Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.593
Filtrar
1.
PLoS One ; 19(5): e0300751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38717999

RESUMO

Transcriptional response to changes in oxygen concentration is mainly controlled by hypoxia-inducible transcription factors (HIFs). Besides regulation of hypoxia-responsible gene expression, HIF-3α has recently been shown to be involved in lung development and in the metabolic process of fat tissue. However, the precise mechanism for such properties of HIF-3α is still largely unknown. To this end, we generated HIF3A gene-disrupted mice by means of genome editing technology to explore the pleiotropic role of HIF-3α in development and physiology. We obtained adult mice carrying homozygous HIF3A gene mutations with comparable body weight and height to wild-type mice. However, the number of litters and ratio of homozygous mutation carriers born from the mating between homozygous mutant mice was lower than expected due to sporadic deaths on postnatal day 1. HIF3A gene-disrupted mice exhibited abnormal configuration of the lung such as a reduced number of alveoli and thickened alveolar walls. Transcriptome analysis showed, as well as genes associated with lung development, an upregulation of stearoyl-Coenzyme A desaturase 1, a pivotal enzyme for fatty acid metabolism. Analysis of fatty acid composition in the lung employing gas chromatography indicated an elevation in palmitoleic acid and a reduction in oleic acid, suggesting an imbalance in distribution of fatty acid, a constituent of lung surfactant. Accordingly, administration of glucocorticoid injections during pregnancy resulted in a restoration of normal alveolar counts and a decrease in neonatal mortality. In conclusion, these observations provide novel insights into a pivotal role of HIF-3α in the preservation of critically important structure and function of alveoli beyond the regulation of hypoxia-mediated gene expression.


Assuntos
Animais Recém-Nascidos , Alvéolos Pulmonares , Animais , Camundongos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Feminino , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Masculino , Ácidos Graxos/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Proteínas Reguladoras de Apoptose
2.
Curr Top Dev Biol ; 159: 59-129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729684

RESUMO

The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.


Assuntos
Alvéolos Pulmonares , Animais , Humanos , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Troca Gasosa Pulmonar/fisiologia , Regeneração , Pulmão/citologia , Pulmão/metabolismo , Lesão Pulmonar/patologia
3.
Part Fibre Toxicol ; 21(1): 25, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760786

RESUMO

Exposure to indoor air pollutants (IAP) has increased recently, with people spending more time indoors (i.e. homes, offices, schools and transportation). Increased exposures of IAP on a healthy population are poorly understood, and those with allergic respiratory conditions even less so. The objective of this study, therefore, was to implement a well-characterised in vitro model of the human alveolar epithelial barrier (A549 + PMA differentiated THP-1 incubated with and without IL-13, IL-5 and IL-4) to determine the effects of a standardised indoor particulate (NIST 2583) on both a healthy lung model and one modelling a type-II (stimulated with IL-13, IL-5 and IL-4) inflammatory response (such as asthma).Using concentrations from the literature, and an environmentally appropriate exposure we investigated 232, 464 and 608ng/cm2 of NIST 2583 respectively. Membrane integrity (blue dextran), viability (trypan blue), genotoxicity (micronucleus (Mn) assay) and (pro-)/(anti-)inflammatory effects (IL-6, IL-8, IL-33, IL-10) were then assessed 24 h post exposure to both models. Models were exposed using a physiologically relevant aerosolisation method (VitroCell Cloud 12 exposure system).No changes in Mn frequency or membrane integrity in either model were noted when exposed to any of the tested concentrations of NIST 2583. A significant decrease (p < 0.05) in cell viability at the highest concentration was observed in the healthy model. Whilst cell viability in the "inflamed" model was decreased at the lower concentrations (significantly (p < 0.05) after 464ng/cm2). A significant reduction (p < 0.05) in IL-10 and a significant increase in IL-33 was seen after 24 h exposure to NIST 2583 (464, 608ng/cm2) in the "inflamed" model.Collectively, the results indicate the potential for IAP to cause the onset of a type II response as well as exacerbating pre-existing allergic conditions. Furthermore, the data imposes the importance of considering unhealthy individuals when investigating the potential health effects of IAP. It also highlights that even in a healthy population these particles have the potential to induce this type II response and initiate an immune response following exposure to IAP.


Assuntos
Poluição do Ar em Ambientes Fechados , Sobrevivência Celular , Material Particulado , Humanos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Material Particulado/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células A549 , Citocinas/metabolismo , Células THP-1 , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Poluentes Atmosféricos/toxicidade , Inflamação/induzido quimicamente , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia
4.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38602485

RESUMO

Alveologenesis, the final stage in lung development, substantially remodels the distal lung, expanding the alveolar surface area for efficient gas exchange. Secondary crest myofibroblasts (SCMF) exist transiently in the neonatal distal lung and are crucial for alveologenesis. However, the pathways that regulate SCMF function, proliferation and temporal identity remain poorly understood. To address this, we purified SCMFs from reporter mice, performed bulk RNA-seq and found dynamic changes in Hippo-signaling components during alveologenesis. We deleted the Hippo effectors Yap/Taz from Acta2-expressing cells at the onset of alveologenesis, causing a significant arrest in alveolar development. Using single cell RNA-seq, we identified a distinct cluster of cells in mutant lungs with altered expression of marker genes associated with proximal mesenchymal cell types, airway smooth muscle and alveolar duct myofibroblasts. In vitro studies confirmed that Yap/Taz regulates myofibroblast-associated gene signature and contractility. Together, our findings show that Yap/Taz is essential for maintaining functional myofibroblast identity during postnatal alveologenesis.


Assuntos
Diferenciação Celular , Via de Sinalização Hippo , Morfogênese , Miofibroblastos , Proteínas Serina-Treonina Quinases , Alvéolos Pulmonares , Transdução de Sinais , Proteínas de Sinalização YAP , Animais , Camundongos , Miofibroblastos/metabolismo , Miofibroblastos/citologia , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Morfogênese/genética , Mesoderma/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Pulmão/metabolismo , Organogênese/genética , Regulação da Expressão Gênica no Desenvolvimento
5.
FASEB J ; 38(8): e23612, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648494

RESUMO

Considerable progress has been made in understanding the function of alveolar epithelial cells in a quiescent state and regeneration mechanism after lung injury. Lung injury occurs commonly from severe viral and bacterial infections, inhalation lung injury, and indirect injury sepsis. A series of pathological mechanisms caused by excessive injury, such as apoptosis, autophagy, senescence, and ferroptosis, have been studied. Recovery from lung injury requires the integrity of the alveolar epithelial cell barrier and the realization of gas exchange function. Regeneration mechanisms include the participation of epithelial progenitor cells and various niche cells involving several signaling pathways and proteins. While alveoli are damaged, alveolar type II (AT2) cells proliferate and differentiate into alveolar type I (AT1) cells to repair the damaged alveolar epithelial layer. Alveolar epithelial cells are surrounded by various cells, such as fibroblasts, endothelial cells, and various immune cells, which affect the proliferation and differentiation of AT2 cells through paracrine during alveolar regeneration. Besides, airway epithelial cells also contribute to the repair and regeneration process of alveolar epithelium. In this review, we mainly discuss the participation of epithelial progenitor cells and various niche cells involving several signaling pathways and transcription factors.


Assuntos
Células Epiteliais Alveolares , Lesão Pulmonar , Regeneração , Humanos , Regeneração/fisiologia , Animais , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/metabolismo , Transdução de Sinais , Diferenciação Celular
6.
Int J Cardiol ; 407: 132041, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38643800

RESUMO

BACKGROUND: In chronic heart failure (HF), exercise-induced increase in pulmonary capillary pressure may cause an increase of pulmonary congestion, or the development of pulmonary oedema. We sought to assess in HF patients the exercise-induced intra-thoracic fluid movements, by measuring plasma brain natriuretic peptide (BNP), lung comets and lung diffusion for carbon monoxide (DLCO) and nitric oxide (DLNO), as markers of hemodynamic load changes, interstitial space and alveolar-capillary membrane fluids, respectively. METHODS AND RESULTS: Twenty-four reduced ejection fraction HF patients underwent BNP, lung comets and DLCO/DLNO measurements before, at peak and 1 h after the end of a maximal cardiopulmonary exercise test. BNP significantly increased at peak from 549 (328-841) to 691 (382-1207, p < 0.0001) pg/mL and almost completely returned to baseline value 1 h after exercise. Comets number increased at peak from 9.4 ± 8.2 to 24.3 ± 16.7, returning to baseline (9.7 ± 7.4) after 1 h (p < 0.0001). DLCO did not change significantly at peak (from 18.01 ± 4.72 to 18.22 ± 4.73 mL/min/mmHg), but was significantly reduced at 1 h (16.97 ± 4.26 mL/min/mmHg) compared to both baseline (p = 0.0211) and peak (p = 0.0174). DLNO showed a not significant trend toward lower values 1 h post-exercise. CONCLUSIONS: Moderate/severe HF patients have a 2-step intra-thoracic fluid movement with exercise: the first during active exercise, from the vascular space toward the interstitial space, as confirmed by comets increase, without any effect on diffusion, and the second, during recovery, toward the alveolar-capillary membrane, clearing the interstitial space but worsening gas diffusion.


Assuntos
Teste de Esforço , Exercício Físico , Insuficiência Cardíaca , Alvéolos Pulmonares , Humanos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Exercício Físico/fisiologia , Idoso , Alvéolos Pulmonares/fisiopatologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/diagnóstico por imagem , Teste de Esforço/métodos , Capilares/diagnóstico por imagem , Capilares/fisiopatologia , Peptídeo Natriurético Encefálico/sangue , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Pulmão/metabolismo
7.
Cell ; 187(10): 2428-2445.e20, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38579712

RESUMO

Alveolar type 2 (AT2) cells are stem cells of the alveolar epithelia. Previous genetic lineage tracing studies reported multiple cellular origins for AT2 cells after injury. However, conventional lineage tracing based on Cre-loxP has the limitation of non-specific labeling. Here, we introduced a dual recombinase-mediated intersectional genetic lineage tracing approach, enabling precise investigation of AT2 cellular origins during lung homeostasis, injury, and repair. We found AT1 cells, being terminally differentiated, did not contribute to AT2 cells after lung injury and repair. Distinctive yet simultaneous labeling of club cells, bronchioalveolar stem cells (BASCs), and existing AT2 cells revealed the exact contribution of each to AT2 cells post-injury. Mechanistically, Notch signaling inhibition promotes BASCs but impairs club cells' ability to generate AT2 cells during lung repair. This intersectional genetic lineage tracing strategy with enhanced precision allowed us to elucidate the physiological role of various epithelial cell types in alveolar regeneration following injury.


Assuntos
Células Epiteliais Alveolares , Linhagem da Célula , Pulmão , Regeneração , Células-Tronco , Animais , Camundongos , Células-Tronco/metabolismo , Células-Tronco/citologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/citologia , Pulmão/citologia , Pulmão/metabolismo , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Receptores Notch/metabolismo , Lesão Pulmonar/patologia , Diferenciação Celular , Transdução de Sinais , Camundongos Endogâmicos C57BL
8.
J Clin Invest ; 134(6)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38488000

RESUMO

Premature birth disrupts normal lung development and places infants at risk for bronchopulmonary dysplasia (BPD), a disease disrupting lung health throughout the life of an individual and that is increasing in incidence. The TGF-ß superfamily has been implicated in BPD pathogenesis, however, what cell lineage it impacts remains unclear. We show that TGFbr2 is critical for alveolar epithelial (AT1) cell fate maintenance and function. Loss of TGFbr2 in AT1 cells during late lung development leads to AT1-AT2 cell reprogramming and altered pulmonary architecture, which persists into adulthood. Restriction of fetal lung stretch and associated AT1 cell spreading through a model of oligohydramnios enhances AT1-AT2 reprogramming. Transcriptomic and proteomic analyses reveal the necessity of TGFbr2 expression in AT1 cells for extracellular matrix production. Moreover, TGF-ß signaling regulates integrin transcription to alter AT1 cell morphology, which further impacts ECM expression through changes in mechanotransduction. These data reveal the cell intrinsic necessity of TGF-ß signaling in maintaining AT1 cell fate and reveal this cell lineage as a major orchestrator of the alveolar matrisome.


Assuntos
Displasia Broncopulmonar , Alvéolos Pulmonares , Humanos , Camundongos , Animais , Recém-Nascido , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Alvéolos Pulmonares/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Mecanotransdução Celular , Proteômica , Células Epiteliais Alveolares , Pulmão/patologia , Diferenciação Celular , Matriz Extracelular/metabolismo , Displasia Broncopulmonar/patologia , Transcrição Gênica
9.
Expert Rev Respir Med ; 18(1-2): 41-47, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489161

RESUMO

INTRODUCTION: Hypercapnia is developed in patients with acute and/or chronic respiratory conditions. Clinical data concerning hypercapnia and respiratory infections interaction is limited. AREAS COVERED: Currently, the relationship between hypercapnia and respiratory infections remains unclear. In this review, we summarize studies on the effects of hypercapnia on models of pulmonary infections to clarify the role of elevated CO2 in these pulmonary pathologies. Hypercapnia affects different cell types in the alveoli, leading to changes in the immune response. In vitro studies show that hypercapnia downregulates the NF-κß pathway, reduces inflammation and impairs epithelial wound healing. While in vivo models show a dual role between short- and long-term effects of hypercapnia on lung infection. However, it is still controversial whether the effects observed under hypercapnia are pH dependent or not. EXPERT OPINION: The role of hypercapnia is still a controversial debate. Hypercapnia could play a beneficial role in mechanically ventilated models, by lowering the inflammation produced by the stretch condition. But it could be detrimental in infectious scenarios, causing phagocyte dysfunction and lack of infection control. Further data concerning hypercapnia on respiratory infections is needed to elucidate this interaction.


Assuntos
Hipercapnia , Infecções Respiratórias , Humanos , Pulmão , Inflamação , Alvéolos Pulmonares/metabolismo
10.
BMC Mol Cell Biol ; 25(1): 9, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500038

RESUMO

BACKGROUND: The alveolar epithelium is exposed to numerous stimuli, such as chemicals, viruses, and bacteria that cause a variety of pulmonary diseases through inhalation. Alveolar epithelial cells (AECs) cultured in vitro are a valuable tool for studying the impacts of these stimuli and developing therapies for associated diseases. However, maintaining the proliferative capacity of AECs in vitro is challenging. In this study, we used a cocktail of three small molecule inhibitors to cultivate AECs: Y-27632, A-83-01, and CHIR99021 (YAC). These inhibitors reportedly maintain the proliferative capacity of several types of stem/progenitor cells. RESULTS: Primary human AECs cultured in medium containing YAC proliferated for more than 50 days (over nine passages) under submerged conditions. YAC-treated AECs were subsequently cultured at the air-liquid interface (ALI) to promote differentiation. YAC-treated AECs on ALI day 7 formed a monolayer of epithelial tissue with strong expression of the surfactant protein-encoding genes SFTPA1, SFTPB, SFTPC, and SFTPD, which are markers for type II AECs (AECIIs). Immunohistochemical analysis revealed that paraffin sections of YAC-treated AECs on ALI day 7 were mainly composed of cells expressing surfactant protein B and prosurfactant protein C. CONCLUSIONS: Our results indicate that YAC-containing medium could be useful for expansion of AECIIs, which are recognized as local stem/progenitor cells, in the alveoli.


Assuntos
Alvéolos Pulmonares , Tensoativos , Humanos , Alvéolos Pulmonares/metabolismo , Diferenciação Celular , Tensoativos/metabolismo
11.
Biomed Pharmacother ; 174: 116447, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518606

RESUMO

Sepsis-induced acute respiratory distress syndrome (ARDS) causes significant fatalities worldwide and lacks pharmacological intervention. Alveolar fluid clearance (AFC) plays a pivotal role in the remission of ARDS and is markedly impaired in the pathogenesis of ARDS. Here, we demonstrated that erythropoietin could effectively ameliorate lung injury manifestations and lethality, restore lung function and promote AFC in a rat model of lipopolysaccharide (LPS)-induced ARDS. Moreover, it was proven that EPO-induced restoration of AFC occurs through triggering the total protein expression of ENaC and Na,K-ATPase channels, enhancing their protein abundance in the membrane, and suppressing their ubiquitination for degeneration. Mechanistically, the data indicated the possible involvement of EPOR/JAK2/STAT3/SGK1/Nedd4-2 signaling in this process, and the pharmacological inhibition of the pathway markedly eliminated the stimulating effects of EPO on ENaC and Na,K-ATPase, and subsequently reversed the augmentation of AFC by EPO. Consistently, in vitro studies of alveolar epithelial cells paralleled with that EPO upregulated the expression of ENaC and Na,K-ATPase, and patch-clamp studies further demonstrated that EPO substantially strengthened sodium ion currents. Collectively, EPO could effectively promote AFC by improving ENaC and Na,K-ATPase protein expression and abundance in the membrane, dependent on inhibition of ENaC and Na,K-ATPase ubiquitination, and resulting in diminishing LPS-associated lung injuries.


Assuntos
Canais Epiteliais de Sódio , Eritropoetina , Ratos Sprague-Dawley , Síndrome do Desconforto Respiratório , Sepse , ATPase Trocadora de Sódio-Potássio , Ubiquitinação , Animais , Canais Epiteliais de Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Eritropoetina/farmacologia , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Ubiquitinação/efeitos dos fármacos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Masculino , Ratos , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Lipopolissacarídeos , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças
12.
Am J Physiol Lung Cell Mol Physiol ; 326(4): L409-L418, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349124

RESUMO

Alveolar type I (ATI) cells cover >95% of the lung's distal surface and facilitate gas exchange through their exceptionally thin shape. ATI cells in vivo are replenished by alveolar type II cell division and differentiation, but a detailed understanding of ATI biology has been hampered by the challenges in direct isolation of these cells due to their fragility and incomplete understanding of the signaling interactions that promote differentiation of ATII to ATI cells. Here, we explored the signals that maintain ATII versus promote ATI fates in three-dimensional (3-D) organoid cultures and developed a human alveolar type I differentiation medium (hATIDM) suitable for generating ATI cells from either mixed distal human lung cells or purified ATII cells. This media adds bone morphogenetic protein 4 (BMP4) and removes epidermal growth factor (EGF), Wnt agonist CHIR99021, and transforming growth factor-beta (TGF-ß) inhibitor SB431542 from previously developed alveolar organoid culture media. We demonstrate that BMP4 promotes expression of the ATI marker gene AGER and HOPX, whereas CHIR99021 and SB431542 maintain expression of the ATII marker gene SFTPC. The human ATI spheroids generated with hATIDM express multiple molecular and morphological features reminiscent of human ATI cells. Our results demonstrate that signaling interactions among BMP, TGF-ß, and Wnt signaling pathways in alveolar spheroids and distal lung organoids including IPF-organoids coordinate human ATII to ATI differentiation.NEW & NOTEWORTHY Alveolar type I (ATI) epithelial cells perform essential roles in maintaining lung function but have been challenging to study. We explored the signals that promote ATI fate in 3-D organoid cultures generated from either mixed distal human lung cells or purified alveolar type II (ATII) cells. This work fills an important void in our experimental repertoire for studying alveolar epithelial cells and identifies signals that promote human ATII to ATI cell differentiation.


Assuntos
Células Epiteliais Alveolares , Benzamidas , Dioxóis , Alvéolos Pulmonares , Humanos , Alvéolos Pulmonares/metabolismo , Células Cultivadas , Células Epiteliais Alveolares/metabolismo , Pulmão , Diferenciação Celular , Fator de Crescimento Transformador beta/metabolismo
13.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L524-L538, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38375572

RESUMO

Lung surfactant collectins, surfactant protein A (SP-A) and D (SP-D), are oligomeric C-type lectins involved in lung immunity. Through their carbohydrate recognition domain, they recognize carbohydrates at pathogen surfaces and initiate lung innate immune response. Here, we propose that they may also be able to bind to other carbohydrates present in typical cell surfaces, such as the alveolar epithelial glycocalyx. To test this hypothesis, we analyzed and quantified the binding affinity of SP-A and SP-D to different sugars and glycosaminoglycans (GAGs) by microscale thermophoresis (MST). In addition, by changing the calcium concentration, we aimed to characterize any consequences on the binding behavior. Our results show that both oligomeric proteins bind with high affinity (in nanomolar range) to GAGs, such as hyaluronan (HA), heparan sulfate (HS) and chondroitin sulfate (CS). Binding to HS and CS was calcium-independent, as it was not affected by changing calcium concentration in the buffer. Quantification of GAGs in bronchoalveolar lavage (BAL) fluid from animals deficient in either SP-A or SP-D showed changes in GAG composition, and electron micrographs showed differences in alveolar glycocalyx ultrastructure in vivo. Taken together, SP-A and SP-D bind to model sulfated glycosaminoglycans of the alveolar epithelial glycocalyx in a multivalent and calcium-independent way. These findings provide a potential mechanism for SP-A and SP-D as an integral part of the alveolar epithelial glycocalyx binding and interconnecting free GAGs, proteoglycans, and other glycans in glycoproteins, which may influence glycocalyx composition and structure.NEW & NOTEWORTHY SP-A and SP-D function has been related to innate immunity of the lung based on their binding to sugar residues at pathogen surfaces. However, their function in the healthy alveolus was considered as limited to interaction with surfactant lipids. Here, we demonstrated that these proteins bind to glycosaminoglycans present at typical cell surfaces like the alveolar epithelial glycocalyx. We propose a model where these proteins play an important role in interconnecting alveolar epithelial glycocalyx components.


Assuntos
Cálcio , Glicocálix , Glicosaminoglicanos , Alvéolos Pulmonares , Proteína A Associada a Surfactante Pulmonar , Proteína D Associada a Surfactante Pulmonar , Animais , Humanos , Camundongos , Células Epiteliais Alveolares/metabolismo , Líquido da Lavagem Broncoalveolar , Cálcio/metabolismo , Glicocálix/metabolismo , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Camundongos Endogâmicos C57BL , Ligação Proteica , Alvéolos Pulmonares/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo
15.
Am J Respir Cell Mol Biol ; 70(5): 339-350, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38207121

RESUMO

In vitro lung research requires appropriate cell culture models that adequately mimic in vivo structure and function. Previously, researchers extensively used commercially available and easily expandable A549 and NCI-H441 cells, which replicate some but not all features of alveolar epithelial cells. Specifically, these cells are often restricted by terminally altered expression while lacking important alveolar epithelial characteristics. Of late, human primary alveolar epithelial cells (hPAEpCs) have become commercially available but are so far poorly specified. Here, we applied a comprehensive set of technologies to characterize their morphology, surface marker expression, transcriptomic profile, and functional properties. At optimized seeding numbers of 7,500 cells per square centimeter and growth at a gas-liquid interface, hPAEpCs formed regular monolayers with tight junctions and amiloride-sensitive transepithelial ion transport. Electron microscopy revealed lamellar body and microvilli formation characteristic for alveolar type II cells. Protein and single-cell transcriptomic analyses revealed expression of alveolar type I and type II cell markers; yet, transcriptomic data failed to detect NKX2-1, an important transcriptional regulator of alveolar cell differentiation. With increasing passage number, hPAEpCs transdifferentiated toward alveolar-basal intermediates characterized as SFTPC-, KRT8high, and KRT5- cells. In spite of marked changes in the transcriptome as a function of passaging, Uniform Manifold Approximation and Projection plots did not reveal major shifts in cell clusters, and epithelial permeability was unaffected. The present work delineates optimized culture conditions, cellular characteristics, and functional properties of commercially available hPAEpCs. hPAEpCs may provide a useful model system for studies on drug delivery, barrier function, and transepithelial ion transport in vitro.


Assuntos
Células Epiteliais Alveolares , Humanos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/ultraestrutura , Diferenciação Celular , Transcriptoma , Células Cultivadas , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/citologia , Junções Íntimas/metabolismo
16.
Biomater Adv ; 154: 213620, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690344

RESUMO

Alveoli are the functional area of respiratory system where the gaseous exchanges take place at level of the alveolar-capillary barrier. The development of safe and effective therapeutic approaches for treating lung disease is currently limited due to the lack of realistic preclinical models for their testing and validation. In this work, tissue engineering approaches were exploited to develop a biomimetic platform that provide an appropriate mimicking of the extracellular environment and the multicellular architecture of human alveoli. Here, we propose the implementation of two biomimetic in vitro models to reproduce the features of the main anatomic portions of the physiological alveolar-capillary barrier. First, a co-culture barrier model was obtained by integrating an electrospun polycaprolactone-gelatin (PCL-Gel) membrane in a modified transwell insert (PCL-Gel TW) to mimic the alveolar basement membrane (coded as thin model). Alveolar epithelial (A549) and lung microvascular endothelial (HULEC-5a) cells were cultured on the apical and basolateral side of the PCL-Gel membrane, respectively, under physiologic air-liquid interface (ALI) conditions for 7 days. The ALI condition promoted the expression of type I and type II alveolar epithelial cell markers and the secretion of mucus in A549 cells. Increased cell viability and barrier properties in co-cultures of A549 and HULEC-5a compared to mono-cultures revealed the effectiveness of the model to reproduce in vitro physiological-relevant features of the alveolar-capillary barrier. The second portion of the alveolar-capillary barrier was developed implementing a tri-culture model (coded as thick model) including a type I collagen (COLL) hydrogel formulated to host lung fibroblasts (MRC-5). The thick barrier model was implemented by seeding HULEC-5a on the basolateral side of PCL-Gel TW and then pouring sequentially MRC-5-laden COLL hydrogel and A549 cells on the apical side of the electrospun membrane. The thick model was maintained up to 7 days at ALI and immunofluorescence staining of tight and adherent junctions demonstrated the formation of a tight barrier. Lastly, the ability of models to emulate pathological inflammatory conditions was validated by exposing the apical compartment of the PCL-Gel TW to lipopolysaccharide (LPS). The damage of A549 tight junctions, the increase of barrier permeability and IL-6 pro-inflammatory cytokine release was observed after 48 h exposure to LPS.


Assuntos
Biomimética , Lipopolissacarídeos , Humanos , Técnicas de Cocultura , Lipopolissacarídeos/metabolismo , Alvéolos Pulmonares/metabolismo , Hidrogéis
17.
Nature ; 621(7980): 813-820, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37587341

RESUMO

Disruption of the lung endothelial-epithelial cell barrier following respiratory virus infection causes cell and fluid accumulation in the air spaces and compromises vital gas exchange function1. Endothelial dysfunction can exacerbate tissue damage2,3, yet it is unclear whether the lung endothelium promotes host resistance against viral pathogens. Here we show that the environmental sensor aryl hydrocarbon receptor (AHR) is highly active in lung endothelial cells and protects against influenza-induced lung vascular leakage. Loss of AHR in endothelia exacerbates lung damage and promotes the infiltration of red blood cells and leukocytes into alveolar air spaces. Moreover, barrier protection is compromised and host susceptibility to secondary bacterial infections is increased when endothelial AHR is missing. AHR engages tissue-protective transcriptional networks in endothelia, including the vasoactive apelin-APJ peptide system4, to prevent a dysplastic and apoptotic response in airway epithelial cells. Finally, we show that protective AHR signalling in lung endothelial cells is dampened by the infection itself. Maintenance of protective AHR function requires a diet enriched in naturally occurring AHR ligands, which activate disease tolerance pathways in lung endothelia to prevent tissue damage. Our findings demonstrate the importance of endothelial function in lung barrier immunity. We identify a gut-lung axis that affects lung damage following encounters with viral pathogens, linking dietary composition and intake to host fitness and inter-individual variations in disease outcome.


Assuntos
Células Endoteliais , Pulmão , Infecções por Orthomyxoviridae , Receptores de Hidrocarboneto Arílico , Animais , Humanos , Camundongos , Apelina/metabolismo , Dieta , Células Endoteliais/metabolismo , Endotélio/citologia , Endotélio/metabolismo , Células Epiteliais/metabolismo , Eritrócitos/metabolismo , Influenza Humana/imunologia , Influenza Humana/metabolismo , Intestinos/metabolismo , Leucócitos/metabolismo , Ligantes , Pulmão/imunologia , Pulmão/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
18.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L299-L313, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310763

RESUMO

Pulmonary angiogenesis drives alveolarization, but the transcriptional regulators directing pulmonary angiogenesis remain poorly defined. Global, pharmacological inhibition of nuclear factor-kappa B (NF-κB) impairs pulmonary angiogenesis and alveolarization. However, establishing a definitive role for NF-κB in pulmonary vascular development has been hindered by embryonic lethality induced by constitutive deletion of NF-κB family members. We created a mouse model allowing inducible deletion of the NF-κB activator, IKKß, in endothelial cells (ECs) and assessed the effect on lung structure, endothelial angiogenic function, and the lung transcriptome. Embryonic deletion of IKKß permitted lung vascular development but resulted in a disorganized vascular plexus, while postnatal deletion significantly decreased radial alveolar counts, vascular density, and proliferation of both endothelial and nonendothelial lung cells. Loss of IKKß impaired survival, proliferation, migration, and angiogenesis in primary lung ECs in vitro, in association with decreased expression of VEGFR2 and activation of downstream effectors. Loss of endothelial IKKß in vivo induced broad changes in the lung transcriptome with downregulation of genes related to mitotic cell cycle, extracellular matrix (ECM)-receptor interaction, and vascular development, and the upregulation of genes related to inflammation. Computational deconvolution suggested that loss of endothelial IKKß decreased general capillary, aerocyte capillary, and alveolar type I cell abundance. Taken together, these data definitively establish an essential role for endogenous endothelial IKKß signaling during alveolarization. A deeper understanding of the mechanisms directing this developmental, physiological activation of IKKß in the lung vasculature may provide novel targets for the development of strategies to enhance beneficial proangiogenic signaling in lung development and disease.NEW & NOTEWORTHY This study highlights the cell-specific complexity of nuclear factor kappa B signaling in the developing lung by demonstrating that inducible loss of IKKß in endothelial cells impairs alveolarization, disrupts EC angiogenic function, and broadly represses genes important for vascular development.


Assuntos
Quinase I-kappa B , NF-kappa B , Animais , Camundongos , Células Endoteliais/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Pulmão/metabolismo , Neovascularização Fisiológica/genética , NF-kappa B/metabolismo , Alvéolos Pulmonares/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373252

RESUMO

Dust, both industrial and household, contains particulates that can reach the most distal aspects of the lung. Silica and nickel compounds are two such particulates and have known profiles of poor health outcomes. While silica is well-characterized, nickel compounds still need to be fully understood for their potential to cause long-term immune responses in the lungs. To assess these hazards and decrease animal numbers used in testing, investigations that lead to verifiable in vitro methods are needed. To understand the implications of these two compounds reaching the distal aspect of the lungs, the alveoli, an architecturally relevant alveolar model consisting of epithelial cells, macrophages, and dendritic cells in a maintained submerged system, was utilized for high throughput testing. Exposures include crystalline silica (SiO2) and nickel oxide (NiO). The endpoints measured included mitochondrial reactive oxygen species and cytostructural changes assessed via confocal laser scanning microscopy; cell morphology evaluated via scanning electron microscopy; biochemical reactions assessed via protein arrays; transcriptome assessed via gene arrays, and cell surface activation markers evaluated via flow cytometry. The results showed that, compared to untreated cultures, NiO increased markers for dendritic cell activation, trafficking, and antigen presentation; oxidative stress and cytoskeletal changes, and gene and cytokine expression of neutrophil and other leukocyte chemoattractants. The chemokines and cytokines CCL3, CCL7, CXCL5, IL-6, and IL-8 were identified as potential biomarkers of respiratory sensitization.


Assuntos
Níquel , Dióxido de Silício , Animais , Níquel/toxicidade , Dióxido de Silício/toxicidade , Pulmão/metabolismo , Alvéolos Pulmonares/metabolismo , Citocinas/metabolismo , Poeira , Macrófagos Alveolares/metabolismo
20.
Cell Mol Life Sci ; 80(6): 145, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37166489

RESUMO

Alveolar epithelial type II cells (AT2s) together with AT1s constitute the epithelial lining of lung alveoli. In contrast to the large flat AT1s, AT2s are cuboidal and smaller. In addition to surfactant production, AT2s also serve as prime alveolar progenitors in homeostasis and play an important role during regeneration/repair. Based on different lineage tracing strategies in mice and single-cell transcriptomic analysis, recent reports highlight the heterogeneous nature of AT2s. These studies present compelling evidence for the presence of stable or transitory AT2 subpopulations with distinct marker expression, signaling pathway activation and functional properties. Despite demonstrated progenitor potentials of AT2s in maintaining homeostasis, through self-renewal and differentiation to AT1s, the exact identity, full progenitor potential and regulation of these progenitor cells, especially in the context of human diseases remain unclear. We recently identified a novel subset of AT2 progenitors named "Injury-Activated Alveolar Progenitors" (IAAPs), which express low levels of Sftpc, Sftpb, Sftpa1, Fgfr2b and Etv5, but are highly enriched for the expression of the surface receptor programmed cell death-ligand 1 (Pd-l1). IAAPs are quiescent during lung homeostasis but activated upon injury with the potential to proliferate and differentiate into AT2s. Significantly, a similar population of PD-L1 positive cells expressing intermediate levels of SFTPC are found to be expanded in human IPF lungs. We summarize here the current understanding of this newly discovered AT2 progenitor subpopulation and also try to reconcile the relationship between different AT2 stem cell subpopulations regarding their progenitor potential, regulation, and relevance to disease pathogenesis and therapeutic interventions.


Assuntos
Antígeno B7-H1 , Pulmão , Camundongos , Humanos , Animais , Antígeno B7-H1/metabolismo , Pulmão/metabolismo , Células Epiteliais Alveolares , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Diferenciação Celular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...