Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Nature ; 612(7941): 764-770, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477536

RESUMO

The ocean-atmosphere exchange of CO2 largely depends on the balance between marine microbial photosynthesis and respiration. Despite vast taxonomic and metabolic diversity among marine planktonic bacteria and archaea (prokaryoplankton)1-3, their respiration usually is measured in bulk and treated as a 'black box' in global biogeochemical models4; this limits the mechanistic understanding of the global carbon cycle. Here, using a technology for integrated phenotype analyses and genomic sequencing of individual microbial cells, we show that cell-specific respiration rates differ by more than 1,000× among prokaryoplankton genera. The majority of respiration was found to be performed by minority members of prokaryoplankton (including the Roseobacter cluster), whereas cells of the most prevalent lineages (including Pelagibacter and SAR86) had extremely low respiration rates. The decoupling of respiration rates from abundance among lineages, elevated counts of proteorhodopsin transcripts in Pelagibacter and SAR86 cells and elevated respiration of SAR86 at night indicate that proteorhodopsin-based phototrophy3,5-7 probably constitutes an important source of energy to prokaryoplankton and may increase growth efficiency. These findings suggest that the dependence of prokaryoplankton on respiration and remineralization of phytoplankton-derived organic carbon into CO2 for its energy demands and growth may be lower than commonly assumed and variable among lineages.


Assuntos
Organismos Aquáticos , Archaea , Bactérias , Ciclo do Carbono , Respiração Celular , Plâncton , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Alphaproteobacteria/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Plâncton/classificação , Plâncton/genética , Plâncton/crescimento & desenvolvimento , Plâncton/metabolismo , Água do Mar/microbiologia , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/metabolismo , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Respiração Celular/fisiologia , Fotossíntese
2.
Sci Rep ; 12(1): 2064, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136122

RESUMO

Microbial community metabolism and functionality play a key role modulating global biogeochemical processes. However, the metabolic activities and contribution of actively growing prokaryotes to ecosystem energy fluxes remain underexplored. Here we describe the temporal and spatial dynamics of active prokaryotes in the different water masses of the Mediterranean Sea using a combination of bromodeoxyuridine labelling and 16S rRNA gene Illumina sequencing. Bulk and actively dividing prokaryotic communities were drastically different and depth stratified. Alteromonadales were rare in bulk communities (contributing 0.1% on average) but dominated the actively dividing community throughout the overall water column (28% on average). Moreover, temporal variability of actively dividing Alteromonadales oligotypes was evinced. SAR86, Actinomarinales and Rhodobacterales contributed on average 3-3.4% each to the bulk and 11, 8.4 and 8.5% to the actively dividing communities in the epipelagic zone, respectively. SAR11 and Nitrosopumilales contributed less to the actively dividing than to the bulk communities during all the study period. Noticeably, the large contribution of these two taxa to the total prokaryotic communities (23% SAR11 and 26% Nitrosopumilales), especially in the meso- and bathypelagic zones, results in important contributions to actively dividing communities (11% SAR11 and 12% Nitrosopumilales). The intense temporal and spatial variability of actively dividing communities revealed in this study strengthen the view of a highly dynamic deep ocean. Our results suggest that some rare or low abundant phylotypes from surface layers down to the deep sea can disproportionally contribute to the activity of the prokaryotic communities, exhibiting a more dynamic response to environmental changes than other abundant phylotypes, emphasizing the role they might have in community metabolism and biogeochemical processes.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Archaea/crescimento & desenvolvimento , Gammaproteobacteria/crescimento & desenvolvimento , Microbiota/genética , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Archaea/classificação , Archaea/genética , Bromodesoxiuridina/química , Meio Ambiente , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Mar Mediterrâneo , Microbiota/fisiologia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
3.
mBio ; 12(5): e0234621, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34544272

RESUMO

Members of the Rhizobiales are polarly growing bacteria that lack homologs of the canonical Rod complex. To investigate the mechanisms underlying polar cell wall synthesis, we systematically probed the function of cell wall synthesis enzymes in the plant pathogen Agrobacterium tumefaciens. The development of fluorescent d-amino acid dipeptide (FDAAD) probes, which are incorporated into peptidoglycan by penicillin-binding proteins in A. tumefaciens, enabled us to monitor changes in growth patterns in the mutants. Use of these fluorescent cell wall probes and peptidoglycan compositional analysis demonstrate that a single class A penicillin-binding protein is essential for polar peptidoglycan synthesis. Furthermore, we find evidence of an additional mode of cell wall synthesis that requires ld-transpeptidase activity. Genetic analysis and cell wall targeting antibiotics reveal that the mechanism of unipolar growth is conserved in Sinorhizobium and Brucella. This work provides insights into unipolar peptidoglycan biosynthesis employed by the Rhizobiales during cell elongation. IMPORTANCE While the structure and function of the bacterial cell wall are well conserved, the mechanisms responsible for cell wall biosynthesis during elongation are variable. It is increasingly clear that rod-shaped bacteria use a diverse array of growth strategies with distinct spatial zones of cell wall biosynthesis, including lateral elongation, unipolar growth, bipolar elongation, and medial elongation. Yet the vast majority of our understanding regarding bacterial elongation is derived from model organisms exhibiting lateral elongation. Here, we explore the role of penicillin-binding proteins in unipolar elongation of Agrobacterium tumefaciens and related bacteria within the Rhizobiales. Our findings suggest that penicillin-binding protein 1a, along with a subset of ld-transpeptidases, drives unipolar growth. Thus, these enzymes may serve as attractive targets for biocontrol of pathogenic Rhizobiales.


Assuntos
Alphaproteobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/biossíntese , Alphaproteobacteria/química , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Parede Celular/química , Parede Celular/genética , Parede Celular/metabolismo , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética
4.
Microbiologyopen ; 10(4): e1231, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34459542

RESUMO

Marine biofouling imposes serious environmental and economic impacts on marine applications, especially in the shipping industry. To combat biofouling, protective coatings are applied on vessel hulls which are divided into two major groups: biocidal and non-toxic fouling release. The current study aimed to explore the effect of coating type on microbial biofilm community profiles to better understand the differences between the communities developed on fouling control biocidal antifouling and biocidal-free coatings. Biocidal (Intersmooth® 7460HS SPC), fouling release (Intersleek® 900), and inert surfaces were deployed in the marine environment for 4 months, and the biofilms that developed on these surfaces were investigated using Illumina NGS sequencing, targeting the prokaryotic 16S rRNA gene. The results confirmed differences in the community profiles between coating types. The biocidal coating supported communities dominated by Alphaproteobacteria (Loktanella, Sphingorhabdus, Erythrobacter) and Bacteroidetes (Gilvibacter), while other taxa, such as Portibacter and Sva0996 marine group, proliferated on the fouling-release surface. Knowledge of these marine biofilm components on fouling control coatings will serve as a guide for future investigations of marine microfouling as well as informing the coatings industry of potential microbial targets for robust coating formulations.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Bacteroidetes/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Desinfetantes/farmacologia , Alphaproteobacteria/efeitos dos fármacos , Alphaproteobacteria/genética , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/genética , Biofilmes/efeitos dos fármacos , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/efeitos dos fármacos , Água do Mar/microbiologia
5.
mBio ; 12(3): e0057421, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34154402

RESUMO

"Candidatus Midichloria mitochondrii" is a Gram-negative bacterium that lives in strict intracellular symbiosis with the hard tick Ixodes ricinus, forming one of the most intriguing endosymbiosis described to date. The bacterium is capable of durably colonizing the host mitochondria, a peculiar tropism that makes "Ca. Midichloria mitochondrii" a very interesting tool to study the physiology of these cellular organelles. The interaction between the symbiont and the organelle has, however, been difficult to characterize. A parallelism with the predatory bacterium Bdellovibrio bacteriovorus has been drawn, suggesting the hypothesis that "Ca. Midichloria mitochondrii" could prey on mitochondria and consume them to multiply. We studied the life cycle of the bacterium within the host oocytes using a multidisciplinary approach, including electron microscopy, molecular biology, statistics, and systems biology. Our results were not coherent with a predatory-like behavior by "Ca. Midichloria mitochondrii" leading us to propose a novel hypothesis for its life cycle. Based on our results, we here present a novel model called the "mitochondrion-to-mitochondrion hypothesis." Under this model, the bacterium would be able to move from mitochondrion to mitochondrion, possibly within a mitochondrial network. We show that this model presents a good fit with quantitative electron microscopy data. IMPORTANCE Our results suggest that "Candidatus Midichloria mitochondrii," the intramitochondrial bacterium, does not invade mitochondria like predatory bacteria do but instead moves from mitochondrion to mitochondrion within the oocytes of Ixodes ricinus. A better understanding of the lifestyle of "Ca. Midichloria mitochondrii" will allow us to better define the role of this bacterial symbiont in the host physiology.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Alphaproteobacteria/ultraestrutura , Ixodes/microbiologia , Estágios do Ciclo de Vida , Microscopia Eletrônica/métodos , Animais , DNA Bacteriano , Mitocôndrias/microbiologia , Filogenia , Simbiose
6.
Sci Rep ; 11(1): 6983, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772091

RESUMO

We investigated the dynamics of the bacterial composition and metabolic function within Akashiwo sanguinea bloom using a 100-L indoor microcosm and metagenomic next-generation sequencing. We found that the bacterial community was classified into three groups at 54% similarity. Group I was associated with "during the A. sanguinea bloom stage" and mainly consisted of Alphaproteobacteria, Flavobacteriia and Gammaproteobacteria. Meanwhile, groups II and III were associated with the "late bloom/decline stage to post-bloom stage" with decreased Flavobacteriia and Gammaproteobacteria in these stages. Upon the termination of the A. sanguinea bloom, the concentrations of inorganic nutrients (particularly PO43-, NH4+ and dissolved organic carbon) increased rapidly and then decreased. From the network analysis, we found that the A. sanguinea node is associated with certain bacteria. After the bloom, the specific increases in NH4+ and PO43- nodes are associated with other bacterial taxa. The changes in the functional groups of the bacterial community from chemoheterotrophy to nitrogen association metabolisms were consistent with the environmental impacts during and after A. sanguinea bloom. Consequently, certain bacterial communities and the environments dynamically changed during and after harmful algal blooms and a rapid turnover within the bacterial community and their function can respond to ecological interactions.


Assuntos
Alphaproteobacteria/isolamento & purificação , Dinoflagellida/crescimento & desenvolvimento , Flavobacteriaceae/isolamento & purificação , Gammaproteobacteria/isolamento & purificação , Proliferação Nociva de Algas , Metagenoma , Água do Mar/microbiologia , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Carbono/análise , Dinoflagellida/microbiologia , Flavobacteriaceae/genética , Flavobacteriaceae/crescimento & desenvolvimento , Gammaproteobacteria/genética , Gammaproteobacteria/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Nitrogênio/análise , Fósforo/análise
7.
Microbiology (Reading) ; 166(10): 894-908, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33085587

RESUMO

Methane-oxidizing bacteria (methanotrophs) play a vital role in reducing atmospheric methane emissions, and hence mitigating their potent global warming effects. A significant proportion of the methane released is thermogenic natural gas, containing associated short-chain alkanes as well as methane. It was one hundred years following the description of methanotrophs that facultative strains were discovered and validly described. These can use some multi-carbon compounds in addition to methane, often small organic acids, such as acetate, or ethanol, although Methylocella strains can also use short-chain alkanes, presumably deriving a competitive advantage from this metabolic versatility. Here, we review the diversity and molecular ecology of facultative methanotrophs. We discuss the genetic potential of the known strains and outline the consequent benefits they may obtain. Finally, we review the biotechnological promise of these fascinating microbes.


Assuntos
Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Metano/metabolismo , Álcoois/metabolismo , Alcanos/metabolismo , Alphaproteobacteria/classificação , Alphaproteobacteria/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biotecnologia , Carbono/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Filogenia , Microbiologia do Solo
8.
World J Microbiol Biotechnol ; 36(3): 40, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32095903

RESUMO

Recent developments in the legume rhizobium symbiotic interaction particularly those related to the emergence of novel strains of bacteria that nodulate and fix nitrogen in legumes is gaining momentum. These novel strains of bacteria were mostly isolated from the root nodules of indigenous and invasive legumes belonging to the sub families Papilionoideae and Mimosoideae in South Africa, South America and South East China. These rhizobia are phylogenetically and taxonomically different from the traditional 'alpha rhizobia' and are termed 'ß-rhizobia' as they belong to the ß-sub class of Proteobacteria. There are also new reports of novel species of root nodulating bacteria from the α-Proteobacteria, not known for several decades since the discovery of rhizobia. However, in this review focus is given to the emerging ß-rhizobia isolated from the indigenous Papilionoid legumes in the Cape Floristic regions in South Africa and the indigenous and invasive Mimosoid legumes in South America and South East Asia respectively. The nodulation of the indigenous South African Papilionoid legumes including that of Aspalathus linearis (rooibos) is discussed in a bit detail. Previous reports indicated that A. linearis is very specific in its rhizobium requirement and was reported to be nodulated by the slow growing Bradyrhizobium spp. This review however summarizes that the bacteria associated with the root nodules of A. linearis belong to members of both the alpha (α) Proteobacteria that include Mesorhizobium, Rhizobium and Bradyrhizobium spp. and the beta (ß) Proteobacteria represented by the genus Burkholderia (now reclassified as Paraburkholderia). In addition, the occurrence of Paraburkholderia as the newly emerging root nodule symbionts of various other legumes has been discussed. In doing so, the review highlights that nodulation is no longer restricted to the traditional 'rhizobia' group following the emergence of the new beta rhizobia as potential nodulators of various indigenous legumes. It thus provides some insights on the status of the legume-rhizobium host specificity concept and the loss of this specificity in several symbiotic associations that puts the long held dogma of host specificity of the legume rhizobium symbiosis in a dilemma.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Fabaceae/microbiologia , Alphaproteobacteria/classificação , Especificidade de Hospedeiro , Fixação de Nitrogênio , Rhizobium/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Simbiose
9.
Artigo em Inglês | MEDLINE | ID: mdl-32067565

RESUMO

Bioremediation is one of the existing techniques applied for treating oil-contaminated soil, which can be improved by the incorporation of low-cost nutritional materials. This study aimed to assess the addition of two low-cost plant residues, sugarcane bagasse (SCB) and leaf litter (LL) of the forest leguminous Mimosa caesalpiniifolia plant (sabiá), either separately or combined, to a contaminated soil from a petroleum refinery area, analyzed after 90 days of treatment. Individually, both amounts of SCB (20 and 40 g kg-1) favored the growth of total heterotrophic bacteria and total fungi, while LL at 20 g kg-1 better stimulated the hydrocarbon-degrading microorganism's activity in the soil. However, no TPH removal was observed under any of these conditions. Higher microbial growth was detected by the application of both plant residues in multicontaminated soil. The maximum TPH removal of 30% was achieved in amended soil with 20 g kg-1 SCB and 20 kg-1 LL. All the experimental conditions revealed changes in the microbial community structure, related to the handling of the soil, with abundance of Alphaproteobacteria. This study demonstrates the effectiveness of the plant residues SCB and LL as low-cost nutritional materials for biodegradation of hydrocarbon in real oil contaminated soil by indigenous populations.


Assuntos
Microbiota , Indústria de Petróleo e Gás , Petróleo/análise , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Alphaproteobacteria/crescimento & desenvolvimento , Biodegradação Ambiental , Brasil , Celulose/química , Mimosa/química , Mimosa/microbiologia , Petróleo/metabolismo , Folhas de Planta/química , Folhas de Planta/microbiologia , Saccharum/química , Saccharum/microbiologia , Poluentes do Solo/metabolismo , Resíduos Sólidos
10.
mSphere ; 5(1)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996418

RESUMO

The vast majority of microbes inhabiting oligotrophic shallow subsurface soil environments have not been isolated or studied under controlled laboratory conditions. In part, the challenges associated with isolating shallow subsurface microbes may persist because microbes in deeper soils are adapted to low nutrient availability or quality. Here, we use high-throughput dilution-to-extinction culturing to isolate shallow subsurface microbes from a conifer forest in Arizona, USA. We hypothesized that the concentration of heterotrophic substrates in microbiological growth medium would affect which microbial taxa were culturable from these soils. To test this, we diluted cells extracted from soil into one of two custom-designed defined growth media that differed by 100-fold in the concentration of amino acids and organic carbon. Across the two media, we isolated a total of 133 pure cultures, all of which were classified as Actinobacteria or Alphaproteobacteria The substrate availability dictated which actinobacterial phylotypes were culturable but had no significant effect on the culturability of Alphaproteobacteria We isolated cultures that were representative of the most abundant phylotype in the soil microbial community (Bradyrhizobium spp.) and representatives of five of the top 10 most abundant Actinobacteria phylotypes, including Nocardioides spp., Mycobacterium spp., and several other phylogenetically divergent lineages. Flow cytometry of nucleic acid-stained cells showed that cultures isolated on low-substrate medium had significantly lower nucleic acid fluorescence than those isolated on high-substrate medium. These results show that dilution-to-extinction is an effective method to isolate abundant soil microbes and that the concentration of substrates in culture medium influences the culturability of specific microbial lineages.IMPORTANCE Isolating environmental microbes and studying their physiology under controlled conditions are essential aspects of understanding their ecology. Subsurface ecosystems are typically nutrient-poor environments that harbor diverse microbial communities-the majority of which are thus far uncultured. In this study, we use modified high-throughput cultivation methods to isolate subsurface soil microbes. We show that a component of whether a microbe is culturable from subsurface soils is the concentration of growth substrates in the culture medium. Our results offer new insight into technical approaches and growth medium design that can be used to access the uncultured diversity of soil microbes.


Assuntos
Actinobacteria/isolamento & purificação , Alphaproteobacteria/isolamento & purificação , Meios de Cultura/química , Microbiologia do Solo , Actinobacteria/crescimento & desenvolvimento , Alphaproteobacteria/crescimento & desenvolvimento , Arizona , Técnicas Bacteriológicas , Centrifugação , Florestas , Filogenia , RNA Ribossômico 16S/genética
11.
J Microbiol ; 57(8): 655-660, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31187415

RESUMO

A Gram-negative, aerobic, short-rod-shaped, motile (with a terminal flagellum), non-spore-forming bacterium, designated strain 85T, was isolated from a surface-sterilized bark of Sonneratia caseolaris collected from Qinzhou in Guangxi, China and was analyzed using a polyphasic approach to determine its taxonomic position. Strain 85T grew optimally in the presence of 1-2% (w/v) NaCl at 30°C and pH 6.0-7.0. Phylogenetic analysis based on 16S rRNA gene sequence suggested that strain 85T belonged to the genus Fulvimarina and shared the highest 16S rRNA gene sequence similarity with Fulvimarina pelagi HTCC2506T (96.16%). The cell-wall peptidoglycan contained meso-diaminopimelic acid and ubiquinone Q-10 was the predominant respiratory lipoquinone. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified amino lipid, three unidentified phospholipids and six unidentified lipids. The major fatty acid was C18:1ω7c. The DNA G+C content of strain 85T was 65.4 mol%, and the average nucleotide identity and estimated DDH values between strain 85T and the type strain of Fulvimarina pelagi HTCC2506T were 77.3% and 21.7%, respectively. Based on the phylogenetic, phenotypic, and chemotaxonomic analyses, strain 85T should be considered as a novel species of the genus Fulvimarina with the proposed name Fulvimarina endophytica sp. nov., and its type strain is 85T (= KCTC 62717T = CGMCC 1.13665T).


Assuntos
Alphaproteobacteria/classificação , Endófitos/classificação , Lythraceae/microbiologia , Casca de Planta/microbiologia , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Alphaproteobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana/métodos , Composição de Bases , China , DNA Bacteriano/genética , Endófitos/genética , Endófitos/crescimento & desenvolvimento , Endófitos/isolamento & purificação , RNA Ribossômico 16S/genética , Sequenciamento Completo do Genoma/métodos
12.
J Microbiol ; 57(8): 676-687, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31201724

RESUMO

Strain IMCC1322 was isolated from a surface water sample from the East Sea of Korea. Based on 16S rRNA analysis, IMCC1322 was found to belong to the OCS28 sub-clade of SAR116. The cells appeared as short vibrioids in logarithmic-phase culture, and elongated spirals during incubation with mitomycin or in aged culture. Growth characteristics of strain IMCC1322 were further evaluated based on genomic information; proteorhodopsin (PR), carbon monoxide dehydrogenase, and dimethylsulfoniopropionate (DMSP)-utilizing enzymes. IMCC1322 PR was characterized as a functional retinylidene protein that acts as a light-driven proton pump in the cytoplasmic membrane. However, the PR-dependent phototrophic potential of strain IMCC1322 was only observed under CO-inhibited and nutrient-limited culture conditions. A DMSP-enhanced growth response was observed in addition to cultures grown on C1 compounds like methanol, formate, and methane sulfonate. Strain IMCC1322 cultivation analysis revealed biogeochemical processes characteristic of the SAR116 group, a dominant member of the microbial community in euphotic regions of the ocean. The polyphasic taxonomy of strain IMCC1322 is given as Candidatus Puniceispirillum marinum, and was confirmed by chemotaxonomic tests, in addition to 16S rRNA phylogeny and cultivation analyses.


Assuntos
Alphaproteobacteria , RNA Ribossômico 16S/genética , Rodopsinas Microbianas , Água do Mar/microbiologia , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Alphaproteobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana/métodos , DNA Bacteriano/genética , República da Coreia , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Compostos de Sulfônio/metabolismo , Sequenciamento Completo do Genoma/métodos
13.
Microb Biotechnol ; 12(4): 662-676, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31087504

RESUMO

Polycyclic aromatic compounds (PAHs) are toxic compounds that are released in the environment as a consequence of industrial activities. The restoration of PAH-polluted sites considers the use of bacteria capable of degrading aromatic compounds to carbon dioxide and water. Here we characterize a new Xanthobacteraceae strain, Starkeya sp. strain N1B, previously isolated during enrichment under microaerophilic conditions, which is capable of using naphthalene crystals as the sole carbon source. The strain produced a structured biofilm when grown on naphthalene crystals, which had the shape of a half-sphere organized over the crystal. Scanning electron microscopy (SEM) and GC-MS analysis indicated that the biofilm was essentially made of cellulose, composed of several micron-long nanofibrils of 60 nm diameter. A cellulosic biofilm was also formed when the cells grew with glucose as the carbon source. Fourier transformed infrared spectroscopy (FTIR) confirmed that the polymer was type I cellulose in both cases, although the crystallinity of the material greatly depended on the carbon source used for growth. Using genome mining and mutant analysis, we identified the genetic complements required for the transformation of naphthalene into cellulose, which seemed to have been successively acquired through horizontal gene transfer. The capacity to develop the biofilm around the crystal was found to be dispensable for growth when naphthalene was used as the carbon source, suggesting that the function of this structure is more intricate than initially thought. This is the first example of the use of toxic aromatic hydrocarbons as the carbon source for bacterial cellulose production. Application of this capacity would allow the remediation of a PAH into such a value-added polymer with multiple biotechnological usages.


Assuntos
Alphaproteobacteria/metabolismo , Celulose/metabolismo , Nanoestruturas , Naftalenos/metabolismo , Alphaproteobacteria/crescimento & desenvolvimento , Carbono/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Microbiologia Industrial/métodos , Microscopia Eletrônica de Varredura
14.
Appl Biochem Biotechnol ; 189(1): 144-159, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30957194

RESUMO

High temperature and high ethanol concentrations obviously affect vinegar fermentation. The thermotolerant and ethanol-resistant strains are expected to become one of the technologies for effective vinegar fermentation. This study aimed to further improve thermotolerant Komagataeibacter oboediens MSKU 3 through thermal and ethanol adaptations for acetic acid fermentation. The MSKU 3 strain was independently cultured by a repetitive cultivation in gradually increasing temperature from 37 to 39 °C for thermal adaptation, while adaptation to ethanol was carried out from concentrations of 3 to 5.5% (v/v) at 37 °C. Acetic acid fermentation revealed that the thermo-adapted T4 strain could produce 2.82% acidity with 3% ethanol at 39 °C, whereas the ethanol-adapted E3 strain could produce 3.54% acidity with 5.5% ethanol at 37 °C, in contrast to the parental strain, MSKU 3, in which no fermentation occurs at either 39 °C or 5.5% ethanol. Furthermore, genome mapping analysis of T4 and E3 strains against the genome of parental strain MSKU 3 revealed several mutated genes that are associated with thermotolerance or ethanol adaptation. The occurrence of these adaptation-associated mutations during adaptive evolution was also analyzed. Therefore, adapted strains T4 and E3 revealed the potential of Komagataeibacter oboediens strain improvement to further enhance vinegar fermentation with high ethanol concentration at high temperature.


Assuntos
Ácido Acético/administração & dosagem , Alphaproteobacteria/metabolismo , Etanol/administração & dosagem , Fermentação , Temperatura Alta , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Genoma Bacteriano , Técnicas In Vitro
15.
mBio ; 10(2)2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890605

RESUMO

In many regions of the world oceans, phytoplankton face the problem of discriminating between phosphate, an essential nutrient, and arsenate, a toxic analogue. Many phytoplankton, including the most abundant phytoplankton group known, Prochlorococcus, detoxify arsenate (AsV) by reduction to arsenite (AsIII), followed by methylation and excretion of the methylated arsenic products. We synthesized [14C]dimethyl arsenate (DMA) and used it to show that cultured Pelagibacter strain HTCC7211 (SAR11) cells oxidize the methyl group carbons of DMA, producing 14CO2 and ATP. We measured [14C]DMA oxidation rates in the P-depleted surface waters of the Sargasso Sea, a subtropical ocean gyre. [14C]DMA was oxidized to 14CO2 by Sargasso Sea plankton communities at a rate that would cause turnover of the estimated DMA standing stock every 8.1 days. SAR11 strain HTCC7211, which was isolated from the Sargasso Sea, has a pair of arsenate resistance genes and was resistant to arsenate, showing no growth inhibition at As/P ratios of >65:1. Across the global oceans, there was a strong inverse relationship between the frequency of the arsenate reductase (LMWPc_ArsC) in Pelagibacter genomes and phosphate concentrations. We propose that the demethylation of methylated arsenic compounds by Pelagibacter and possibly other bacterioplankton, coupled with arsenate resistance, results in the transfer of energy from phytoplankton to bacteria. We dub this a parasitic cycle because the release of arsenate by Pelagibacter in principle creates a positive-feedback loop that forces phytoplankton to continually regenerate arsenate detoxification products, producing a flow of energy to P-limited ocean regions.IMPORTANCE In vast, warm regions of the oceans, phytoplankton face the problem of arsenic poisoning. Arsenate is toxic because it is chemically similar to phosphate, a scarce nutrient that phytoplankton cells need for growth. Many phytoplankton, including the commonest phytoplankton type in warm oceans, Prochlorococcus, detoxify arsenate by adding methyl groups. Here we show that the most abundant non-photosynthetic plankton in the oceans, SAR11 bacteria, remove the methyl groups, releasing poisonous forms of arsenic back into the water. We postulate that the methylation and demethylation of arsenic compounds creates a cycle in which the phytoplankton can never get ahead and must continually transfer energy to the SAR11 bacteria. We dub this a parasitic process and suggest that it might help explain why SAR11 bacteria are so successful, surpassing all other plankton in their numbers. Field experiments were done in the Sargasso Sea, a subtropical ocean gyre that is sometimes called an ocean desert because, throughout much of the year, there is not enough phosphorous in the water to support large blooms of phytoplankton. Ocean deserts are expanding as the oceans absorb heat and grow warmer.


Assuntos
Alphaproteobacteria/metabolismo , Arsênio/metabolismo , Metabolismo Energético , Plâncton/metabolismo , Prochlorococcus/metabolismo , Água do Mar/microbiologia , Trifosfato de Adenosina/metabolismo , Alphaproteobacteria/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Marcação por Isótopo , Oxirredução , Prochlorococcus/crescimento & desenvolvimento
16.
Sci Rep ; 9(1): 1999, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760820

RESUMO

Marine sponges are early-branching, filter-feeding metazoans that usually host complex microbiomes comprised of several, currently uncultivatable symbiotic lineages. Here, we use a low-carbon based strategy to cultivate low-abundance bacteria from Spongia officinalis. This approach favoured the growth of Alphaproteobacteria strains in the genera Anderseniella, Erythrobacter, Labrenzia, Loktanella, Ruegeria, Sphingorhabdus, Tateyamaria and Pseudovibrio, besides two likely new genera in the Rhodobacteraceae family. Mapping of complete genomes against the metagenomes of S. officinalis, seawater, and sediments confirmed the rare status of all the above-mentioned lineages in the marine realm. Remarkably, this community of low-abundance Alphaproteobacteria possesses several genomic attributes common to dominant, presently uncultivatable sponge symbionts, potentially contributing to host fitness through detoxification mechanisms (e.g. heavy metal and metabolic waste removal, degradation of aromatic compounds), provision of essential vitamins (e.g. B6 and B12 biosynthesis), nutritional exchange (especially regarding the processing of organic sulphur and nitrogen) and chemical defence (e.g. polyketide and terpenoid biosynthesis). None of the studied taxa displayed signs of genome reduction, indicative of obligate mutualism. Instead, versatile nutrient metabolisms along with motility, chemotaxis, and tight-adherence capacities - also known to confer environmental hardiness - were inferred, underlying dual host-associated and free-living life strategies adopted by these diverse sponge-associated Alphaproteobacteria.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Alphaproteobacteria/genética , Genoma Bacteriano/genética , Poríferos/microbiologia , Simbiose/genética , Alphaproteobacteria/classificação , Alphaproteobacteria/isolamento & purificação , Animais , Biodegradação Ambiental , Farmacorresistência Bacteriana/genética , Microbiota/genética , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
17.
ISME J ; 13(6): 1506-1519, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30742057

RESUMO

Prochlorococcus and SAR11 are among the smallest and most abundant organisms on Earth. With a combined global population of about 2.7 × 1028 cells, they numerically dominate bacterioplankton communities in oligotrophic ocean gyres and yet they have never been grown together in vitro. Here we describe co-cultures of Prochlorococcus and SAR11 isolates representing both high- and low-light adapted clades. We examined: (1) the influence of Prochlorococcus on the growth of SAR11 and vice-versa, (2) whether Prochlorococcus can meet specific nutrient requirements of SAR11, and (3) how co-culture dynamics vary when Prochlorococcus is grown with SAR11 compared with sympatric copiotrophic bacteria. SAR11 grew 15-70% faster in co-culture with Prochlorococcus, while the growth of the latter was unaffected. When Prochlorococcus populations entered stationary phase, this commensal relationship rapidly became amensal, as SAR11 abundances decreased dramatically. In parallel experiments with copiotrophic bacteria; however, the heterotrophic partner increased in abundance as Prochlorococcus densities leveled off. The presence of Prochlorococcus was able to meet SAR11's central requirement for organic carbon, but not reduced sulfur. Prochlorococcus strain MIT9313, but not MED4, could meet the unique glycine requirement of SAR11, which could be due to the production and release of glycine betaine by MIT9313, as supported by comparative genomic evidence. Our findings also suggest, but do not confirm, that Prochlorococcus MIT9313 may compete with SAR11 for the uptake of 3-dimethylsulfoniopropionate (DMSP). To give our results an ecological context, we assessed the relative contribution of Prochlorococcus and SAR11 genome equivalents to those of identifiable bacteria and archaea in over 800 marine metagenomes. At many locations, more than half of the identifiable genome equivalents in the euphotic zone belonged to Prochlorococcus and SAR11 - highlighting the biogeochemical potential of these two groups.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Prochlorococcus/crescimento & desenvolvimento , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Técnicas de Cocultura , Processos Heterotróficos , Prochlorococcus/genética , Prochlorococcus/metabolismo , Água do Mar/microbiologia , Compostos de Sulfônio/metabolismo
18.
Water Res ; 143: 260-269, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29986236

RESUMO

Graphene oxide (GO) is a new type of nanomaterial with unique physicochemical properties and diverse applications, whereas it poses potential risk to human and environment. By screening from natural soil exposed to GO in the laboratory, we successfully obtained a novel bacterium, Labrys sp. WJW, which was able to use GO as the sole carbon source for growth. Within 8 days, cell numbers increased 16.76 ±â€¯3.21 folds using 100 mg/L GO as the carbon source by qPCR analysis. The bacterial biodegradation which resulted in formation of holes and functional group changes of GO was proved by Raman spectroscopy, atomic force microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy analyses. Aromatic intermediates with structures of benzoic acid and phenol were identified using gas chromatograph-mass spectrometry and liquid chromatography/time-of-flight/mass spectrometry. Combination of genomic and proteomic analyses were performed to explore the proteins associated with GO degradation. A total of 644 proteins were significantly shifted. Bioinformatics analysis indicated that part of the up-regulated proteins were related to oxidation, ring cleavage and intermediates transmembrane processes, and GO was supposed to be degraded to benzoate and further degraded for downstream processes. This study enriches our understanding and provides new insights into the environmental fate of GO.


Assuntos
Alphaproteobacteria/metabolismo , Grafite/metabolismo , Nanoestruturas , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Carbono/metabolismo , Grafite/química , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Oxirredução , Óxidos/química , Óxidos/metabolismo , Espectroscopia Fotoeletrônica , Proteômica , Microbiologia do Solo , Análise Espectral Raman
19.
ISME J ; 12(7): 1846-1860, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29599519

RESUMO

Evolutionary transitions between fresh and salt water happen infrequently among bacterioplankton. Within the ubiquitous and highly abundant heterotrophic Alphaproteobacteria order Pelagibacterales (SAR11), most members live in marine habitats, but the LD12 subclade has evolved as a unique freshwater lineage. LD12 cells occur as some of the most dominant freshwater bacterioplankton, yet this group has remained elusive to cultivation, hampering a more thorough understanding of its biology. Here, we report the first successful isolation of an LD12 representative, strain LSUCC0530, using high-throughput dilution-to-extinction cultivation methods, and its complete genome sequence. Growth experiments corroborate ecological data suggesting active populations of LD12 in brackish water up to salinities of ~5. LSUCC0530 has the smallest closed genome thus far reported for a SAR11 strain (1.16 Mbp). The genome affirms many previous metabolic predictions from cultivation-independent analyses, like a complete Embden-Meyerhof-Parnas glycolysis pathway, but also provides novel insights, such as the first isocitrate dehydrogenase in LD12, a likely homologous recombination of malate synthase from outside of the SAR11 clade, and analogous substitutions of ion transporters with others that occur throughout the rest of the SAR11 clade. Growth data support metagenomic recruitment results suggesting temperature-based ecotype diversification within LD12. Key gene losses for osmolyte uptake provide a succinct hypothesis for the evolutionary transition of LD12 from salt to freshwater. For strain LSUCC0530, we propose the provisional nomenclature Candidatus fonsibacter ubiquis.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Alphaproteobacteria/genética , Água Doce/microbiologia , Alphaproteobacteria/classificação , Alphaproteobacteria/isolamento & purificação , Ecossistema , Ecótipo , Genômica , Filogenia
20.
Artigo em Inglês | MEDLINE | ID: mdl-29574035

RESUMO

Lead (Pb) is one of the most prevalent toxic, nonessential heavy metals that has been associated with a wide range of toxic effects in humans and environmental animals. Here, effects of short time exposure to 10 and 30 µg/L Pb on gut microbiota and hepatic metabolism were analyzed in adult male zebrafish. We observed that both 10 and 30 µg/L Pb increased the volume of mucus in the gut. At phylum level, the abundance of α-Proteobacteria decreased significantly and the abundance of Firmicutes increased significantly in the gut when treated with 30 µg/L Pb for 7 days. In addition, the 16S rRNA gene sequencing for V3-V4 region revealed a significant change in the richness and diversity of gut microbiota in 30 µg/L Pb exposed group. A more depth analysis, at the genus level, discovered that 52 gut microbes identified by operational taxonomic unit analysis were changed significantly in 30 µg/L Pb treated group. Based on GC/MS metabolomics analysis, a total of 41 metabolites were significantly altered in 30 µg/L Pb treatment group. These changed metabolites were mainly associated with the pathways of glucose and lipid metabolism, amino acid metabolism, nucleotide metabolism. In addition, we also confirmed that the transcription of some genes related to glycolysis and lipid metabolism, including Gk, Aco, Acc1, Fas, Apo and Dgat, decreased significantly in the liver of zebrafish when exposed to 30 µg/L Pb for 7 days. Our results observed that Pb could cause gut microbiota dysbiosis and hepatic metabolic disorder in zebrafish.


Assuntos
Disbiose/etiologia , Metabolismo Energético/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Intoxicação por Chumbo/fisiopatologia , Fígado/efeitos dos fármacos , Alphaproteobacteria/classificação , Alphaproteobacteria/efeitos dos fármacos , Alphaproteobacteria/crescimento & desenvolvimento , Animais , Firmicutes/classificação , Firmicutes/efeitos dos fármacos , Firmicutes/crescimento & desenvolvimento , Proteínas de Peixes/antagonistas & inibidores , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Glicólise/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Intoxicação por Chumbo/metabolismo , Intoxicação por Chumbo/microbiologia , Intoxicação por Chumbo/patologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Metabolômica/métodos , Tipagem Molecular , Muco/metabolismo , Compostos Organometálicos/toxicidade , Concentração Osmolar , Testes de Toxicidade Aguda , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...