Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.425
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674001

RESUMO

Medulloblastoma (MB) encompasses diverse subgroups, and leptomeningeal disease/metastasis (LMD) plays a substantial role in associated fatalities. Despite extensive exploration of canonical genes in MB, the molecular mechanisms underlying LMD and the involvement of the orthodenticle homeobox 2 (OTX2) gene, a key driver in aggressive MB Group 3, remain insufficiently understood. Recognizing OTX2's pivotal role, we investigated its potential as a catalyst for aggressive cellular behaviors, including migration, invasion, and metastasis. OTX2 overexpression heightened cell growth, motility, and polarization in Group 3 MB cells. Orthotopic implantation of OTX2-overexpressing cells in mice led to reduced median survival, accompanied by the development of spinal cord and brain metastases. Mechanistically, OTX2 acted as a transcriptional activator of the Mechanistic Target of Rapamycin (mTOR) gene's promoter and the mTORC2 signaling pathway, correlating with upregulated downstream genes that orchestrate cell motility and migration. Knockdown of mTOR mRNA mitigated OTX2-mediated enhancements in cell motility and polarization. Analysis of human MB tumor samples (N = 952) revealed a positive correlation between OTX2 and mTOR mRNA expression, emphasizing the clinical significance of OTX2's role in the mTORC2 pathway. Our results reveal that OTX2 governs the mTORC2 signaling pathway, instigating LMD in Group 3 MBs and offering insights into potential therapeutic avenues through mTORC2 inhibition.


Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Alvo Mecanístico do Complexo 2 de Rapamicina , Meduloblastoma , Neoplasias Meníngeas , Fatores de Transcrição Otx , Transdução de Sinais , Fatores de Transcrição Otx/metabolismo , Fatores de Transcrição Otx/genética , Humanos , Animais , Meduloblastoma/genética , Meduloblastoma/patologia , Meduloblastoma/metabolismo , Camundongos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/secundário , Feminino , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/metabolismo , Masculino
2.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587072

RESUMO

The roles of fibronectin leucine-rich transmembrane protein 2 (FLRT2) in physiological and pathological processes are not well known. Here, we identify a potentially novel function of FLRT2 in preventing endothelial cell senescence and vascular aging. We found that FLRT2 expression was lower in cultured senescent endothelial cells as well as in aged rat and human vascular tissues. FLRT2 mediated endothelial cell senescence via the mTOR complex 2, AKT, and p53 signaling pathway in human endothelial cells. We uncovered that FLRT2 directly associated with integrin subunit beta 4 (ITGB4) and thereby promoted ITGB4 phosphorylation, while inhibition of ITGB4 substantially mitigated the induction of senescence triggered by FLRT2 depletion. Importantly, FLRT2 silencing in mice promoted vascular aging, and overexpression of FLRT2 rescued a premature vascular aging phenotype. Therefore, we propose that FLRT2 could be targeted therapeutically to prevent senescence-associated vascular aging.


Assuntos
Células Endoteliais , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Ratos , Envelhecimento , Células Endoteliais/metabolismo , Integrina beta4/genética , Integrina beta4/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Glicoproteínas de Membrana/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Hypertension ; 81(5): 1167-1177, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38497230

RESUMO

BACKGROUND: The mTOR (mechanistic target of rapamycin) is an essential regulator of fundamental biological processes. mTOR forms 2 distinct complexes, mTORC1 (mTOR complex 1) when it binds with RAPTOR (Regulatory-associated Protein of mTOR) and mTORC2 (mTOR complex 2) when it associates with RICTOR (Rapamycin-insesitive companion of mTOR). Due to the previous link between the mTOR pathway, aldosterone, and blood pressure (BP), we anticipated that variants in the mTOR complex might be associated with salt-sensitive BP. METHODS: BP and other parameters were assessed after a one-week liberal Na+ (200 mmol/d) and a one-week restricted Na+ (10 mmol/d) diet in 608 White subjects from the Hypertensive Pathotype cohort, single-nucleotide variants in MTOR, RPTOR, and RICTOR genes were obtained for candidate genes analyses. RESULTS: The analysis revealed a significant association between a single nucleotide variants within the RPTOR gene and BP. Individuals carrying the RPTOR rs9901846 homozygous risk allele (AA) and heterozygous risk allele (GA) exhibited a 5 mm Hg increase in systolic BP on a liberal diet compared with nonrisk allele individuals (GG), but only in women. This single nucleotide variants effect was more pronounced on the restricted diet and present in both sexes, with AA carriers having a 9 mm Hg increase and GA carriers having a 5 mm Hg increase in systolic BP compared with GG. Interestingly, there were no significant associations between MTOR or RICTOR gene variants and BP. CONCLUSIONS: The RPTOR gene variation is associated with elevated BP in White participants, regardless of salt intake, specifically in females.


Assuntos
Pressão Sanguínea , Hipertensão , Proteína Regulatória Associada a mTOR , Cloreto de Sódio na Dieta , Feminino , Humanos , Masculino , Proteínas de Transporte/genética , Hipertensão/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Nucleotídeos/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Sirolimo , Cloreto de Sódio na Dieta/metabolismo , Serina-Treonina Quinases TOR/metabolismo , População Branca
4.
Acta Neuropathol Commun ; 12(1): 40, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481314

RESUMO

DNA methylation is crucial for chromatin structure and gene expression and its aberrancies, including the global "hypomethylator phenotype", are associated with cancer. Here we show that an underlying mechanism for this phenotype in the large proportion of the highly lethal brain tumor glioblastoma (GBM) carrying receptor tyrosine kinase gene mutations, involves the mechanistic target of rapamycin complex 2 (mTORC2), that is critical for growth factor signaling. In this scenario, mTORC2 suppresses the expression of the de novo DNA methyltransferase (DNMT3A) thereby inducing genome-wide DNA hypomethylation. Mechanistically, mTORC2 facilitates a redistribution of EZH2 histone methyltransferase into the promoter region of DNMT3A, and epigenetically represses the expression of DNA methyltransferase. Integrated analyses in both orthotopic mouse models and clinical GBM samples indicate that the DNA hypomethylator phenotype consistently reprograms a glutamate metabolism network, eventually driving GBM cell invasion and survival. These results nominate mTORC2 as a novel regulator of DNA hypomethylation in cancer and an exploitable target against cancer-promoting epigenetics.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Camundongos , Animais , Glioblastoma/patologia , Linhagem Celular Tumoral , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Metilação de DNA , Fenótipo , Neoplasias Encefálicas/patologia , DNA/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Tirosina Quinases/genética
5.
Elife ; 122024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446016

RESUMO

Gene variants that hyperactivate PI3K-mTOR signaling in the brain lead to epilepsy and cortical malformations in humans. Some gene variants associated with these pathologies only hyperactivate mTORC1, but others, such as PTEN, PIK3CA, and AKT, hyperactivate both mTORC1- and mTORC2-dependent signaling. Previous work established a key role for mTORC1 hyperactivity in mTORopathies, however, whether mTORC2 hyperactivity contributes is not clear. To test this, we inactivated mTORC1 and/or mTORC2 downstream of early Pten deletion in a new mouse model of somatic Pten loss-of-function (LOF) in the cortex and hippocampus. Spontaneous seizures and epileptiform activity persisted despite mTORC1 or mTORC2 inactivation alone, but inactivating both mTORC1 and mTORC2 simultaneously normalized brain activity. These results suggest that hyperactivity of both mTORC1 and mTORC2 can cause epilepsy, and that targeted therapies should aim to reduce activity of both complexes.


Assuntos
Epilepsia , Animais , Humanos , Camundongos , Encéfalo , Córtex Cerebral , Epilepsia/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , PTEN Fosfo-Hidrolase/genética
6.
Pathol Oncol Res ; 30: 1611643, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515456

RESUMO

The increasing knowledge of molecular alterations in malignancies, including mutations and regulatory failures in the mTOR (mechanistic target of rapamycin) signaling pathway, highlights the importance of mTOR hyperactivity as a validated target in common and rare malignancies. This review summarises recent findings on the characterization and prognostic role of mTOR kinase complexes (mTORC1 and mTORC2) activity regarding differences in their function, structure, regulatory mechanisms, and inhibitor sensitivity. We have recently identified new tumor types with RICTOR (rapamycin-insensitive companion of mTOR) amplification and associated mTORC2 hyperactivity as useful potential targets for developing targeted therapies in lung cancer and other newly described malignancies. The activity of mTOR complexes is recommended to be assessed and considered in cancers before mTOR inhibitor therapy, as current first-generation mTOR inhibitors (rapamycin and analogs) can be ineffective in the presence of mTORC2 hyperactivity. We have introduced and proposed a marker panel to determine tissue characteristics of mTOR activity in biopsy specimens, patient materials, and cell lines. Ongoing phase trials of new inhibitors and combination therapies are promising in advanced-stage patients selected by genetic alterations, molecular markers, and/or protein expression changes in the mTOR signaling pathway. Hopefully, the summarized results, our findings, and the suggested characterization of mTOR activity will support therapeutic decisions.


Assuntos
Neoplasias Pulmonares , Serina-Treonina Quinases TOR , Humanos , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sirolimo/farmacologia , Fatores de Transcrição/metabolismo
7.
Cell Commun Signal ; 22(1): 196, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539200

RESUMO

Polyploidy is typically described as the condition wherein a cell or organism has more than two complete sets of chromosomes. Occurrence of polyploidy is a naturally occurring phenomenon in the body's development and differentiation processes under normal physiological conditions. However, in pathological conditions, the occurrence of polyploidy is documented in numerous disorders, including cancer, aging and diabetes. Due to the frequent association that the polyploidy has with these pathologies and physiological process, understanding the cause and consequences of polyploidy would be beneficial to develop potential therapeutic applications. Many of the genetic and epigenetic alterations leading to cancer, diabetes and aging are linked to signaling pathways. Nonetheless, the specific signaling pathway associated with the cause and consequences of polyploidy still remains largely unknown. Mammalian/mechanistic target of rapamycin (mTOR) plays a key role in the coordination between eukaryotic cell growth and metabolism, thereby simultaneously respond to various environmental inputs including nutrients and growth factors. Extensive research over the past two decades has established a central role for mTOR in the regulation of many fundamental cellular processes that range from protein synthesis to autophagy. Dysregulated mTOR signaling has been found to be implicated in various disease progressions. Importantly, there is a strong correlation between the hallmarks of polyploidy and dysregulated mTOR signaling. In this review, we explore and discuss the molecular connection between mTOR signaling and polyploidy along with its association with cancer, diabetes and aging. Additionally, we address some unanswered questions and provide recommendations to further advance our understanding of the intricate relationship between mTOR signaling and polyploidy.


Assuntos
Diabetes Mellitus , Neoplasias , Animais , Humanos , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Neoplasias/genética , Neoplasias/metabolismo , Poliploidia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mamíferos/metabolismo
8.
Cells ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474373

RESUMO

The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that functions via its discrete binding partners to form two multiprotein complexes, mTOR complex 1 and 2 (mTORC1 and mTORC2). Rapamycin-sensitive mTORC1, which regulates protein synthesis and cell growth, is tightly controlled by PI3K/Akt and is nutrient-/growth factor-sensitive. In the brain, mTORC1 is also sensitive to neurotransmitter signaling. mTORC2, which is modulated by growth factor signaling, is associated with ribosomes and is insensitive to rapamycin. mTOR regulates stem cell and cancer stem cell characteristics. Aberrant Akt/mTOR activation is involved in multistep tumorigenesis in a variety of cancers, thereby suggesting that the inhibition of mTOR may have therapeutic potential. Rapamycin and its analogues, known as rapalogues, suppress mTOR activity through an allosteric mechanism that only suppresses mTORC1, albeit incompletely. ATP-catalytic binding site inhibitors are designed to inhibit both complexes. This review describes the regulation of mTOR and the targeting of its complexes in the treatment of cancers, such as glioblastoma, and their stem cells.


Assuntos
Glioblastoma , Células-Tronco Neoplásicas , Sirolimo , Humanos , Glioblastoma/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Células-Tronco Neoplásicas/metabolismo
9.
FASEB J ; 38(5): e23532, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38451470

RESUMO

Although elevated glycolysis has been widely recognized as a hallmark for highly proliferating cells like stem cells and cancer, its regulatory mechanisms are still being updated. Here, we found a previously unappreciated mechanism of mammalian target of rapamycin complex 2 (mTORC2) in regulating glycolysis in intestinal stem cell maintenance and cancer progression. mTORC2 key subunits expression levels and its kinase activity were specifically upregulated in intestinal stem cells, mouse intestinal tumors, and human colorectal cancer (CRC) tissues. Genetic ablation of its key scaffolding protein Rictor in both mouse models and cell lines revealed that mTORC2 played an important role in promoting intestinal stem cell proliferation and self-renewal. Moreover, utilizing mouse models and organoid culture, mTORC2 loss of function was shown to impair growth of gut adenoma and tumor organoids. Based on these findings, we performed RNA-seq and noticed significant metabolic reprogramming in Rictor conditional knockout mice. Among all the pathways, carbohydrate metabolism was most profoundly altered, and further studies demonstrated that mTORC2 promoted glycolysis in intestinal epithelial cells. Most importantly, we showed that a rate-limiting enzyme in regulating glycolysis, 6-phosphofructo-2-kinase (PFKFB2), was a direct target for the mTORC2-AKT signaling. PFKFB2 was phosphorylated upon mTORC2 activation, but not mTORC1, and this process was AKT-dependent. Together, this study has identified a novel mechanism underlying mTORC2 activated glycolysis, offering potential therapeutic targets for treating CRC.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Células Epiteliais , Glicólise , Mamíferos , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos Knockout , Fosfofrutoquinase-2 , Sirolimo
10.
J Cell Sci ; 137(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38415789

RESUMO

Certain proteins assemble into diverse complex states, each having a distinct and unique function in the cell. Target of rapamycin (Tor) complex 1 (TORC1) plays a central role in signalling pathways that allow cells to respond to the environment, including nutritional status signalling. TORC1 is widely recognised for its association with various diseases. The budding yeast Saccharomyces cerevisiae has two types of TORC1, Tor1-containing TORC1 and Tor2-containing TORC1, which comprise different constituent proteins but are considered to have the same function. Here, we computationally modelled the relevant complex structures and then, based on the structures, rationally engineered a Tor2 mutant that could form Tor complex 2 (TORC2) but not TORC1, resulting in a redesign of the complex states. Functional analysis of the Tor2 mutant revealed that the two types of TORC1 induce different phenotypes, with changes observed in rapamycin, caffeine and pH dependencies of cell growth, as well as in replicative and chronological lifespan. These findings uncovered by a general approach with huge potential - model structure-based engineering - are expected to provide further insights into various fields such as molecular evolution and lifespan.


Assuntos
Saccharomyces cerevisiae , Saccharomycetales , Saccharomyces cerevisiae/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina , Fenótipo , Sirolimo
11.
Dev Biol ; 509: 59-69, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373693

RESUMO

Mg2+ is a vital ion involved in diverse cellular functions by forming complexes with ATP. Intracellular Mg2+ levels are tightly regulated by the coordinated actions of multiple Mg2+ transporters, such as the Mg2+ efflux transporter, cyclin M (CNNM). Caenorhabditis elegans (C. elegans) worms with mutations in both cnnm-1 and cnnm-3 exhibit excessive Mg2+ accumulation in intestinal cells, leading to various phenotypic abnormalities. In this study, we investigated the mechanism underlying the reduction in body size in cnnm-1; cnnm-3 mutant worms. RNA interference (RNAi) of gtl-1, which encodes a Mg2+-intake channel in intestinal cells, restored the worm body size, confirming that this phenotype is due to excessive Mg2+ accumulation. Moreover, RNAi experiments targeting body size-related genes and analyses of mutant worms revealed that the suppression of the target of rapamycin complex 2 (TORC2) signaling pathway was involved in body size reduction, resulting in downregulated DAF-7 expression in head ASI neurons. As the DAF-7 signaling pathway suppresses dauer formation under stress, cnnm-1; cnnm-3 mutant worms exhibited a greater tendency to form dauer upon induction. Collectively, our results revealed that excessive accumulation of Mg2+ repressed the TORC2 signaling pathway in C. elegans worms and suggest the novel role of the DAF-7 signaling pathway in the regulation of their body size.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Transdução de Sinais/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mutação/genética , Tamanho Corporal/genética
12.
Behav Brain Res ; 463: 114888, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38307148

RESUMO

Dysfunction of the mechanistic target of rapamycin (mTOR) signaling pathway is implicated in neuropsychiatric disorders including depression and anxiety. Most studies have been focusing on neurons, and the function of mTOR signaling pathway in astrocytes is less investigated. mTOR forms two distinct complexes, mTORC1 and mTORC2, with key scaffolding protein Raptor and Rictor, respectively. The ventral tegmental area (VTA), a vital component of the brain reward system, is enrolled in regulating both depression and anxiety. In the present study, we aimed to examine the regulation effect of VTA astrocytic mTOR signaling pathway on depression and anxiety. We specifically deleted Raptor or Rictor in VTA astrocytes in mice and performed a series of behavioral tests for depression and anxiety. Deletion of Raptor and Rictor both decreased the immobility time in the tail suspension test and the latency to eat in the novelty suppressed feeding test, and increased the horizontal activity and the movement time in locomotor activity. Deletion of Rictor decreased the number of total arm entries in the elevated plus-maze test and the vertical activity in locomotor activity. These data suggest that VTA astrocytic mTORC1 plays a role in regulating depression-related behaviors and mTORC2 is involved in both depression and anxiety-related behaviors. Our results indicate that VTA astrocytic mTOR signaling pathway might be new targets for the treatment of psychiatric disorders.


Assuntos
Astrócitos , Área Tegmentar Ventral , Humanos , Camundongos , Animais , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Área Tegmentar Ventral/metabolismo , Astrócitos/metabolismo , Depressão , Complexos Multiproteicos/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteínas de Transporte/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Regulatória Associada a mTOR/metabolismo , Fatores de Transcrição/metabolismo , Ansiedade
13.
Cell Signal ; 116: 111065, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38281616

RESUMO

Cardiomyocyte apoptosis and cardiac fibrosis are the leading causes of mortality in patients with ischemic heart disease. As such, these processes represent potential therapeutic targets to treat heart failure resulting from ischemic insult. We previously demonstrated that the mitochondrial acetyltransferase protein GCN5L1 regulates cardiomyocyte cytoprotective signaling in ischemia-reperfusion injury in vivo and hypoxia-reoxygenation injury in vitro. The current study investigated the mechanism underlying GCN5L1-mediated regulation of the Akt/mTORC2 cardioprotective signaling pathway. Rictor protein levels in cardiac tissues from human ischemic heart disease patients were significantly decreased relative to non-ischemic controls. Rictor protein levels were similarly decreased in cardiac AC16 cells following hypoxic stress, while mRNA levels remained unchanged. The reduction in Rictor protein levels after hypoxia was enhanced by the knockdown of GCN5L1, and was blocked by GCN5L1 overexpression. These findings correlated with changes in Rictor lysine acetylation, which were mediated by GCN5L1 acetyltransferase activity. Rictor degradation was regulated by proteasomal activity, which was antagonized by increased Rictor acetylation. Finally, we found that GCN5L1 knockdown restricted cytoprotective Akt signaling, in conjunction with decreased mTOR abundance and activity. In summary, these studies suggest that GCN5L1 promotes cardioprotective Akt/mTORC2 signaling by maintaining Rictor protein levels through enhanced lysine acetylation.


Assuntos
Isquemia Miocárdica , Proteínas Proto-Oncogênicas c-akt , Humanos , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Hipóxia/metabolismo , Lisina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Mitocondriais/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Fatores de Transcrição/metabolismo
14.
J Biol Chem ; 300(3): 105681, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272224

RESUMO

The mechanistic target of rapamycin (mTOR) forms two distinct complexes: rapamycin-sensitive mTOR complex 1 (mTORC1) and rapamycin-insensitive mTORC2. mTORC2 primarily regulates cell survival by phosphorylating Akt, though the upstream regulation of mTORC2 remains less well-defined than that of mTORC1. In this study, we show that NOP14, a 40S ribosome biogenesis factor and a target of the mTORC1-S6K axis, plays an essential role in mTORC2 signaling. Knockdown of NOP14 led to mTORC2 inactivation and Akt destabilization. Conversely, overexpression of NOP14 stimulated mTORC2-Akt activation and enhanced cell proliferation. Fractionation and coimmunoprecipitation assays demonstrated that the mTORC2 complex was recruited to the rough endoplasmic reticulum through association with endoplasmic reticulum-bound ribosomes. In vivo, high levels of NOP14 correlated with poor prognosis in multiple cancer types. Notably, cancer cells with NOP14 high expression exhibit increased sensitivity to mTOR inhibitors, because the feedback activation of the PI3K-PDK1-Akt axis by mTORC1 inhibition was compensated by mTORC2 inhibition partly through NOP14 downregulation. In conclusion, our findings reveal a spatial regulation of mTORC2-Akt signaling and identify ribosome biogenesis as a potential biomarker for assessing rapalog response in cancer therapy.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Sirolimo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Humanos , Linhagem Celular , Ribossomos/metabolismo , Inibidores de Proteínas Quinases/farmacologia
15.
Biochem J ; 481(2): 45-91, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270460

RESUMO

The mechanistic target of rapamycin, mTOR, controls cell metabolism in response to growth signals and stress stimuli. The cellular functions of mTOR are mediated by two distinct protein complexes, mTOR complex 1 (mTORC1) and mTORC2. Rapamycin and its analogs are currently used in the clinic to treat a variety of diseases and have been instrumental in delineating the functions of its direct target, mTORC1. Despite the lack of a specific mTORC2 inhibitor, genetic studies that disrupt mTORC2 expression unravel the functions of this more elusive mTOR complex. Like mTORC1 which responds to growth signals, mTORC2 is also activated by anabolic signals but is additionally triggered by stress. mTORC2 mediates signals from growth factor receptors and G-protein coupled receptors. How stress conditions such as nutrient limitation modulate mTORC2 activation to allow metabolic reprogramming and ensure cell survival remains poorly understood. A variety of downstream effectors of mTORC2 have been identified but the most well-characterized mTORC2 substrates include Akt, PKC, and SGK, which are members of the AGC protein kinase family. Here, we review how mTORC2 is regulated by cellular stimuli including how compartmentalization and modulation of complex components affect mTORC2 signaling. We elaborate on how phosphorylation of its substrates, particularly the AGC kinases, mediates its diverse functions in growth, proliferation, survival, and differentiation. We discuss other signaling and metabolic components that cross-talk with mTORC2 and the cellular output of these signals. Lastly, we consider how to more effectively target the mTORC2 pathway to treat diseases that have deregulated mTOR signaling.


Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR , Serina-Treonina Quinases TOR/genética , Alvo Mecanístico do Complexo 2 de Rapamicina , Alvo Mecanístico do Complexo 1 de Rapamicina , Sirolimo
16.
Autophagy ; 20(3): 659-674, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290972

RESUMO

Triple-negative breast cancer (TNBC) is associated with a poor prognosis and metastatic growth. TNBC cells frequently undergo macroautophagy/autophagy, contributing to tumor progression and chemotherapeutic resistance. ANXA2 (annexin A2), a potential therapeutic target for TNBC, has been reported to stimulate autophagy. In this study, we investigated the role of ANXA2 in autophagic processes in TNBC cells. TNBC patients exhibited high levels of ANXA2, which correlated with poor outcomes. ANXA2 increased LC3B-II levels following bafilomycin A1 treatment and enhanced autophagic flux in TNBC cells. Notably, ANXA2 upregulated the phosphorylation of HSF1 (heat shock transcription factor 1), resulting in the transcriptional activation of ATG7 (autophagy related 7). The mechanistic target of rapamycin kinase complex 2 (MTORC2) played an important role in ANXA2-mediated ATG7 transcription by HSF1. MTORC2 did not affect the mRNA level of ANXA2, but it was involved in the protein stability of ANXA2. HSPA (heat shock protein family A (Hsp70)) was a potential interacting protein with ANXA2, which may protect ANXA2 from lysosomal proteolysis. ANXA2 knockdown significantly increased sensitivity to doxorubicin, the first-line chemotherapeutic regimen for TNBC treatment, suggesting that the inhibition of autophagy by ANXA2 knockdown may overcome doxorubicin resistance. In a TNBC xenograft mouse model, we demonstrated that ANXA2 knockdown combined with doxorubicin administration significantly inhibited tumor growth compared to doxorubicin treatment alone, offering a promising avenue to enhance the effectiveness of chemotherapy. In summary, our study elucidated the molecular mechanism by which ANXA2 modulates autophagy, suggesting a potential therapeutic approach for TNBC treatment.Abbreviation: ATG: autophagy related; ChIP: chromatin-immunoprecipitation; HBSS: Hanks' balanced salt solution; HSF1: heat shock transcription factor 1; MTOR: mechanistic target of rapamycin kinase; TNBC: triple-negative breast cancer; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3.


Assuntos
Anexina A2 , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Autofagia/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Fatores de Transcrição de Choque Térmico/genética , Anexina A2/genética , Linhagem Celular Tumoral , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Doxorrubicina , Sirolimo
17.
Oncol Rep ; 51(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38186315

RESUMO

Gastrointestinal tumors account for five of the top 10 causes of mortality from all cancers (colorectal, liver, stomach, esophageal and pancreatic cancer). Mammalian target of rapamycin (mTOR) signaling is commonly dysregulated in various human cancers. As a core component of the mTOR complex 2 (mTORC2), Rictor is a key effector molecule of the PI3K/Akt pathway. A high alteration rate of Rictor has been observed in gastrointestinal tumors, and such Rictor alterations are often associated with resistance to chemotherapy and related adverse clinical outcomes. However, the exact roles of Rictor in gastrointestinal tumors remain elusive. The aim of the present study was to critically discuss the following: i) Mutation and biological characteristics of Rictor in tumors with a detailed overview of Rictor in cell proliferation, angiogenesis, apoptosis, autophagy and drug resistance; ii) the role of Rictor in tumors of the digestive system, particularly colorectal, hepatobiliary, gastric, esophageal and pancreatic cancer and cholangiocarcinoma; and iii) the current status and prospects of targeted therapy for Rictor by inhibiting Akt activation. Despite the growing realization of the importance of Rictor/mTORC2 in cancer, the underlying mechanistic details remain poorly understood; this needs to change in order for the development of efficient targeted therapies and re­sensitization of therapy­resistant cancers to be made possible.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias Colorretais , Neoplasias Gastrointestinais , Neoplasias Pancreáticas , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/genética , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Ductos Biliares Intra-Hepáticos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Serina-Treonina Quinases TOR/genética
18.
Oncogene ; 43(9): 668-681, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191673

RESUMO

The recently approved KRASG12C mutation-specific inhibitors sotorasib and adagrasib (KRASG12C-I) represent a promising therapy for KRASG12C-driven non-small cell lung cancer (NSCLC). However, many eligible patients do not benefit due to intrinsic or acquired drug resistance. Tissue factor (TF) is overexpressed in KRAS-mutated (KRASmut) NSCLC and is the target of the FDA-approved ADC Tivdak. Here, we employed HuSC1-39, the parent antibody of a clinical stage TF-ADC (NCT04843709), to investigate the role of TF in KRASmut NSCLC. We found that patients with TF-overexpression had poor survival, elevated P-ERK/P-AKT activity levels and low immune effector cell infiltration in the tumor. In a panel of KRASG12C cell lines, KRASG12C-I response correlated with suppression of TF mRNA, which was not observed in resistant cells. In the drug resistant cells, TF-overexpression relied on an mTORC2-mediated and proteasome-dependent pathway. Combination treatment of HuSC1-39 or mTORC1/2 inhibitor MTI-31 with KRASG12C-I each produced synergistic antitumor efficacy in cell culture and in an orthotopic lung tumor model. TF-depletion in the resistant cells diminished epithelial mesenchymal transition, reduced tumor growth and greatly sensitized KRASG12C-I response. Moreover, employing immunohistochemistry and coculture studies, we demonstrated that HuSC1-39 or MTI-31 reset the tumor microenvironment and restore KRASG12C-I sensitivity by reshaping an M1-like macrophage profile with greatly enhanced phagocytic capacity toward tumor cell killing. Thus, we have identified the TF/mTORC2 axis as a critical new mechanism for triggering immunosuppression and KRASG12C-I resistance. We propose that targeting this axis with HuSC1-39 or MTI-31 will improve KRASG12C-I response in KRAS-driven NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Tromboplastina , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Alvo Mecanístico do Complexo 2 de Rapamicina , Mutação , Microambiente Tumoral
19.
Autophagy ; 20(1): 45-57, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37614038

RESUMO

Adult stem cells are long-lived and quiescent with unique metabolic requirements. Macroautophagy/autophagy is a fundamental survival mechanism that allows cells to adapt to metabolic changes by degrading and recycling intracellular components. Here we address why autophagy depletion leads to a drastic loss of the stem cell compartment. Using inducible deletion of autophagy specifically in adult hematopoietic stem cells (HSCs) and in mice chimeric for autophagy-deficient and normal HSCs, we demonstrate that the stem cell loss is cell-intrinsic. Mechanistically, autophagy-deficient HSCs showed higher expression of several amino acid transporters (AAT) when compared to autophagy-competent cells, resulting in increased amino acid (AA) uptake. This was followed by sustained MTOR (mechanistic target of rapamycin) activation, with enlarged cell size, glucose uptake and translation, which is detrimental to the quiescent HSCs. MTOR inhibition by rapamycin treatment in vivo was able to rescue autophagy-deficient HSC loss and bone marrow failure and resulted in better reconstitution after transplantation. Our results suggest that targeting MTOR may improve aged stem cell function, promote reprogramming and stem cell transplantation.List of abbreviations: 5FU: fluoracil; AA: amino acids; AKT/PKB: thymoma viral proto-oncogene 1; ATF4: activating transcription factor 4; BafA: bafilomycin A1; BM: bone marrow; EIF2: eukaryotic initiation factor 2; EIF4EBP1/4EBP1: eukaryotic translation initiation factor 4E binding protein 1; KIT/CD117/c-Kit: KIT proto-oncogene receptor tyrosine kinase; HSCs: hematopoietic stem cells; HSPCs: hematopoietic stem and progenitor cells; Kyn: kynurenine; LSK: lineage- (Lin-), LY6A/Sca-1+, KIT/c-Kit/CD117+; LY6A/Sca-1: lymphocyte antigen 6 family member A; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; MTORC2: MTOR complex 2; OPP: O-propargyl-puromycin; PI3K: phosphoinositide 3-kinase; poly(I:C): polyinosinic:polycytidylic acid; RPS6/S6: ribosomal protein S6; tam: tamoxifen; TCA: tricarboxylic acid; TFEB: transcription factor EB; PTPRC/CD45: Protein Tyrosine Phosphatase Receptor Type C, CD45 antigen.


Assuntos
Autofagia , Transdução de Sinais , Camundongos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Sirolimo/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...