further demonstrated that AKR1B1-overexpressed THP-1-derived macrophages promoted the proliferation and migration of GC cells. Taken together, AKR1B1 plays an important role in GC progression by regulating immune microenvironment, which could be a biomarker for predicting GC prognosis as well as a potential therapeutic target for GC treatment.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Microambiente Tumoral/genética , Aldeído Redutase/genética
16.
ChemMedChem ; 18(15): e202300222, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37278327

RESUMO

Human aldose reductase, a target for the development of inhibitors for preventing diabetic complications, displays a transient specificity pocket which opens upon binding with specific, potent inhibitors. We investigated the opening mechanism of this pocket by mutating leucine residues involved in the gate keeping mechanism to alanine. Two isostructural inhibitors distinguished only by a single nitro to carboxy group replacement, have a 1000-fold difference in their binding affinity to the wild type. This difference is reduced to 10-fold in the mutated variants as the nitro derivative loses in affinity but conserves binding to the open transient pocket. The affinity of the carboxylate analog is minimally altered but the analog binding preference changes from the closed to open state of the transient pocket. Differences in the solvation properties of ligands and the transient pocket as well as changes from induced fit to conformational selections provide an explanation for the altered behavior of the ligands with respect to their binding to the different variants.


Assuntos
Aldeído Redutase , Inibidores Enzimáticos , Humanos , Modelos Moleculares , Sítios de Ligação , Inibidores Enzimáticos/química , Aldeído Redutase/genética , Ligantes
17.
Sci Rep ; 13(1): 9129, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277427

RESUMO

The unconventional yeast Yarrowia lipolytica produces erythritol as an osmoprotectant to adapt to osmotic stress. In this study, the array of putative erythrose reductases, responsible for the conversion of d-erythrose to erythritol, was analyzed. Single knockout and multiple knockout strains were tested for their ability to produce polyols in osmotic stress conditions. Lack of six of the reductase genes does not affect erythritol significantly, as the production of this polyol is comparable to the control strain. Deletion of eight of the homologous erythrose reductase genes resulted in a 91% decrease in erythritol synthesis, a 53% increase in mannitol synthesis, and an almost 8-fold increase in arabitol synthesis as compared to the control strain. Additionally, the utilization of glycerol was impaired in the media with induced higher osmotic pressure. The results of this research may shed new light on the production of arabitol and mannitol from glycerol by Y. lipolytica and help to develop strategies for further modification in polyol pathways in these microorganisms.


Assuntos
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Aldeído Redutase/genética , Glicerol/metabolismo , Eritritol/metabolismo , Manitol/metabolismo
18.
Cancer Lett ; 567: 216277, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37336288

RESUMO

Glioma is a fatal primary brain tumor. Improved glioma treatment effectiveness depends on a better understanding of its underlying mechanisms. Glioblastoma (GBM), was classified as high-grade glioma with the most lethality and therapeutic resistance. Herein, we reported LINC00978 overexpressed in high-grade gliomas. Down-regulation of LINC00978 in glioblastoma cells inhibited cell proliferation, invasion, migration, and induced apoptosis. In vivo experiments confirmed that the CamK-A siRNA of LINC00978 could effectively inhibit the proliferation of glioblastoma cells. The main pathway and genes regulated by LINC00978 were detected using RNA sequencing to elucidate the molecular mechanism. The results suggest that LINC00978 regulates the expression of genes related to metabolic pathways, including aldo-keto reductase family 1 member B (AKR1B1), which mediates the cytotoxicity of 2-deoxyglucose. LINC00978 positively regulated AKR1B1 expression, and 2-deoxyglucose induced AKR1B1 expression via a LINC00978-dependent mechanism. This research has revealed that LINC00978 promotes the sensitivity of glioblastoma cells to 2DG. LINC00978 is highly expressed in most high-grade glioma patients. Thus, understanding the anticancer mechanism identified in this study may contribute to treating the majority of glioma patients. This study clarified the function and molecular mechanism of LINC00978 in glioblastoma and provided a study basis for LINC00978 to guide the clinical treatment of glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Glioma/genética , Proliferação de Células/genética , Regulação para Baixo , Desoxiglucose , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Aldeído Redutase/genética , Aldeído Redutase/metabolismo
19.
Cell Rep Med ; 4(6): 101056, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37257447

RESUMO

Abnormal polyol metabolism is predominantly associated with diabetes, where excess glucose is converted to sorbitol by aldose reductase (AR). Recently, abnormal polyol metabolism has been implicated in phosphomannomutase 2 congenital disorder of glycosylation (PMM2-CDG) and an AR inhibitor, epalrestat, proposed as a potential therapy. Considering that the PMM2 enzyme is not directly involved in polyol metabolism, the increased polyol production and epalrestat's therapeutic mechanism in PMM2-CDG remained elusive. PMM2-CDG, caused by PMM2 deficiency, presents with depleted GDP-mannose and abnormal glycosylation. Here, we show that, apart from glycosylation abnormalities, PMM2 deficiency affects intracellular glucose flux, resulting in polyol increase. Targeting AR with epalrestat decreases polyols and increases GDP-mannose both in patient-derived fibroblasts and in pmm2 mutant zebrafish. Using tracer studies, we demonstrate that AR inhibition diverts glucose flux away from polyol production toward the synthesis of sugar nucleotides, and ultimately glycosylation. Finally, PMM2-CDG individuals treated with epalrestat show a clinical and biochemical improvement.


Assuntos
Aldeído Redutase , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Glicosilação , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Manose/metabolismo , Metabolômica
20.
J Pak Med Assoc ; 73(5): 978-982, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37218221

RESUMO

Objectives: To investigate the association of polymorphism in rs752010122 in aldose reductase gene with the pathogenesis of diabetic retinopathy, and to determine the association and allelic frequency between the variant and the disease. METHODS: The cross-sectional study was conducted from June 2021 to March 2022 at Centre for Research in Experimental and Applied Medicine (CREAM) Laboratory, Department of Biochemistry and Molecular Biology, Army Medical College, in collaboration with the Armed Forces Institute of Ophthalmology, Rawalpindi, Pakistan, and comprised blood samples from subjects of either gender aged 40-70 years. The samples were divided into group I having diabetic retinopathy patients, group II having diabetics without retinopathy, and group III having healthy controls matched for age and gender. The samples were subjected to molecular analysis. Gene sequence was downloaded from the Human Genome Database and Ensemble. Data was analysed using SPSS 22. RESULTS: Of the 150 subjects, there were 50(33.3%) in each of the 3 groups. Variants of aldose reductase rs752010122 polymorphism were significantly associated with a lower risk of diabetic retinopathy (p<0.05). An odds ratio of 1 was noted for both heterozygous and homozygous genotypes (95% confidence interval: 1). CONCLUSIONS: Aldose reductase was associated with lower risk of the disease.


Assuntos
Aldeído Redutase , Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Humanos , Aldeído Redutase/genética , Estudos Transversais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Retinopatia Diabética/epidemiologia , Retinopatia Diabética/genética , Predisposição Genética para Doença , Genótipo , Polimorfismo Genético , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...