Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 255: 117337, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33436180

RESUMO

Pathogens in the food and environment pose a great threat to human health. To solve this problem, we described a novel route to synthesize antibacterial epsilon-poly-L-lysine (EPL) anchored dicarboxyl cellulose beads. Cellulose beads were prepared via a sol-gel transition method and oxidized by sodium periodate and sodium chlorite to form carboxyl groups. EPL was anchored on the beads using carbodiimide mediated amidation. The structure and morphology of beads were characterized by FTIR, XPS, XRD, SEM, and TGA. After dissolution and regeneration, the crystalline form of cellulose is transformed from cellulose I to cellulose II. The thermal degradation temperature of the beads is 200∼300 °C.The samples displayed excellent antimicrobial activity against Staphylococcus aureus, Alicyclobacillus acidoterrestris and Escherichia coli within 12 h. The beads could be biodegraded in soil after 20 days. The biodegradable beads exhibited great potential in food and environmental applications.


Assuntos
Alicyclobacillus/efeitos dos fármacos , Antibacterianos/farmacologia , Celulose/farmacologia , Escherichia coli/efeitos dos fármacos , Polilisina/química , Staphylococcus aureus/efeitos dos fármacos , Alicyclobacillus/crescimento & desenvolvimento , Antibacterianos/síntese química , Biodegradação Ambiental , Carbodi-Imidas/química , Celulose/análogos & derivados , Cloretos/química , Escherichia coli/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Oxirredução , Ácido Periódico/química , Transição de Fase , Staphylococcus aureus/crescimento & desenvolvimento
2.
Lett Appl Microbiol ; 72(1): 41-52, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32910828

RESUMO

The use of rosemary essential oil (RO) and its combination with nisin (RO+N) in preventing the multiplication of Alicyclobacillus acidoterrestris in orange juice was evaluated. The minimum inhibitory and bactericidal concentrations (MIC and MBC) for RO were both 125 µg ml-1 while RO+N displayed a synergistic effect. The use of RO and RO+N at concentrations of 1, 4 and 8× MIC in orange juice for 96 h was evaluated in terms of their sporicidal effectiveness. With regard to the action against A. acidoterrestris spores, RO at 8× MIC was sporostatic, whereas RO+N at 1× MIC was sporicidal. Morphological changes in the structure of the micro-organism after treatment were also observed by microscopy. Furthermore, flow cytometric analysis showed that most cells were damaged or killed after treatment. In general, the antioxidant activity after addition of RO+N decreased with time. The results demonstrate that using the combination of RO and nisin can prevent the A. acidoterrestris growth in orange juice.


Assuntos
Alicyclobacillus/crescimento & desenvolvimento , Antibacterianos/farmacologia , Sucos de Frutas e Vegetais/microbiologia , Nisina/farmacologia , Óleos Voláteis/farmacologia , Rosmarinus/química , Alicyclobacillus/efeitos dos fármacos , Citrus sinensis
3.
J Agric Food Chem ; 68(15): 4538-4545, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32208687

RESUMO

A novel nucleic acid isothermal amplification method based on saltatory rolling circle amplification (SRCA) for rapid and visual detection of Alicyclobacillus acidoterrestris in apple juice was established. Fourteen A. acidoterrestris strains and 44 non-A. acidoterrestris strains were used to confirm the specificity. The sensitivity of SRCA was 4.5 × 101 CFU/mL by observing the white precipitate with the naked eye, while it was 4.5 × 100 CFU/mL by fluorescence visualization. The detection limit of SRCA in artificially inoculated apple juice was 7.1 × 101 and 7.1 × 100 CFU/mL via visualization of the white precipitate and fluorescence, respectively. Compared with the traditional PCR method, SRCA exhibited at least a 100-fold higher sensitivity and 100-fold lower detection limit. Seventy samples were investigated for A. acidoterrestris contamination, and the results showed 100% sensitivity, 97.01% specificity, and 97.14% accuracy compared with those by the conventional microbiological cultivation method. Overall, this method is a potentially useful tool for visual and rapid detection of A. acidoterrestris.


Assuntos
Alicyclobacillus/genética , Sucos de Frutas e Vegetais/microbiologia , Malus/microbiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Alicyclobacillus/crescimento & desenvolvimento , Alicyclobacillus/isolamento & purificação , Contaminação de Alimentos/análise , Sensibilidade e Especificidade
4.
Int J Food Microbiol ; 305: 108238, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31174101

RESUMO

Bacteria of the genus Alicyclobacillus pose serious quality problems for the juice processing industries that have sought effective alternatives for its control. The present study evaluated the effect of UV-C radiation on the reduction of spores and biofilm formation of Alicyclobacillus spp. on stainless steel and rubber surfaces using industrialized orange juice as a culture medium. Four reference Alicyclobacillus spp. species and different UV-C dosages were investigated. After exposed for 20 min (16.8 kJ/m2) to UV-C, the spores of Alicyclobacillus acidoterrestris, Alicyclobacillus herbarius, and Alicyclobacillus cycloheptanicus decreased drastically more of 4 log CFU/mL, with counts below the detection limit of the method (<1.7 log CFU/mL), while the Alicyclobacillus acidocaldarius spores were more sensitive to UV-C, once this spore reduction was observed within 15 min (12.6 kJ/m2). Morphological changes in the Alicyclobacillus acidoterrestris spores were observed by scanning electron microscopy. A reduction of biofilm formation was observed for all UV-C treatments, and the higher reductions (approximately 2 log CFU/mL) were found for the Alicyclobacillus acidocaldarius species after 30 min (26.2 kJ/m2), on the stainless steel and rubber surfaces. The results suggest that UV-C can be used to reduce the biofilm formation and could be a promising alternative for controlling Alicyclobacillus spp. spores in industrialized orange juice.


Assuntos
Alicyclobacillus/efeitos da radiação , Biofilmes/efeitos da radiação , Citrus sinensis/química , Irradiação de Alimentos/métodos , Sucos de Frutas e Vegetais/microbiologia , Esporos Bacterianos/efeitos da radiação , Alicyclobacillus/classificação , Alicyclobacillus/crescimento & desenvolvimento , Alicyclobacillus/isolamento & purificação , Manipulação de Alimentos/instrumentação , Microbiologia de Alimentos , Esporos Bacterianos/crescimento & desenvolvimento , Aço Inoxidável/análise , Raios Ultravioleta
5.
Food Res Int ; 115: 580-588, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30599982

RESUMO

Inhibition of spore germination or sterilization after induction of spore germination would effectively control low pH food spoilage caused by Alicyclobacillus acidoterrestris spores. However, the characteristics and mechanisms of A. acidoterrestris spore germination in low ambient pH remains poorly understood. In this study, the germination rate of A. acidoterrestris spores at different ambient pH conditions was determined, and subsequently the proteomic profiles of A. acidoterrestris in spore germination were analysed by label-free quantification, in which the specific metabolic pathways involved were identified and key functional proteins were screened and validated using RT-qPCR (real time quantitative PCR). The suitable ambient pH value for the spore germination of A. acidoterrestris ranged from 3.0 to 5.0 with the optimum pH of 4.0. According to the LC-ESI-MS/MS (liquid chromatography electrospray ionization tandem mass spectrometry) analysis, 98 proteins of geminated spores of A. acidoterrestris incubated for 2 h at pH 3.0 were changed significantly in comparison to non-germinated spores, the expression of 20 proteins were up-regulated and that of 78 proteins down-regulated respectively. Those differential expressed proteins were mainly involved in cell wall hydrolysis, cell morphological changes, protein synthesis and folding, perception of external stimuli and signal transduction etc., and we observed that germination receptor D (GerD), cell wall hydrolase, transpeptidase, peptidase S1 and two-component regulatory system phoR were significantly up-regulated, but hydrolase NlpC/P60, peptidoglycan glycosyltransferase, spore coat proteins CotX, CotJB and the Lrp/AsnC (leucine-responsive regulatory protein/asparagine synthase C products) protein were significantly down-regulated in the experiment, which implied the important roles of identified proteins during the spore germination. Furthermore, the pathway analysis showed the possible involvement of differentially expressed proteins in the ß-lactam resistance, ribosome, biosynthesis of secondary metabolites, pyruvate metabolism, two-component system and other metabolic pathways, which indicated that synthesis and hydrolysis of cell wall, intracellular substance synthesis, energy generation and signal transduction were likely associated with the initiation of spore germination and restoration of vegetative growth. In conclusion, the quantitative proteomic landscape of A. acidoterrestris spores could provide the theoretic and experimental evidences for the hazard control of A. acidoterrestris spores in the thermal pasteurization process of acidic beverages industry.


Assuntos
Alicyclobacillus/efeitos dos fármacos , Alicyclobacillus/crescimento & desenvolvimento , Microbiologia de Alimentos , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento , Alicyclobacillus/genética , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/isolamento & purificação , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Redes e Vias Metabólicas , Viabilidade Microbiana , Pasteurização , Proteômica/métodos , Esporos Bacterianos/genética , Espectrometria de Massas em Tandem
6.
Food Microbiol ; 74: 40-49, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29706336

RESUMO

This study was undertaken to provide quantitative tools for predicting the behavior of the spoilage bacterium Alicyclobacillus acidoterrestris ATCC 49025 in fruit drinks. In the first part of the study, a growth/no growth interface model was developed, predicting the probability of growth as a function of temperature and pH. For this purpose, the growth ability of A. acidoterrestris was studied at different combinations of temperature (15-45 °C) and pH (2.02-5.05). The minimum pH and temperature where growth was observed was 2.52 (at 35 and 45 °C) and 25 °C (at pH ≥ 3.32), respectively. Then a logistic polynomial regression model was fitted to the binary data (0: no growth, 1: growth) and, based on the concordance index (98.8%) and the Hosmer-Lemeshow statistic (6.226, P = 0.622), a satisfactory goodness of fit was demonstrated. In the second part of the study, the effects of temperature (25-55 °C) and pH (3.03-5.53) on A. acidoterrestris growth rate were investigated and quantitatively described using the cardinal temperature model with inflection and the cardinal pH model, respectively. The estimated values for the cardinal parameters Tmin, Tmax, Topt and pHmin, pHmax, pHopt were 18.11, 55.68, 48.60 °C and 2.93, 5.90, 4.22, respectively. The developed models were validated against growth data of A. acidoterrestris obtained in eight commercial pasteurized fruit drinks. The validation results showed a good performance of both models. In all cases where the growth/no growth interface model predicted a probability lower than 0.5, A. acidoterrestris was, indeed, not able to grow in the tested fruit drinks; similarly, when the model predicted a probability above 0.9, growth was observed in all cases. A good agreement was also observed between growth predicted by the kinetic model and the observed kinetics of A. acidoterrestris in fruit drinks at both static and dynamic temperature conditions.


Assuntos
Alicyclobacillus/crescimento & desenvolvimento , Microbiologia de Alimentos , Armazenamento de Alimentos , Sucos de Frutas e Vegetais/microbiologia , Concentração de Íons de Hidrogênio , Temperatura , Bebidas/microbiologia , Frutas/microbiologia , Cinética , Modelos Logísticos , Modelos Biológicos , Esporos Bacterianos/crescimento & desenvolvimento
7.
Int J Food Microbiol ; 263: 17-25, 2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29024903

RESUMO

Spores are the most resistant form of microbial cells, thus difficult to inactivate. The pathogenic or food spoilage effects of certain spore-forming microorganisms have been the primary basis of sterilization and pasteurization processes. Thermal sterilization is the most common method to inactivate spores present on medical equipment and foods. High pressure processing (HPP) is an emerging and commercial non-thermal food pasteurization technique. Although previous studies demonstrated the effectiveness of thermal and non-thermal spore inactivation, the in-depth mechanisms of spore inactivation are as yet unclear. Live and dead forms of two food spoilage bacteria, a mould and a yeast were examined using scanning electron microscopy before and after the inactivation treatment. Alicyclobacillus acidoterrestris and Geobacillus stearothermophilus bacteria are indicators of acidic foods pasteurization and sterilization processes, respectively. Neosartorya fischeri is a phyto-pathogenic mould attacking fruits. Saccharomyces cerevisiae is a yeast with various applications for winemaking, brewing, baking and the production of biofuel from crops (e.g. sugar cane). Spores of the four microbial species were thermally inactivated. Spores of S. cerevisiae were observed in the ascus and free form after thermal and HPP treatments. Different forms of damage and cell destruction were observed for each microbial spore. Thermal treatment inactivated bacterial spores of A. acidoterrestris and G. stearothermophilus by attacking the inner core of the spore. The heat first altered the membrane permeability allowing the release of intracellular components. Subsequently, hydration of spores, physicochemical modifications of proteins, flattening and formation of indentations occurred, with subsequent spore death. Regarding N. fischeri, thermal inactivation caused cell destruction and leakage of intracellular components. Both thermal and HPP treatments of S. cerevisiae free spores attacked the inner membrane, altering its permeability, and allowing in final stages the transfer of intracellular components to the outside. The spore destruction caused by thermal treatment was more severe than HPP, as HPP had less effect on the spore core. All injured spores have undergone irreversible volume and shape changes. While some of the leakage of spore contents is visible around the deformed but fully shaped spore, other spores exhibited large indentations and were completely deformed, apparently without any contents inside. This current study contributed to the understanding of spore inactivation by thermal and non-thermal processes.


Assuntos
Alicyclobacillus/crescimento & desenvolvimento , Fungos/crescimento & desenvolvimento , Geobacillus stearothermophilus/crescimento & desenvolvimento , Saccharomyces cerevisiae/crescimento & desenvolvimento , Esporos Bacterianos/ultraestrutura , Esporos Fúngicos/ultraestrutura , Alicyclobacillus/ultraestrutura , Frutas/microbiologia , Fungos/ultraestrutura , Geobacillus stearothermophilus/ultraestrutura , Temperatura Alta , Viabilidade Microbiana , Microscopia Eletrônica de Varredura , Pasteurização , Saccharomyces cerevisiae/ultraestrutura , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Fúngicos/crescimento & desenvolvimento
8.
Acta Biochim Pol ; 64(2): 301-305, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28426027

RESUMO

The presence of Alicyclobacillus acidoterrestris, a thermoacidophilic and spore-forming bacterium, in pasteurized acidic juices poses a serious problem for the processing industry. Therefore, the use of other more effective techniques, such as high hydrostatic pressure (HHP) and supercritical carbon dioxide (SCCD), is considered for preserving juices in order to inactivate these bacteria, while reducing the loss of nutrients and sensory quality of juices. On the other hand, HHP and SCCD when combined with a moderately elevated temperature can induce germination of bacterial spores, making them more vulnerable to inactivation. The spore germination can be also induced by nutrients, such as L-alanine or a mixture of asparagine, glucose, fructose and potassium ions (AGFK). The aim of this work was to determine whether applying activating agents: HHP, SCCD and nutrient germinants (L-alanine and the AGFK mixture), could influence the number of spores which start to germinate and how this affects the proteins involved in the spore germination. SDS-PAGE was used to resolve proteins isolated from the A. acidoterrestris spores. The results that were obtained indicate that the germination of A. acidoterrestris spores treated with HHP, SCCD and nutrient germinants reflect the number of spores which start to germinate. The SDS-PAGE data indicated changes in the level of selected proteins occurring when subjected to the germination activating factors as well as noticeable differences in those proteins' molecular weights.


Assuntos
Alicyclobacillus/genética , Microbiologia de Alimentos , Esporos Bacterianos/genética , Alanina/metabolismo , Alicyclobacillus/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Eletroforese em Gel de Poliacrilamida , Sucos de Frutas e Vegetais/microbiologia , Temperatura Alta , Esporos Bacterianos/crescimento & desenvolvimento
9.
Int J Food Microbiol ; 246: 80-84, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28213319

RESUMO

Spores of Alicyclobacillus acidoterrestris, a spoilage bacterium, cause problems for the apple juice industry because they are resistant to thermal treatment. Here, we examined the sporicidal effect of an ohmic heating (OH) system with five sequential electric fields and compared it with that of conventional heating. Apple juice product (50kg) inoculated with A. acidoterrestris spores were subjected to OH (electric field strength=26.7V/cm; frequency=25kHz) at 85-100°C for 30-90s. The effect of conventional heating was also examined under these conditions. OH treatment at 100°C for 30s resulted in total inactivation of the inoculum, with no recovery of viable cells (initial population=4.8-4.9logCFU/ml), whereas 3.6-4.9logCFU/ml of the spores survived conventional heating. OH did not alter the quality (°Brix, color, and pH) of commercial apple juice (p>0.05). These results suggest that the OH system is superior to conventional heating for rapid sterilization (30s) of apple juice to assure microbiological quality in the absence of chemical additives.


Assuntos
Alicyclobacillus/crescimento & desenvolvimento , Sucos de Frutas e Vegetais/microbiologia , Temperatura Alta , Malus/microbiologia , Pasteurização/métodos , Esporos Bacterianos/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Cor , Eletricidade , Concentração de Íons de Hidrogênio
10.
Food Sci Technol Int ; 23(2): 166-173, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27672082

RESUMO

Alicyclobacillus acidoterrestris is one of the most spoilage-causing bacteria in fruit juices. In this paper, controlling A. acidoterrestris in apple juice by bacteriocin RC20975 was described. Twenty-one strains of A. acidoterrestris were used to investigate the activity spectrum of bacteriocin RC20975 in apple juice with the result that 16 strains were sensitive . The ratio of activity in apple juice to the activity in laboratory medium was 42%. The reduction of antimicrobial activity in apple juice might be due to problems related to its interaction with food components. Adsorption of bacteriocin RC20975 to A. acidoterrestris cells varied according to the strains and the testing conditions (pH and temperatures). In an acid environment (pH 3 and pH 5), the adsorption was higher than that of the neutral environment. Dynamic model of killing bacteria was built under the condition of different temperatures with the addition of bacteriocin. Electron microscopy examination of vegetative cells revealed substantial cell damage and bacterial lysis after bacteriocin treatment. Although the endospores could not be killed, the addition of bacteriocin RC20975 contributed to the reduction of the thermal resistance of A. acidoterrestris spores in apple juice. In sum, bacteriocin RC20975 was proved to have a good effect on killing A. acidoterrestris in apple juice.


Assuntos
Alicyclobacillus/efeitos dos fármacos , Bacteriocinas/farmacologia , Bebidas/microbiologia , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Sucos de Frutas e Vegetais/microbiologia , Malus/microbiologia , Alicyclobacillus/crescimento & desenvolvimento , Anti-Infecciosos/farmacologia , Bacteriocinas/isolamento & purificação , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Viabilidade Microbiana/efeitos dos fármacos , Esporos Bacterianos/efeitos dos fármacos , Temperatura
11.
J Food Prot ; 79(2): 294-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26818991

RESUMO

The enhanced thermal tolerance and survival responses of Escherichia coli O157:H7 in acid and acidified foods is a major safety concern for the production of low-pH products, including beverages. Little is known about this phenomenon when using UV light treatments. This study was conducted to evaluate the effects of strain (E. coli O157:H7 strains C7927, ATCC 35150, ATCC 43895, and ATCC 43889 and E. coli ATCC 25922) and physiological state (control-unadapted, acid adapted, and acid shocked) on the UV tolerance of E. coli in apple juice treated under conditions stipulated in current U.S. Food and Drug Administration regulations. A greater than 5-log reduction of E. coli was obtained under all tested conditions. A significant effect of strain (P < 0.05) was observed, but the physiological state did not influence pathogen inactivation (P ≥ 0.05). The UV sensitivity of three spoilage microorganisms (Aspergillus niger, Penicillium commune, and Alicyclobacillus acidoterrestris) was also determined at UV doses of 0 to 98 mJ/cm(2). Alicyclobacillus was the most UV sensitive, followed by Penicillium and Aspergillus. Because of the nonsignificant differences in UV sensitivity of E. coli in different physiological states, the use of an unadapted inoculum would be adequate to conduct challenge studies with the commercial UV unit used in this study at a UV dose of 14 mJ/cm(2). The high UV tolerance of spoilage microorganisms supports the need to use a hurdle approach (e.g., coupling of refrigeration, preservatives, and/or other technologies) to extend the shelf life of UV-treated beverages.


Assuntos
Alicyclobacillus/efeitos da radiação , Aspergillus niger/efeitos da radiação , Bebidas/microbiologia , Escherichia coli O157/efeitos da radiação , Malus/microbiologia , Penicillium/efeitos da radiação , Ácidos/metabolismo , Alicyclobacillus/crescimento & desenvolvimento , Aspergillus niger/crescimento & desenvolvimento , Bebidas/economia , Escherichia coli O157/metabolismo , Escherichia coli O157/fisiologia , Contaminação de Alimentos/análise , Irradiação de Alimentos , Malus/química , Penicillium/crescimento & desenvolvimento , Raios Ultravioleta , Estados Unidos
12.
J Ind Microbiol Biotechnol ; 43(1): 13-23, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26542284

RESUMO

Alicyclobacillus acidocaldarius, a thermoacidophilic bacterium, has a repertoire of thermo- and acid-stable enzymes that deconstruct lignocellulosic compounds. The work presented here describes the ability of A. acidocaldarius to reduce the concentration of the phenolic compounds: phenol, ferulic acid, ρ-coumaric acid and sinapinic acid during growth conditions. The extent and rate of the removal of these compounds were significantly increased by the presence of micro-molar copper concentrations, suggesting activity by copper oxidases that have been identified in the genome of A. acidocaldarius. Substrate removal kinetics was first order for phenol, ferulic acid, ρ-coumaric acid and sinapinic acid in the presence of 50 µM copper sulfate. In addition, laccase enzyme assays of cellular protein fractions suggested significant activity on a lignin analog between the temperatures of 45 and 90 °C. This work shows the potential for A. acidocaldarius to degrade phenolic compounds, demonstrating potential relevance to biofuel production and other industrial processes.


Assuntos
Alicyclobacillus/metabolismo , Lignina/metabolismo , Fenóis/metabolismo , Alicyclobacillus/enzimologia , Alicyclobacillus/crescimento & desenvolvimento , Biocombustíveis , Sulfato de Cobre/farmacologia , Ácidos Cumáricos/metabolismo , Cinética , Lacase/metabolismo , Lignina/química , Oxirredutases/metabolismo , Fenol/metabolismo , Temperatura
13.
J Agric Food Chem ; 64(2): 497-504, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26653108

RESUMO

A polyclonal rabbit antibody-based sandwich ELISA for the rapid and specific detection of spores of Alicyclobacillus acidoterrestris was established. The reactivity of the antisera with spores was confirmed by immunofluorescence. For a thorough evaluation of the ELISA, 61 strains and isolates of Alicyclobacillus spp. were characterized regarding their guaiacol production ability and genetic variability. The ELISA was highly sensitive, the detection limits were isolate-dependent and ranged from 2.1 × 10(3) - 3.8 × 10(4) spores/mL, except for one isolate, for which a slightly lower sensitivity (5 × 10(5) spores/mL) was observed. Inclusivity tests revealed that the ELISA reacts with all tested A. acidoterrestris, while no cross-reactions with spores of 30 strains of Bacillus spp. and Clostridium spp. were observed. Further on, the assay applicability was tested with orange, apple (clear and unfiltered), tomato, pink grapefruit, pear, and white grape juices. Juices were inoculated with 1 or 10 spores/mL of A. acidoterrestris. After enrichment for 48 h, the established ELISA enabled the reliable and reproducible detection of contaminated samples. The enriched samples could be applied directly to the assay, underlining the robustness of the developed ELISA method.


Assuntos
Alicyclobacillus/crescimento & desenvolvimento , Ensaio de Imunoadsorção Enzimática/métodos , Contaminação de Alimentos/análise , Sucos de Frutas e Vegetais/análise , Esporos Bacterianos/química , Alicyclobacillus/química , Animais , Contagem de Colônia Microbiana , Coelhos , Esporos Bacterianos/crescimento & desenvolvimento
14.
Int J Food Microbiol ; 214: 145-150, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26301383

RESUMO

Alicyclobacillus acidoterrestris can survive the pasteurization process, multiply in pasteurized juices and produce guaiacol which causes medicinal or antiseptic off-flavors. Chemical preservatives have the potential to suppress outgrowth of surviving populations during subsequent storage of fruit juices. In the present study, the individual effects of potassium sorbate, sodium benzoate, potassium metabisulfite, dehydroacetic acid, ethyl 4-hydroxybenzoate, cinnamic acid and ε-polylysine on A. acidoterrestris growth and guaiacol production were firstly evaluated in a laboratory medium. Of the seven preservatives investigated, only dehydroacetic acid, cinnamic acid and ε-polylysine were effective both in controlling growth and guaiacol formation by A. acidoterrestris. Then, these three antimicrobials were applied to apple juice. Through the addition of 270 mg/L dehydroacetic acid, 108 mg/L cinnamic acid or 100 mg/L ε-polylysine, the A. acidoterrestris counts were reduced by 3.43, 3.17 and 4.78 log colony forming unit(CFU)/mL, respectively, and no guaiacol was detected after 14 days of storage. Sensory evaluation revealed that the addition of these three preservatives did not affect the organoleptic properties of the apple juice. Results obtained in this paper could be very useful for a better control of A. acidoterrestris-related spoilage in the fruit juice/beverage industry.


Assuntos
Alicyclobacillus/crescimento & desenvolvimento , Antibacterianos/farmacologia , Conservantes de Alimentos/farmacologia , Sucos de Frutas e Vegetais/microbiologia , Guaiacol/análise , Alicyclobacillus/efeitos dos fármacos , Microbiologia de Alimentos/métodos , Conservação de Alimentos/métodos , Malus/microbiologia , Paladar
15.
Int J Food Microbiol ; 200: 52-6, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25676243

RESUMO

The present study examined the growth characteristics of Alicyclobacillus acidoterrestris DSM 3922 vegetative cells and spores after inoculation into apple, pomegranate and pomegranate-apple blend juices (10, 20, 40 and 80%, v/v). Also, the effect of sporulation medium was tested using mineral [Bacillus acidoterrestris agar (BATA) and Bacillus acidocaldarius agar (BAA)] and non-mineral containing media [potato dextrose agar (PDA) and malt extract agar (MEA)]. The juice samples were inoculated separately with approximately 10(5)CFU/mL cells or spores from different sporulation media and then incubated at 37°C for 336 h. The number of cells decreased significantly with increasing pomegranate juice concentration in the blend juices and storage time (p<0.001). Based on the results, 3.17, 3.53, and 3.72 log cell reductions were observed in 40%, 80% blend and pomegranate juices, respectively while the cell counts attained approximately 7.17 log CFU/mL in apple juice after 336 h. On the other hand, the cell growth was inhibited for a certain time, and then the numbers started to increase after 72 and 144 h in 10% and 20% blend juices, respectively. After 336 h, total population among spores produced on PDA, BATA, BAA and MEA indicated 1.49, 1.65, 1.67, and 1.28 log reductions in pomegranate juice; and 1.51, 1.38, 1.40 and 1.16 log reductions in 80% blend juice, respectively. The inhibitory effects of 10%, 20% and 40% blend juices varied depending on the sporulation media used. The results obtained in this study suggested that pomegranate and pomegranate-apple blend juices could inhibit the growth of A. acidoterrestris DSM 3922 vegetative cells and spores.


Assuntos
Alicyclobacillus/crescimento & desenvolvimento , Bebidas/microbiologia , Microbiologia de Alimentos , Lythraceae/química , Malus/química , Alicyclobacillus/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento
16.
Food Microbiol ; 46: 299-306, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25475299

RESUMO

This paper reports on the inactivation of spores of 5 strains of Alicyclobacillus acidoterrestris under different stress conditions (acidic and alkaline pH, high temperature, addition of lysozyme, hydrogen peroxide and p-coumaric acid). The research was divided into two different steps; first, each stress was studied alone, thus pointing out a partial uncoupling between spore inactivation and DPA release, as H2O2 reduced spore level below the detection but it did not cause the release of DPA. A partial correlation was found only for acidic and alkaline pH. 2nd step was focused on the combination of pH, temperature and H2O2 through a factorial design; experiments were performed on both fresh and 4 month-old spores and pinpointed a different trend for DPA release as a function of spore age.


Assuntos
Alicyclobacillus/metabolismo , Ácidos Picolínicos/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Alicyclobacillus/crescimento & desenvolvimento , Alicyclobacillus/fisiologia , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Viabilidade Microbiana , Esporos Bacterianos/metabolismo , Esporos Bacterianos/fisiologia , Estresse Fisiológico , Temperatura
17.
Food Microbiol ; 46: 541-552, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25475327

RESUMO

In this work, all publicly-accessible published findings on Alicyclobacillus acidoterrestris heat resistance in fruit beverages as affected by temperature and pH were compiled. Then, study characteristics (protocols, fruit and variety, °Brix, pH, temperature, heating medium, culture medium, inactivation method, strains, etc.) were extracted from the primary studies, and some of them incorporated to a meta-analysis mixed-effects linear model based on the basic Bigelow equation describing the heat resistance parameters of this bacterium. The model estimated mean D* values (time needed for one log reduction at a temperature of 95 °C and a pH of 3.5) of Alicyclobacillus in beverages of different fruits, two different concentration types, with and without bacteriocins, and with and without clarification. The zT (temperature change needed to cause one log reduction in D-values) estimated by the meta-analysis model were compared to those ('observed' zT values) reported in the primary studies, and in all cases they were within the confidence intervals of the model. The model was capable of predicting the heat resistance parameters of Alicyclobacillus in fruit beverages beyond the types available in the meta-analytical data. It is expected that the compilation of the thermal resistance of Alicyclobacillus in fruit beverages, carried out in this study, will be of utility to food quality managers in the determination or validation of the lethality of their current heat treatment processes.


Assuntos
Alicyclobacillus/crescimento & desenvolvimento , Bebidas/microbiologia , Frutas/microbiologia , Alicyclobacillus/química , Bebidas/análise , Manipulação de Alimentos , Frutas/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Modelos Biológicos
18.
J Food Sci ; 78(11): M1772-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24138211

RESUMO

Alicyclobacillus acidoterrestris is a gram-positive aerobic bacterium. This bacterium resists pasteurization temperatures and low pH and is usually involved in the spoilage of juices and acidic drinks. The objective of this study was to evaluate the antibacterial activities of nisin and the species Piper (Piperaceae) on A. acidoterrestris. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined by the broth microdilution method. The species Piper aduncum had the lowest MIC and an MBC of 15.6 µg/mL and was selected for fractionation. Six fractions were obtained, and the dichloromethane fraction (F.3) had the lowest MIC/MBC (7.81 µg/mL). The dichloromethane fraction was again fractionized, and a spectral analysis revealed that the compound was prenylated chromene (F.3.7). The checkerboard method demonstrated that the crude extract (CE) of P. aduncum plus nisin had a synergistic interaction (fractional inhibitory concentration [FIC] = 0.24). The bactericidal activity of (F.3.7) was confirmed by the time-kill curve. P. aduncum, nisin, and prenylated chromene exhibited strong antibacterial activity against the spores and vegetative cells of A. acidoterrestris. The results of this study suggest that extracts of the genus Piper may provide an alternative to the use of thermal processing for controlling A. spoilage.


Assuntos
Alicyclobacillus/efeitos dos fármacos , Antibacterianos/farmacologia , Contaminação de Alimentos/prevenção & controle , Nisina/farmacologia , Piperaceae/química , Extratos Vegetais/farmacologia , Alicyclobacillus/crescimento & desenvolvimento , Animais , Antibacterianos/análise , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Conservação de Alimentos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Nisina/análise , Pasteurização , Extratos Vegetais/análise , Temperatura , Células Vero
19.
J Food Prot ; 76(9): 1575-81, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23992502

RESUMO

Lactobacillus rhamnosus CICC 20975 produces a 6,502-Da bacteriocin, named bacteriocin RC 20975, active against Alicyclobacillus acidoterrestris, Lactobacillus acidophilus, Lactobacillus brevis, Bacillus subtilis, and Listeria innocua. This bacteriocin is not quite heat stable but is effective after refrigerated storage and freeze-thaw cycles. Bacteriocin RC 20975 was added at a concentration of 256 AU/ml to the endospores of A. acidoterrestris DSM 3922; no viable cells were detected after 24 h. The primary mode of action of bacteriocin RC 20975 seems to be the formation of pores, as indicated by K⁺ efflux from metabolically active cells of A. acidoterrestris. However, efflux of larger cytoplasmic content was not observed within the first 30 min after bacteriocin RC 20975 treatment. In addition, adsorption of bacteriocin RC 20975 to target cells at different temperatures and pH levels and in the presence of surfactants was studied. Finally, the effect that different media, media components, and addition of vitamins to the media had on bacteriocin RC 20975 production was also studied.


Assuntos
Alicyclobacillus/efeitos dos fármacos , Bacteriocinas/isolamento & purificação , Bacteriocinas/farmacologia , Membrana Celular/efeitos dos fármacos , Conservação de Alimentos/métodos , Lacticaseibacillus rhamnosus/metabolismo , Alicyclobacillus/crescimento & desenvolvimento , Bacteriocinas/biossíntese , Meios de Cultura , Microbiologia de Alimentos
20.
Biocontrol Sci ; 18(2): 95-100, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23796641

RESUMO

Spoilage of fruit juices by a thermoacidophilic spore-forming bacterium, Alicyclobacillus acidoterrestris, is a big problem for fruit juice industries worldwide. We have developed a novel chromogenic selective agar medium (EAATSM) for the isolation and enumeration of A. acidoterrestris. A. acidoterrestris strains appeared as blue colonies on the EAATSM. Other Alicyclobacillus strains appeared as white colonies or were inhibited. A study comparing EAATSM and YSG agar was carried out using artificially contaminated samples of 50 fruit juice products. The correlation coefficient between EAATSM and YSG was 0.991.


Assuntos
Alicyclobacillus/crescimento & desenvolvimento , Bebidas/microbiologia , Contagem de Colônia Microbiana/métodos , Meios de Cultura/química , Microbiologia de Alimentos/métodos , Alicyclobacillus/isolamento & purificação , Alicyclobacillus/metabolismo , Compostos Cromogênicos/metabolismo , Meios de Cultura/metabolismo , Contaminação de Alimentos/análise , Microbiologia de Alimentos/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...