Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 321(5): E592-E605, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34541875

RESUMO

Deletion of mechanistic target of rapamycin complex 2 (mTORC2) essential component rapamycin insensitive companion of mTOR (Rictor) by a Cre recombinase under control of the broad, nonadipocyte-specific aP2/FABP4 promoter impairs thermoregulation and brown adipose tissue (BAT) glucose uptake on acute cold exposure. We investigated herein whether adipocyte-specific mTORC2 deficiency affects BAT and inguinal white adipose tissue (iWAT) signaling, metabolism, and thermogenesis in cold-acclimated mice. For this, 8-wk-old male mice bearing Rictor deletion and therefore mTORC2 deficiency in adipocytes (adiponectin-Cre) and littermates controls were either kept at thermoneutrality (30 ± 1°C) or cold-acclimated (10 ± 1°C) for 14 days and evaluated for BAT and iWAT signaling, metabolism, and thermogenesis. Cold acclimation inhibited mTORC2 in BAT and iWAT, but its residual activity is still required for the cold-induced increases in BAT adipocyte number, total UCP-1 content and mRNA levels of proliferation markers Ki67 and cyclin 1 D, and de novo lipogenesis enzymes ATP-citrate lyase and acetyl-CoA carboxylase. In iWAT, mTORC2 residual activity is partially required for the cold-induced increases in multilocular adipocytes, mitochondrial mass, and uncoupling protein 1 (UCP-1) content. Conversely, BAT mTORC1 activity and BAT and iWAT glucose uptake were upregulated by cold independently of mTORC2. Noteworthy, the impairment in BAT and iWAT total UCP-1 content and thermogenic capacity induced by adipocyte mTORC2 deficiency had no major impact on whole body energy expenditure in cold-acclimated mice due to a compensatory activation of muscle shivering. In conclusion, adipocyte mTORC2 deficiency impairs, through different mechanisms, BAT and iWAT total UCP-1 content and thermogenic capacity in cold-acclimated mice, without affecting glucose uptake and whole body energy expenditure.NEW & NOTEWORTHY BAT and iWAT mTORC2 is inhibited by cold acclimation, but its residual activity is required for cold-induced increases in total UCP-1 content and thermogenic capacity, but not glucose uptake and mTORC1 activity. The impaired BAT and iWAT total UCP-1 content and thermogenic capacity induced by adipocyte mTORC2 deficiency are compensated by activation of muscle shivering in cold-acclimated mice.


Assuntos
Aclimatação/fisiologia , Adipócitos/metabolismo , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Metabolismo Energético/fisiologia , Glucose/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/deficiência , Termogênese/genética , Animais , Temperatura Baixa , Deleção de Genes , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteína Desacopladora 1
2.
Elife ; 92020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32406817

RESUMO

The transcriptional activation and repression during NK cell ontology are poorly understood. Here, using single-cell RNA-sequencing, we reveal a novel role for T-bet in suppressing the immature gene signature during murine NK cell development. Based on transcriptome, we identified five distinct NK cell clusters and define their relative developmental maturity in the bone marrow. Transcriptome-based machine-learning classifiers revealed that half of the mTORC2-deficient NK cells belongs to the least mature NK cluster. Mechanistically, loss of mTORC2 results in an increased expression of signature genes representing immature NK cells. Since mTORC2 regulates the expression of T-bet through AktS473-FoxO1 axis, we further characterized the T-bet-deficient NK cells and found an augmented immature transcriptomic signature. Moreover, deletion of Foxo1 restores the expression of T-bet and corrects the abnormal expression of immature NK genes. Collectively, our study reveals a novel role for mTORC2-AktS473-FoxO1-T-bet axis in suppressing the transcriptional signature of immature NK cells.


Assuntos
Células da Medula Óssea/metabolismo , Perfilação da Expressão Gênica , Células Matadoras Naturais/metabolismo , Aprendizado de Máquina , RNA-Seq , Análise de Célula Única , Proteínas com Domínio T/genética , Transcriptoma , Animais , Células da Medula Óssea/imunologia , Análise por Conglomerados , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , Genótipo , Células Matadoras Naturais/imunologia , Alvo Mecanístico do Complexo 2 de Rapamicina/deficiência , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/deficiência , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Regulatória Associada a mTOR/deficiência , Proteína Regulatória Associada a mTOR/genética , Proteínas com Domínio T/metabolismo
3.
Front Immunol ; 10: 1451, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338091

RESUMO

In myeloid dendritic cells (DC), deletion of the mechanistic target of rapamycin complex 2 (TORC2) results in an augmented pro-inflammatory phenotype and T cell stimulatory activity; however, the underlying mechanism has not been resolved. Here, we demonstrate that mouse bone marrow-derived TORC2-deficient myeloid DC (TORC2-/- DC) utilize an altered metabolic program, characterized by enhanced baseline glycolytic function compared to wild-type WT control (Ctrl) DC, increased dependence on glycolytic ATP production, elevated lipid content and higher viability following stimulation with LPS. In addition, TORC2-/- DC display an increased spare respiratory capacity (SRC) compared to WT Ctrl DC; this metabolic phenotype corresponds with increased mitochondrial mass and mean mitochondrial DNA copy number, and failure of TORC2-/- DC mitochondria to depolarize following LPS stimulation. Our data suggest that the enhanced metabolic activity of TORC2-/- DC may be due to compensatory TORC1 pathway activity, namely increased expression of multiple genes upstream of Akt/TORC1 activity, including the integrin alpha IIb, protein tyrosine kinase 2/focal adhesion kinase, IL-7R and Janus kinase 1(JAK1), and the activation of downstream targets of TORC1, including p70S6K, eukaryotic translation initiation factor 4E binding protein 1 (4EBP1) and CD36 (fatty acid translocase). These enhanced TORC1 pathway activities may culminate in increased expression of the nuclear receptor peroxisome proliferator-activated receptor γ (Pparγ) that regulates fatty acid storage, and the transcription factor sterol regulatory element-binding transcription factor 1 (Srebf1). Taken together, our data suggest that TORC2 may function to restrain TORC1-driven metabolic activity and mitochondrial regulation in myeloid DC.


Assuntos
Células Dendríticas/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/deficiência , Fenótipo , Transdução de Sinais/genética , Animais , Respiração Celular/efeitos dos fármacos , Respiração Celular/genética , DNA Mitocondrial , Glicólise/efeitos dos fármacos , Glicólise/genética , Complexo de Golgi/metabolismo , Gotículas Lipídicas/metabolismo , Lipopolissacarídeos/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , NF-kappa B/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa , Sirolimo/farmacologia , Transcriptoma
4.
Cell Rep ; 27(10): 3034-3048.e5, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167146

RESUMO

Dermal γδT cells play critical roles in skin homeostasis and inflammation. However, the underlying molecular mechanisms by which these cells are activated have not been fully understood. Here, we show that the mechanistic or mammalian target of rapamycin (mTOR) and STAT3 pathways are activated in dermal γδT cells in response to innate stimuli such as interleukin-1ß (IL-1ß) and IL-23. Although both mTOR complex 1 (mTORC1) and mTORC2 are essential for dermal γδT cell proliferation, mTORC2 deficiency leads to decreased dermal γδT17 cells. It appears that mitochondria-mediated oxidative phosphorylation is critical in this process. Notably, although the STAT3 pathway is critical for dermal Vγ4T17 effector function, it is not required for Vγ6T17 cells. Transcription factor IRF-4 activation promotes dermal γδT cell IL-17 production by linking IL-1ß and IL-23 signaling. The absence of mTORC2 in dermal γδT cells, but not STAT3, ameliorates skin inflammation. Taken together, our results demonstrate that the mTOR-STAT3 signaling differentially regulates dermal γδT cell effector function in skin inflammation.


Assuntos
Linfócitos Intraepiteliais/metabolismo , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Fatores Reguladores de Interferon/antagonistas & inibidores , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interleucina-17/metabolismo , Linfócitos Intraepiteliais/citologia , Alvo Mecanístico do Complexo 2 de Rapamicina/deficiência , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Psoríase/diagnóstico , Psoríase/patologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Pele/metabolismo , Pele/patologia
5.
Kidney Int ; 94(5): 951-963, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30190173

RESUMO

Dendritic cells (DCs) are critical initiators of innate immunity in the kidney and orchestrate inflammation following ischemia-reperfusion injury. The role of the mammalian/mechanistic target of rapamycin (mTOR) in the pathophysiology of renal ischemia-reperfusion injury has been characterized. However, the influence of DC-based alterations in mTOR signaling is unknown. To address this, bone marrow-derived mTORC2-deficient (Rictor-/-) DCs underwent hypoxia-reoxygenation and then analysis by flow cytometry. Adoptive transfer of wild-type or Rictor-/- DC to C57BL/6 mice followed by unilateral or bilateral renal ischemia-reperfusion injury (20 min ischemia) was used to assess their in vivo migratory capacity and influence on tissue injury. Age-matched male DC-specific Rictor-/- mice or littermate controls underwent bilateral renal ischemia-reperfusion, followed by assessment of renal function, histopathology, and biomolecular and cell infiltration analysis. Rictor-/- DCs expressed more costimulatory CD80/CD86 but less coinhibitory programmed death ligand 1 (PDL1), a pattern that was enhanced by hypoxia-reoxygenation. They also demonstrated enhanced migration to the injured kidney and induced greater tissue damage. Following ischemia-reperfusion, Rictor-/- DC mice developed higher serum creatinine levels, more severe histological damage, and greater proinflammatory cytokine production compared to littermate controls. Additionally, a greater influx of both neutrophils and T cells was seen in Rictor-/- DC mice, along with CD11c+MHCII+CD11bhiF4/80+ renal DC, that expressed more CD86 but less PDL1. Thus, DC-targeted elimination of Rictor enhances inflammation and migratory responses to the injured kidney, highlighting the regulatory roles of both DCs and Rictor in the pathophysiology of acute kidney injury.


Assuntos
Injúria Renal Aguda/etiologia , Células Dendríticas/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/fisiologia , Animais , Antígeno B7-2/análise , Citocinas/genética , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/deficiência , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Transdução de Sinais/fisiologia
6.
Circ Res ; 122(3): 489-505, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29420210

RESUMO

The mTOR (mechanistic target of rapamycin) is a master regulator of several crucial cellular processes, including protein synthesis, cellular growth, proliferation, autophagy, lysosomal function, and cell metabolism. mTOR interacts with specific adaptor proteins to form 2 multiprotein complexes, called mTORC1 (mTOR complex 1) and mTORC2 (mTOR complex 2). In the cardiovascular system, the mTOR pathway regulates both physiological and pathological processes in the heart. It is needed for embryonic cardiovascular development and for maintaining cardiac homeostasis in postnatal life. Studies involving mTOR loss-of-function models revealed that mTORC1 activation is indispensable for the development of adaptive cardiac hypertrophy in response to mechanical overload. mTORC2 is also required for normal cardiac physiology and ensures cardiomyocyte survival in response to pressure overload. However, partial genetic or pharmacological inhibition of mTORC1 reduces cardiac remodeling and heart failure in response to pressure overload and chronic myocardial infarction. In addition, mTORC1 blockade reduces cardiac derangements induced by genetic and metabolic disorders and has been reported to extend life span in mice. These studies suggest that pharmacological targeting of mTOR may represent a therapeutic strategy to confer cardioprotection, although clinical evidence in support of this notion is still scarce. This review summarizes and discusses the new evidence on the pathophysiological role of mTOR signaling in the cardiovascular system.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Transdução de Sinais , Serina-Treonina Quinases TOR/fisiologia , Adaptação Fisiológica , Animais , Autofagia , Cardiomegalia/fisiopatologia , Sobrevivência Celular , Metabolismo Energético , Regulação da Expressão Gênica , Cardiopatias/tratamento farmacológico , Cardiopatias/enzimologia , Cardiopatias/fisiopatologia , Humanos , Hipóxia/metabolismo , Metabolismo dos Lipídeos , Mamíferos/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/deficiência , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/deficiência , Alvo Mecanístico do Complexo 2 de Rapamicina/fisiologia , Camundongos , Mitocôndrias/metabolismo , Modelos Cardiovasculares , Biogênese de Organelas , Biossíntese de Proteínas , Estresse Mecânico
7.
J Lipid Res ; 58(9): 1797-1807, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28679588

RESUMO

Mechanistic target of rapamycin complex (mTORC)1 activity is increased in adipose tissue of obese insulin-resistant mice, but its role in the regulation of tissue inflammation is unknown. Herein, we investigated the effects of adipocyte mTORC1 deficiency on adipose tissue inflammation and glucose homeostasis. For this, mice with adipocyte raptor deletion and controls fed a chow or a high-fat diet were evaluated for body mass, adiposity, glucose homeostasis, and adipose tissue inflammation. Despite reducing adiposity, adipocyte mTORC1 deficiency promoted hepatic steatosis, insulin resistance, and adipose tissue inflammation (increased infiltration of macrophages, neutrophils, and B lymphocytes; crown-like structure density; TNF-α, interleukin (IL)-6, and monocyte chemoattractant protein 1 expression; IL-1ß protein content; lipid peroxidation; and de novo ceramide synthesis). The anti-oxidant, N-acetylcysteine, partially attenuated, whereas treatment with de novo ceramide synthesis inhibitor, myriocin, completely blocked adipose tissue inflammation and nucleotide oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3)-inflammasome activation, but not hepatic steatosis and insulin resistance induced by adipocyte raptor deletion. Rosiglitazone treatment, however, completely abrogated insulin resistance induced by adipocyte raptor deletion. In conclusion, adipocyte mTORC1 deficiency induces adipose tissue inflammation and NLRP3-inflammasome activation by promoting oxidative stress and de novo ceramide synthesis. Such adipose tissue inflammation, however, is not an underlying cause of the insulin resistance displayed by these mice.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/patologia , Ceramidas/biossíntese , Inflamassomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Adipócitos/efeitos dos fármacos , Adipócitos/patologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Alvo Mecanístico do Complexo 2 de Rapamicina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...