Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
BMC Genom Data ; 25(1): 6, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218810

RESUMO

BACKGROUND: Hemerocallis citrina Baroni is a traditional vegetable crop widely cultivated in eastern Asia for its high edible, medicinal, and ornamental value. The phenomenon of codon usage bias (CUB) is prevalent in various genomes and provides excellent clues for gaining insight into organism evolution and phylogeny. Comprehensive analysis of the CUB of mitochondrial (mt) genes can provide rich genetic information for improving the expression efficiency of exogenous genes and optimizing molecular-assisted breeding programmes in H. citrina. RESULTS: Here, the CUB patterns in the mt genome of H. citrina were systematically analyzed, and the possible factors shaping CUB were further evaluated. Composition analysis of codons revealed that the overall GC (GCall) and GC at the third codon position (GC3) contents of mt genes were lower than 50%, presenting a preference for A/T-rich nucleotides and A/T-ending codons in H. citrina. The high values of the effective number of codons (ENC) are indicative of fairly weak CUB. Significant correlations of ENC with the GC3 and codon counts were observed, suggesting that not only compositional constraints but also gene length contributed greatly to CUB. Combined ENC-plot, neutrality plot, and Parity rule 2 (PR2)-plot analyses augmented the inference that the CUB patterns of the H. citrina mitogenome can be attributed to multiple factors. Natural selection, mutation pressure, and other factors might play a major role in shaping the CUB of mt genes, although natural selection is the decisive factor. Moreover, we identified a total of 29 high-frequency codons and 22 optimal codons, which exhibited a consistent preference for ending in A/T. Subsequent relative synonymous codon usage (RSCU)-based cluster and mt protein coding gene (PCG)-based phylogenetic analyses suggested that H. citrina is close to Asparagus officinalis, Chlorophytum comosum, Allium cepa, and Allium fistulosum in evolutionary terms, reflecting a certain correlation between CUB and evolutionary relationships. CONCLUSIONS: There is weak CUB in the H. citrina mitogenome that is subject to the combined effects of multiple factors, especially natural selection. H. citrina was found to be closely related to Asparagus officinalis, Chlorophytum comosum, Allium cepa, and Allium fistulosum in terms of their evolutionary relationships as well as the CUB patterns of their mitogenomes. Our findings provide a fundamental reference for further studies on genetic modification and phylogenetic evolution in H. citrina.


Assuntos
Allium , Genoma Mitocondrial , Hemerocallis , Uso do Códon/genética , Filogenia , Genoma Mitocondrial/genética , Hemerocallis/genética , Códon/genética , Allium/genética
2.
PLoS One ; 18(11): e0294457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37983242

RESUMO

Allium ulleungense (AU) and A. microdictyon (AM) are valuable medicinal and edible vegetables, referred to as mountain garlic in Korea. The identification of AU, AM and a neighboring species A. ochotense (AO) is difficult because of their morphological similarities. We collected samples from three species and 46 cultivated collections to understand the genetic diversity of these valuable Allium species. Among them, we sequenced six collections, including three species and three cultivating collections to obtain data from the plastid genome (plastome) and nuclear 45S ribosomal DNA (nrDNA) for super-barcoding. The AM and AO showed around 60 single nucleotide polymorphisms (SNPs) and 39 Insertion/Deletion (InDels) in the plastome but no variations in the nrDNA sequences. Conversely, the AU and AM showed more than 170 SNPs and 80 InDels in the plastomes, and 20 SNPs and 1 InDel were found in the 45S nrDNA sequences. Among the three cultivating collections, one TB collection was determined to be the AU type in both plastome and nrDNA sequences. However, the other two collections, JB and SA, showed the AM type plastome but were heterozygous in the 45S nrDNA sequences, indicating both AU and AM types (putative AM x AU hybrid). Ten molecular markers were developed based on sequence variations to identify these three species and assess their genetic diversity. A total of 49 collections were genotyped using the ten developed markers and classified into five groups: 14 AU, 22 AM, 1 AO, 3 putative AM x AU hybrids, and 9 putative AU x AM hybrid collections. Super-barcoding with plastomes and nrDNAs revealed the genetic diversity of the three Allium species and putative hybrids between species. The newly developed markers will facilitate species and hybrid identification, thereby benefiting marker-assisted molecular breeding of Allium species.


Assuntos
Allium , Genomas de Plastídeos , Filogenia , Allium/genética , Sequência de Bases , DNA Ribossômico/genética
3.
Nat Genet ; 55(11): 1976-1986, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37932434

RESUMO

Allium crop breeding remains severely hindered due to the lack of high-quality reference genomes. Here we report high-quality chromosome-level genome assemblies for three key Allium crops (Welsh onion, garlic and onion), which are 11.17 Gb, 15.52 Gb and 15.78 Gb in size with the highest recorded contig N50 of 507.27 Mb, 109.82 Mb and 81.66 Mb, respectively. Beyond revealing the genome evolutionary process of Allium species, our pathogen infection experiments and comparative metabolomic and genomic analyses showed that genes encoding enzymes involved in the metabolic pathway of Allium-specific flavor compounds may have evolved from an ancient uncharacterized plant defense system widely existing in many plant lineages but extensively boosted in alliums. Using in situ hybridization and spatial RNA sequencing, we obtained an overview of cell-type categorization and gene expression changes associated with spongy mesophyll cell expansion during onion bulb formation, thus indicating the functional roles of bulb formation genes.


Assuntos
Allium , Allium/genética , Melhoramento Vegetal , Cebolas/genética , Genoma , Cromossomos
4.
Environ Mol Mutagen ; 64(5): 264-281, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37235708

RESUMO

The comet assay is a sensitive method for the evaluation of DNA damages and DNA repair capacity at single-cell level. Allium cepa is a well-established plant model for toxicological studies. The aim of this scoping review was to investigate the recent application of the comet assay in Allium cepa root cells to assess the genotoxicity. To explore the literature a search was performed selecting articles published between January 2015 and February 2023 from Web of Science, PubMed, and Scopus databases using the combined search terms "Comet assay" and "Allium cepa". All the original articles that applied the comet assay to Allium cepa root cells were included. Of the 334 records initially found, 79 articles were identified as meeting the inclusion criteria. Some studies reported results for two or more toxicants. In these cases, the data for each toxicant were treated separately. Thus, the number of analyzed toxicants (such as chemicals, new materials, and environmental matrices) was higher than the number of selected papers and reached 90. The current use of the Allium-comet assay seems to be directed towards two types of approach: the direct study of the genotoxicity of compounds, mainly biocides (20% of analyzed compounds) and nano- and microparticles (17%), and assessing a treatment's ability to reduce or eliminate genotoxicity of known genotoxicants (19%). Although the genotoxicity identified by the Allium-comet assay is only one piece of a larger puzzle, this method could be considered a useful tool for screening the genotoxic potential of compounds released into the environment.


Assuntos
Allium , Cebolas , Cebolas/genética , Raízes de Plantas/genética , Ensaio Cometa/métodos , Dano ao DNA , Allium/genética , Aberrações Cromossômicas
5.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108228

RESUMO

Meiotic crossovers/chiasmata are not randomly distributed and strictly controlled. The mechanisms behind crossover (CO) patterning remain largely unknown. In Allium cepa, as in the vast majority of plants and animals, COs predominantly occur in the distal 2/3 of the chromosome arm, while in Allium fistulosum they are strictly localized in the proximal region. We investigated the factors that may contribute to the pattern of COs in A. cepa, A. fistulosum and their F1 diploid (2n = 2x = 8C + 8F) and F1 triploid (2n = 3x = 16F + 8C) hybrids. The genome structure of F1 hybrids was confirmed using genomic in situ hybridization (GISH). The analysis of bivalents in the pollen mother cells (PMCs) of the F1 triploid hybrid showed a significant shift in the localization of COs to the distal and interstitial regions. In F1 diploid hybrid, the COs localization was predominantly the same as that of the A. cepa parent. We found no differences in the assembly and disassembly of ASY1 and ZYP1 in PMCs between A. cepa and A. fistulosum, while F1 diploid hybrid showed a delay in chromosome pairing and a partial absence of synapsis in paired chromosomes. Immunolabeling of MLH1 (class I COs) and MUS81 (class II COs) proteins showed a significant difference in the class I/II CO ratio between A. fistulosum (50%:50%) and A. cepa (73%:27%). The MLH1:MUS81 ratio at the homeologous synapsis of F1 diploid hybrid (70%:30%) was the most similar to that of the A. cepa parent. F1 triploid hybrid at the A. fistulosum homologous synapsis showed a significant increase in MLH1:MUS81 ratio (60%:40%) compared to the A. fistulosum parent. The results suggest possible genetic control of CO localization. Other factors affecting the distribution of COs are discussed.


Assuntos
Allium , Allium/genética , Triploidia , Cebolas/genética , Hibridização In Situ , Cromossomos
6.
BMC Plant Biol ; 23(1): 70, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726056

RESUMO

The subgenus Rhizirideum in the genus Allium consists of 38 species worldwide and forms five sections (A. sect. Rhizomatosa, A. sect. Tenuissima, A. sect. Rhizirideum, A. sect. Eduardia, and A. sect. Caespitosoprason), A. sect. Caespitosoprason being merged into A. sect. Rhizomatosa recently. Previous studies on this subgenus mainly focused on separate sections. To investigate the inter-section and inter-subgenera phylogenetic relationships and adaptive evolution of A. subg. Rhizirideum, we selected thirteen representative species, which cover five sections of this subgenus and can represent four typical phenotypes of it. We conducted the comparative plastome analysis with our thirteen plastomes. And phylogenetic inferences with CDSs and complete sequences of plastomes of our thirteen species and another fifty-four related species were also performed. As a result, the A. subg. Rhizirideum plastomes were relatively conservative in structure, IR/SC borders, codon usage, and repeat sequence. In phylogenetic results, the inter-subgenera relationships among A. subg. Rhizirideum and other genus Allium subgenera were generally similar to the previous reports. In contrast, the inter-section relationships within our subgenus A. subg. Rhizirideum were newly resolved in this study. A. sect. Rhizomatosa and A. sect. Tenuissima were sister branches, which were then clustered with A. sect. Rhizirideum and A. sect. Eduardia successively. However, Allium Polyrhizum Turcz. ex Regel, type species of A. sect. Caespitosoprason, was resolved as the basal taxon of A. subg. Rhizirideum. Allium siphonanthum J. M. Xu was also found in clade A. subg. Cyathophora instead of clade A. subg. Rhizirideum. The selective pressure analysis was also conducted, and most protein-coding genes were under purifying selection. At the same time, just one gene, ycf2, was found under positive selection, and another three genes (rbcL, ycf1a, ycf1b) presented relaxed selection, which were all involved in the photosynthesis. The low temperature, dry climate, and high altitude of the extreme habitats where A. subg. Rhizirideum species grow might impose intense natural selection forces on their plastome genes for photosynthesis. In summary, our research provides new insights into the phylogeny and adaptive evolution of A. subg. Rhizirideum. Moreover, we suggest that the positions of the A. subg. Rhizirideum species A. polyrhizum and A. siphonanthum should be reconsidered.


Assuntos
Allium , Amaryllidaceae , Genomas de Plastídeos , Allium/genética , Amaryllidaceae/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico , Evolução Molecular
7.
J Plant Physiol ; 281: 153925, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36657231

RESUMO

Himalayan onion (Allium wallichii) is a perennial bulbous herb with high ornamental value and has long been used as traditional medicines in Nepal and China because of the anti-cancer and anti-microbial activities. Wild Allium wallichii features different flower colors, including purple, pink, deep purple and white. However, little is known about the molecular mechanisms of color formation during A. wallichii flower development stages due to the lack of optimal reference genes. Quantitative real-time polymerase chain reaction (qRT-PCR) is a powerful tool for quantifying expression levels of target genes. The accuracy of qRT-PCR analyses is largely dependent on the identification of stable reference genes for data normalization. The stability of reference gene expression may vary with plant species and environmental conditions. The aim of this study was to select stable reference genes for qRT-PCR analyses of target genes at flower development stages, in different flower colors and organs for Allium wallichii. The CDSs of eight potential reference genes (TUB2, ACT1, GAPC, EF1α, UBQ, UBC, SAND and CYP1) were cloned and their stability was evaluated by four programs (Delta Ct, geNorm, NormFinder and BestKeeper), and the results were further integrated into a comprehensive rank by RefFinder. The results showed that TUB2 and GAPC were the most stable two reference genes at different developmental stages of purple- and white-flower genotypes and across all samples. UBC and TUB2 expression was stable at different developmental stages of purple flowers. CYP1 and TUB2 were stably expressed at different developmental stages of white flowers. GAPC and SAND showed the highest rankings in different flower colors. TUB2 and EF1α performed the best in different tissues. ACT1 was the least stable gene in all tested samples. Moreover, DIHYDROFLAVONOL-4-REDUCTASE (DFR) gene that involved in anthocyanin synthesis was used to evaluate the effectiveness of the selected candidates. This study identified the first set of suitable reference genes for qRT-PCR analyses, which will lay the foundation for gene function study in A. wallichii.


Assuntos
Allium , Reação em Cadeia da Polimerase em Tempo Real/métodos , Allium/genética , Flores/genética , Genes de Plantas/genética , China , Padrões de Referência , Perfilação da Expressão Gênica
8.
Ann Bot ; 131(1): 109-122, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34932785

RESUMO

BACKGROUND AND AIMS: Genome size is an important plant trait, with substantial interspecies variation. The mechanisms and selective pressures underlying genome size evolution are important topics in evolutionary biology. There is considerable diversity in Allium from the Qinghai-Tibetan Plateau, where genome size variation and related evolutionary mechanisms are poorly understood. METHODS: We reconstructed the Allium phylogeny using DNA sequences from 71 species. We also estimated genome sizes of 62 species, and determined chromosome numbers in 65 species. We examined the phylogenetic signal associated with genome size variation, and tested how well the data fit different evolutionary models. Correlations between genome size variations and seed mass, altitude and 19 bioclimatic factors were determined. KEY RESULTS: Allium genome sizes differed substantially between species and within diploids, triploids, tetraploids, hexaploids and octaploids. Size per monoploid genome (1Cx) tended to decrease with increasing ploidy levels. Allium polyploids tended to grow at a higher altitude than diploids. The phylogenetic tree was divided into three evolutionary branches. The genomes in Clade I were mostly close to the ancestral genome (18.781 pg) while those in Clades II and III tended to expand and contract, respectively. A weak phylogenetic signal was detected for Allium genome size. Furthermore, significant positive correlations were detected between genome size and seed mass, as well as between genome size and altitude. However, genome size was not correlated with 19 bioclimatic variables. CONCLUSIONS: Allium genome size shows gradual evolution, followed by subsequent adaptive radiation. The three well-supported Allium clades are consistent with previous studies. The evolutionary patterns in different Allium clades revealed genome contraction, expansion and relative stasis. The Allium species in Clade II may follow adaptive radiation. The genome contraction in Clade III may be due to DNA loss after polyploidization. Allium genome size might be influenced by selective pressure due to the conditions on the Qinghai-Tibetan Plateau (low temperature, high UV irradiation and abundant phosphate in the soil).


Assuntos
Allium , Allium/genética , Filogenia , Tibet , Poliploidia , Ploidias , Evolução Molecular
9.
Sci Rep ; 12(1): 21676, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522492

RESUMO

Allium mongolicum Regel is a wild and sandy vegetable with unique flavours. In this study, a complete chloroplast (cp) genome of A. mongolicum was obtained (Genbank accession number: OM630416), and contained 153,609 base pairs with the GC ratio as 36.8%. 130 genes were annotated including 84 protein-coding genes, 38 tRNA, and 8 rRNA genes. The large single-copy (LSC) region was 82,644 bp, and a small single-copy (SSC) region was 18,049 bp, which were separated by two inverted repeats (IRs, including IRa and IRb) of 26,458 bp. Comparative genome analyses of 55 Allium species suggested that genomic structure of genus Allium was conserved, and LSC and SSC regions were outstanding with high variability. Among them, more divergent loci were in the SSC region covering ycf1-rrn4.5 and ndhF-ccsA. Phylogenetic analysis on cp genomes of 55 Allium determined that all members were clustered into 13 clades, and A. mongolicum had close relationship with A. senescens. Corresponding analyses of four protein-coding genes (ycf1, ndhF, rpl32, and ccsA) in aforementioned divergent loci confirmed that ycf1 was finally chosen as the candidate gene for species identification and evolutionary classification of genus Allium. These data provide valuable genetic resources for future research on Allium.


Assuntos
Allium , Genoma de Cloroplastos , Filogenia , Allium/genética , Cloroplastos/genética , Genômica
10.
Nat Commun ; 13(1): 6690, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335132

RESUMO

The Allium genus is cultivated globally as vegetables, condiments, or medicinal plants and is characterized by large genomes and strong pungency. However, the genome evolution and genomic basis underlying their unique flavor formation remain poorly understood. Herein, we report an 11.27-Gb chromosome-scale genome assembly for bunching onion (A. fistulosum). The uneven bursts of long-terminal repeats contribute to diversity in genome constituents, and dispersed duplication events largely account for gene expansion in Allium genomes. The extensive duplication and differentiation of alliinase and lachrymatory factor synthase manifest as important evolutionary events during flavor formation in Allium crops. Furthermore, differential selective preference for flavor-related genes likely lead to the variations in isoalliin content in bunching onions. Moreover, we reveal that China is the origin and domestication center for bunching onions. Our findings provide insights into Allium genome evolution, flavor formation and domestication history and enable future genome-assisted breeding of important traits in these crops.


Assuntos
Allium , Allium/genética , Cebolas/genética , Cromossomos de Plantas/genética , Melhoramento Vegetal , Evolução Molecular
11.
Genes (Basel) ; 13(7)2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35886061

RESUMO

With the development of molecular sequencing approaches, many taxonomic and phylogenetic problems of the genus Allium L. have been solved; however, the phylogenetic relationships of some subgenera or sections, such as section Bromatorrhiza, remain unresolved, which has greatly impeded our full understanding of the species relationships among the major clades of Allium. In this study, the complete chloroplast (cp) genomes of nine species in the Allium sect. Bromatorrhiza were determined using the Illumina paired-end sequencing, the NOVOPlasty de novo assembly strategy, and the PGA annotation method. The results showed that the cp genome exhibited high conservation and revealed a typical circular tetrad structure. Among the sect. Bromatorrhiza species, the gene content, SSRs, codon usage, and RNA editing site were similar. The genome structure and IR regions' fluctuation were investigated while genes, CDSs, and non-coding regions were extracted for phylogeny reconstruction. Evolutionary rates (Ka/Ks values) were calculated, and positive selection analysis was further performed using the branch-site model. Five hypervariable regions were identified as candidate molecular markers for species authentication. A clear relationship among the sect. Bromatorrhiza species were detected based on concatenated genes and CDSs, respectively, which suggested that sect. Bromatorrhiza is monophyly. In addition, there were three genes with higher Ka/Ks values (rps2, ycf1, and ycf2), and four genes (rpoC2, atpF, atpI, and rpl14) were further revealed to own positive selected sites. These results provide new insights into the plastome component, phylogeny, and evolution of Allium species.


Assuntos
Allium , Amaryllidaceae , Genoma de Cloroplastos , Allium/genética , Amaryllidaceae/genética , Evolução Molecular , Filogenia
12.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806016

RESUMO

Chinese chives is a popular herb vegetable and medicine in Asian countries. Southwest China is one of the centers of origin, and the mountainous areas in this region are rich in wild germplasm. In this study, we collected four samples of germplasm from different altitudes: a land race of cultivated Chinese chives (Allium tuberosum), wide-leaf chives and extra-wide-leaf chives (Allium hookeri), and ovoid-leaf chives (Allium funckiaefolium). Leaf metabolites were detected and compared between A. tuberosum and A. hookeri. A total of 158 differentially accumulated metabolites (DAM) were identified by Gas Chromatography-Mass Spectrometry (GC-MS) and Liquid Chromatography-Mass Spectrometry (LC-MS), among which there was a wide range of garlic odor compounds, free amino acids, and sugars. A. hookeri contains a higher content of fructose, garlic odor compounds, and amino acids than A. tuberosum, which is supported by the higher expression level of biosynthetic genes revealed by transcriptome analysis. A. hookeri accumulates the same garlic odor compound precursors that A. tuberosum does (mainly methiin and alliin). We isolated full-length gene sequences of phytochelatin synthase (PCS), γ-glutamyltranspeptidases (GGT), flavin-containing monooxygenase (FMO), and alliinase (ALN). These sequences showed closer relations in phylogenetic analysis between A. hookeri and A. tuberosum (with sequence identities ranging from 86% to 90%) than with Allium cepa or Allium sativum (which had a lower sequence identity ranging from 76% to 88%). Among these assayed genes, ALN, the critical gene controlling the conversion of odorless precursors into odor compounds, was undetected in leaves, bulbs, and roots of A. tuberosum, which could account for its weaker garlic smell. Moreover, we identified a distinct FMO1 gene in extra-wide-leaf A. hookeri that is due to a CDS-deletion and frameshift mutation. These results above reveal the molecular and metabolomic basis of impressive strong odor in wild Chinese chives.


Assuntos
Allium , Cebolinha-Francesa , Alho , Allium/química , Allium/genética , Cebolinha-Francesa/genética , Alho/genética , Alho/metabolismo , Espectrometria de Massas/métodos , Odorantes , Filogenia
13.
Ann Bot ; 129(7): 869-911, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35696666

RESUMO

BACKGROUND AND AIMS: Macro- and micromorphology of seeds are diagnostic characteristics of importance in delimiting taxa in Allium (Amaryllidaceae). However, there is no consensus on the phylogenetic significance of testa cell characteristics and whether they reflect the different evolutionary levels recognized in Allium. METHODS: Seeds of 95 species (98 samples) representing 14 subgenera and 58 sections of Allium were examined using scanning electron microscopy (SEM) for such traits as periclinal wall surface area of ten testa cells, distance between testa cells (macromorphology), testa cell shapes, and arrangement and structure of anticlinal and periclinal walls (micromorphology). The data matrix was subjected to cladistic analysis. The produced phylogenetic tree was examined against the molecular tree obtained from publically available ITS sequences. KEY RESULTS: The periclinal wall surface area of ten testa cells and the distance between them, examined for the first time, were found useful for delimitation of species in Allium. Based on seed macro- and micromorphology, we present a taxonomic key and a hypothetical reconstruction of the migration routes during the early stages of evolution of Allium. CONCLUSIONS: The ancestors of Allium originated in an area bounded by the Caucasus, Central Asia and Iran. The seed testa morphology-based evolutionary state of a species is determined by two parameters: the shape of the periclinal walls and curvature of the anticlinal walls.


Assuntos
Allium , Amaryllidaceae , Allium/genética , Microscopia Eletrônica de Varredura , Filogenia , Sementes/anatomia & histologia
14.
Acta Virol ; 66(1): 11-17, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35380861

RESUMO

This work aims to study amalgavirus diversity in different species of allium collected around the world. Transcriptomic data of 19 Sequence Read Archive runs available at GenBank, as well as RNA-seq data generated from onion tissue from fields in Brazil were used to assemble nine allium cepa amalgavirus 1 (AcAV-1) and nine allium cepa amalgavirus 2 (AcAV-2) genomes from different species of allium worldwide. Sequence demarcation tool analyses of RdRp amino acid sequences revealed identities above 99% within each species, except for an isolate of AcAV-1 from Allium escalonicum from China. This work contributes to the understanding of the genetic diversity of amalgaviruses that infect the genus Allium. Keywords: amalgaviruses; Allium transcriptomic datasets; Allium sp.


Assuntos
Allium , Vírus de RNA , Allium/genética , China , Perfilação da Expressão Gênica , Transcriptoma
15.
Methods Mol Biol ; 2287: 171-184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270029

RESUMO

Leek (A. ampeloprasum L.) is an economically important vegetable crop from Alliaceae family. It is a non-bulb forming biennial species grown for its pseudostem and leaves. Leek is a tetraploid with one of the largest genomes known among cultivated plant species. It has enormous economic importance all around the world for many purposes such as vegetable, medicinal herb, and food seasoning. Production and consumption of leek is in rise all around the world and breeders are trying to develop new F1 hybrid varieties with desired agronomical traits. Although self-compatible, leek shows high tendency toward outcrossing and display severe inbreeding depression when selfed with its own pollen. Therefore, inbred development through classical breeding techniques is very difficult in this crop. Traditional leek genotypes are highly heterozygous, open pollinated varieties. There is a high demand for F1 hybrid varieties with resistance to biotic and abiotic stresses and high-quality plants. Our group is trying to incorporate gynogenesis-based doubled haploid technology to leek improvement programs. Over the years, many experiments were carried out to determine the gynogenic potential of donor leek genotypes of different genetic backgrounds in different induction media. Here, we report a protocol allowing production of green gynogenic leek plants via single step culture of unopened flower buds. Ploidy levels of gynogenic regenerants are determined by flow cytometry analysis. A majority of the gynogenic leek regenerants produced survived well in vivo.


Assuntos
Allium/crescimento & desenvolvimento , Allium/genética , Cromossomos de Plantas , Gametogênese Vegetal , Melhoramento Vegetal/métodos , Flores/genética , Flores/crescimento & desenvolvimento , Haploidia , Técnicas In Vitro , Fenótipo , Pólen/genética , Pólen/crescimento & desenvolvimento
16.
BMC Genomics ; 22(1): 481, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174821

RESUMO

BACKGROUND: Genomic information for Allium cepa L. is limited as it is heterozygous and its genome is very large. To elucidate potential SNP markers obtained by NGS, we used a complete set of A. fistulosum L.-A. cepa monosomic addition lines (MALs) and doubled haploids (DHs). These were the parental lines of an A. cepa mapping population for transcriptome-based SNP genotyping. RESULTS: We mapped the transcriptome sequence reads from a series of A. fistulosum-A. cepa MALs onto the unigene sequence of the doubled haploid shallot A. cepa Aggregatum group (DHA) and compared the MAL genotype call for parental bunching onion and shallot transcriptome mapping data. We identified SNP sites with at least four reads on 25,462 unigenes. They were anchored on eight A. cepa chromosomes. A single SNP site was identified on 3,278 unigenes and multiple SNPs were identified on 22,184 unigenes. The chromosome marker information was made public via the web database Allium TDB ( http://alliumtdb.kazusa.or.jp/ ). To apply transcriptome based genotyping approach for genetic mapping, we gathered RNA sequence data from 96 lines of a DHA × doubled haploid bulb onion A. cepa common onion group (DHC) mapping population. After selecting co-dominant SNP sites, 16,872 SNPs were identified in 5,339 unigenes. Of these, at least two SNPs with identical genotypes were found in 1,435 unigenes. We developed a linkage map using genotype information from these unigenes. All unigene markers mapped onto the eight chromosomes and graphical genotyping was conducted based on the unigene order information. Another 2,963 unigenes were allocated onto the eight chromosomes. To confirm the accuracy of this transcriptome-based genetic linkage map, conventional PCR-based markers were used for linkage analysis. All SNP - and PCR-based markers were mapped onto the expected linkage groups and no inconsistency was found among these chromosomal locations. CONCLUSIONS: Effective transcriptome analysis with unique Allium resources successfully associated numerous chromosome markers with unigene information and a high-density A. cepa linkage map. The information on these unigene markers is valuable in genome sequencing and useful trait detection in Allium.


Assuntos
Allium , Cebolas , Allium/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Cebolas/genética , Polimorfismo de Nucleotídeo Único , Transcriptoma
17.
Sci Rep ; 11(1): 768, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436989

RESUMO

Allium is one of the well-known genera of the Amaryllidaceae family, which contains over 780 species. Onions, garlic, leeks, and shallots are the most important species of this genus. Allium hirtifolium (shallot) is a rich source of proteins, carbohydrates, lipids, amino acids, and bioactive compounds such as organic sulfur compounds with an expansive range of biological activities and medicinal attributes. To identify the putative compounds and genes involved in the organic sulfur pathway, we applied GC-MS and RNA-seq techniques for the bulb, stem, and flower tissues of A. hirtifolium. The essential oil analysis revealed the maximum amount of sulfur compounds in stem against flower and bulb tissues. Transcriptome profiling showed 6155, 6494, and 4259 DEGs for bulb vs. flower, bulb vs. stem, and flower vs. stem, respectively. Overall, more genes were identified as being up-regulated rather than down-regulated in flower tissue compared to the stem and bulb tissues. Our findings in accordance with other results from different papers, suggest that carbohydrates are vital to bulb formation and development because a high number of identified DEGs (586 genes) were mapped to carbohydrate metabolism. This study has detected the genes in the organic sulfur pathway and indicated that the alliinase gene shows a high variability among different tissues. In general, this study formed a useful genomic resource data to explore tissue-specific sulfur pathway in A. hirtifolium, which is helpful for functional breeding.


Assuntos
Allium/metabolismo , Liases de Carbono-Enxofre/metabolismo , Perfilação da Expressão Gênica/métodos , Compostos Fitoquímicos/análise , Enxofre/metabolismo , Allium/genética , Flores/genética , Flores/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Fitoquímicos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , RNA-Seq/métodos
18.
Biomed Res Int ; 2020: 8542797, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32626767

RESUMO

The section Pallasia is one of the components of the genus Allium subgenus Allium (Amaryllidaceae), and species relationship in this section is still not resolved very well, which hinders further evolutionary and adaptive studies. Here, the complete chloroplast genomes of five sect. Pallasia species were reported, and a comparative analysis was performed with other three related Allium species. The genome size of the eight species ranged from 151,672 bp to 153,339 bp in length, GC content changed from 36.7% to 36.8%, and 130 genes (except Allium pallasii), 37 tRNA, and 8 rRNA were identified in each genome. By analyzing the IR/LSC and IR/SSC boundary, A. pallasii exhibited differences compared with other seven species. Phylogenetic analysis achieved high supports in each branch, seven of the eight Allium species cluster into a group, and A. pallasii exhibit a close relationship with A. obliquum. Higher pairwise Ka/Ks ratios were found in A. schoenoprasoides compared to A. caeruleum and A. macrostemon while a lower value of Ka/Ks ratios was detected between A. caeruleum and A. macrostemon. This study will be a great contribution to the future phylogenetic and adaptive research in Allium.


Assuntos
Allium/classificação , Allium/genética , DNA de Cloroplastos/genética , Genoma de Cloroplastos/genética , Composição de Bases/genética , Evolução Molecular , Filogenia , Análise de Sequência de DNA
19.
Z Naturforsch C J Biosci ; 75(11-12): 451-457, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-32706756

RESUMO

Nectaroscordum siculum ssp. bulgaricum (Janka) Stearn (Allium siculum subsp. dioscoridis (Sm.) K. Richt.) is a traditional culinary spice from South-East Europe. Studies of N. siculum have focused mainly on the botanical and taxonomic characteristics of this species and there is no data available in the scientific literature about its metabolite profile. Thus, the aim of the current study was metabolite profiling of four wild populations of N. siculum grown in Bulgaria by gas chromatography coupled to mass spectrometry (GC-MS) and subsequent principal component analysis (PCA) of the data obtained. The identified primary metabolites (carbohydrates, amino acids, organic acids and lipids) are initial compounds for the biosynthesis of different plant secondary metabolites, such as polyphenols and flavour compounds with valuable biological activities for humans. The health benefits of the phenolic acids identified in this study have been a prerequisite for the implementation of N. siculum in different food systems in order to increase their quality and biological value.


Assuntos
Allium/química , Carboidratos/química , Metaboloma/genética , Extratos Vegetais/química , Allium/genética , Bulgária , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Extratos Vegetais/genética , Análise de Componente Principal
20.
Ann Bot ; 125(7): 1039-1055, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32239179

RESUMO

BACKGROUND AND AIMS: The genus Allium L., one of the largest monocotyledonous genera and one that includes many economically important crops with nutritional and medicinal value, has been the focus of classification or phylogeny studies for centuries. Recent studies suggested that the genus can be divided into 15 subgenera and 72 sections, which were further classified into three evolutionary lineages. However, the phylogenetic relationships reconstructed by one or two loci showed weaker support, especially for the third evolutionary lineage, which might not show the species relationships very clearly and could hinder further adaptive and evolutionary study. METHODS: In this study, a total of 39 complete chloroplast genomes of Allium (covering 12 Allium subgenera) were collected, and combining these with 125 species of plastomes from 19 other families of monocots, we reconstructed the phylogeny of the genus Allium, estimated the origin and divergence time of the three evolutionary lineages and investigated the adaptive evolution in this genus and related families. RESULTS: Our phylogenetic analysis confirmed the monophyly and three evolutionary lineages of Allium, while new species relationships were detected within the third evolutionary lineage. The divergence time of the three evolutionary lineages was estimated to be in the early Eocene to the middle Miocene, and numerous positive selected genes (PSGs) and PSGs with high average Ka/Ks values were found in Allium species. CONCLUSIONS: Our results detected a well-supported phylogenetic relationship of Allium. The PSGs and PSGs with high Ka/Ks values, as well as diversified morphologies, complicated chromosome characteristics and unique reproductive modes may play important roles in the adaptation and evolution of Allium species. This is the first study that conducted phylogenetic and evolutionary analyses on the genus Allium combined with the plastome and morphological and cytological data. We hope that this study can contribute to further analysis of Allium for other researchers.


Assuntos
Allium/genética , Amaryllidaceae , Genoma de Cloroplastos , Evolução Molecular , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...