Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 20(1): 890, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752673

RESUMO

BACKGROUND: Dictyostelid social amoebas self-organize into fruiting bodies, consisting of spores and up to four supporting cell types in the phenotypically most complex taxon group 4. High quality genomes and stage- and cell-type specific transcriptomes are available for representative species of each of the four taxon groups. To understand how evolution of gene regulation in Dictyostelia contributed to evolution of phenotypic complexity, we analysed conservation and change in abundance, functional domain architecture and developmental regulation of their transcription factors (TFs). RESULTS: We detected 440 sequence-specific TFs across 33 families, of which 68% were upregulated in multicellular development and about half conserved throughout Dictyostelia. Prespore cells expressed two times more TFs than prestalk cells, but stalk cells expressed more TFs than spores, suggesting that gene expression events that define spores occur earlier than those that define stalk cells. Changes in TF developmental expression, but not in TF abundance or functional domains occurred more frequently between group 4 and groups 1-3, than between the more distant branches formed by groups 1 + 2 and 3 + 4. CONCLUSIONS: Phenotypic innovation is correlated with changes in TF regulation, rather than functional domain- or TF acquisition. The function of only 34 TFs is known. Of 12 TFs essential for cell differentiation, 9 are expressed in the cell type for which they are required. The information acquired here on conserved cell type specifity of 120 additional TFs can effectively guide further functional analysis, while observed evolutionary change in TF developmental expression may highlight how genotypic change caused phenotypic innovation.


Assuntos
Amebozoários/genética , Evolução Molecular , Fatores de Transcrição/genética , Amebozoários/classificação , Amebozoários/crescimento & desenvolvimento , Amebozoários/metabolismo , Dictyostelium/genética , Regulação da Expressão Gênica no Desenvolvimento , Fenótipo , Filogenia , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcriptoma
2.
Protist ; 170(2): 153-167, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31071676

RESUMO

Growth rates of Paramoeba perurans cultures under different temperature and salinity conditions were investigated in vitro over a 15day period. Optimal population growth, under the experimental conditions, was observed at 15°C and a salinity of 35‰, with amoebae populations doubling every 14h. Positive P. perurans populations growth was observed at 15°C between salinities of above 20‰ and 50‰, and at 8°C, 11°C and 18°C at salinities between 25‰ and 50‰, 50‰ being the maximum salinity tested. Amoebae numbers were sustained at 4°C. Therefore, lower temperature and salinity thresholds for P. perurans population growth lie between 4 to 8°C, and salinities of 20 to 25‰, respectively. Upper limits were not determined in this study. The populations remained relatively stable at 4°C and 2°C at permissive salinities with respect to numbers of viable amoebae over the 15day exposure period.


Assuntos
Amebozoários/fisiologia , Salinidade , Temperatura , Amebozoários/crescimento & desenvolvimento , Técnicas In Vitro , Análise de Sobrevida
3.
Parasitology ; 146(4): 533-542, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30355379

RESUMO

Population growth, in vitro, of three Paramoeba perurans cultures, one polyclonal (G) and two clonal (B8, CE6, derived from G), previously shown to differ in virulence (B8 > G > CE6), was compared at 10 and 15 °C. B8 showed a significantly higher increase in attached and in suspended amoebae over time at 15 and 10 °C, respectively. CE6 and G also had significantly higher numbers of suspended amoebae at 10 °C compared with 15 °C at experiment termination. However, in contrast to B8, numbers of attached amoebae were significantly higher at 10 °C in CE6 but showed a similar trend in G at the end of the experiment. Numbers of both suspended and attached amoebae were lower in B8 compared with CE6 and G. Significant differences in bacterial community composition and/or relative abundances were found, between cultures, between temperatures and between the same culture with and without amoebae, based on 16S rRNA Illumina MiSeq sequencing. Bacterial diversity was lower in B8 and CE6 compared with G, possibly reflecting selection during clonal isolation. The results indicate that polyclonal P. perurans populations may contain amoebae displaying different growth dynamics. Further studies are required to determine if these differences are linked to differences seen in the bacterial communities.


Assuntos
Amebozoários/crescimento & desenvolvimento , Microbiota , Amebíase/parasitologia , Amebíase/veterinária , Amebozoários/microbiologia , Animais , Doenças dos Peixes/parasitologia , Salmo salar , Temperatura
4.
Microbiology (Reading) ; 164(5): 727-739, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29620506

RESUMO

Not long ago, protists were considered one of four eukaryote kingdoms, but recent gene-based phylogenies show that they contribute to all nine eukaryote subdomains. The former kingdoms of animals, plants and fungi are now relegated to lower ranks within subdomains. Most unicellular protists respond to adverse conditions by differentiating into dormant walled cysts. As cysts, they survive long periods of starvation, drought and other environmental threats, only to re-emerge when conditions improve. For protists pathogens, the resilience of their cysts can prevent successful treatment or eradication of the disease. In this context, effort has been directed towards understanding the molecular mechanisms that control encystation. We here firstly summarize the prevalence of encystation across protists and next focus on Amoebozoa, where most of the health-related issues occur. We review current data on processes and genes involved in encystation of the obligate parasite Entamoeba histolytica and the opportunistic pathogen Acanthamoeba. We show how the cAMP-mediated signalling pathway that controls spore and stalk cell encapsulation in Dictyostelium fruiting bodies could be retraced to a stress-induced pathway controlling encystation in solitary Amoebozoa. We highlight the conservation and prevalence of cAMP signalling genes in Amoebozoan genomes and the suprisingly large and varied repertoire of proteins for sensing and processing environmental signals in individual species.


Assuntos
Amebozoários/crescimento & desenvolvimento , AMP Cíclico/metabolismo , Eucariotos/crescimento & desenvolvimento , Encistamento de Parasitas , Transdução de Sinais , Amebozoários/classificação , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Encistamento de Parasitas/genética , Filogenia , Proteínas de Protozoários/metabolismo , Esporos de Protozoários/genética , Esporos de Protozoários/crescimento & desenvolvimento , Estresse Fisiológico
5.
Arch Microbiol ; 200(6): 859-867, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29455239

RESUMO

Candidatus Syngnamydia salmonis (Chlamydiales, Simkaniaceae) was described as an epitheliocystis-causing bacterium from the gills of Atlantic salmon (Salmo salar) in Norway. A bacterium showing 99.2% 16S rRNA identity to Cand. S. salmonis is able to multiply in Paramoeba perurans and based on the classification criteria this bacterium could represent the same species as Cand. S. salmonis. Sequencing the genome of the cultured bacterium has made it possible to fulfill the minimal standards for genetic characterization of species within the order Chlamydiales. The complete rRNA genes, the amino acid sequences of SucA, PepF, Adk, HemL, DnaA, FtsK and FabI, are presented in addition to the morphology of the Chlamydia-like morphs in the cytoplasm of P. perurans.


Assuntos
Amebozoários/microbiologia , Chlamydiales/genética , Chlamydiales/isolamento & purificação , Amebozoários/crescimento & desenvolvimento , Animais , Infecções Bacterianas , Chlamydiales/crescimento & desenvolvimento , Técnicas de Cocultura , Doenças dos Peixes/microbiologia , Genótipo , Brânquias/microbiologia , Noruega , RNA Ribossômico 16S/genética , Salmo salar/microbiologia
6.
Genome Biol Evol ; 10(2): 591-606, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29378020

RESUMO

Establishment of multicellularity represents a major transition in eukaryote evolution. A subgroup of Amoebozoa, the dictyosteliids, has evolved a relatively simple aggregative multicellular stage resulting in a fruiting body supported by a stalk. Protosteloid amoeba, which are scattered throughout the amoebozoan tree, differ by producing only one or few single stalked spores. Thus, one obvious difference in the developmental cycle of protosteliids and dictyosteliids seems to be the establishment of multicellularity. To separate spore development from multicellular interactions, we compared the genome and transcriptome of a Protostelium species (Protostelium aurantium var. fungivorum) with those of social and solitary members of the Amoebozoa. During fruiting body formation nearly 4,000 genes, corresponding to specific pathways required for differentiation processes, are upregulated. A comparison with genes involved in the development of dictyosteliids revealed conservation of >500 genes, but most of them are also present in Acanthamoeba castellanii for which fruiting bodies have not been documented. Moreover, expression regulation of those genes differs between P. aurantium and Dictyostelium discoideum. Within Amoebozoa differentiation to fruiting bodies is common, but our current genome analysis suggests that protosteliids and dictyosteliids used different routes to achieve this. Most remarkable is both the large repertoire and diversity between species in genes that mediate environmental sensing and signal processing. This likely reflects an immense adaptability of the single cell stage to varying environmental conditions. We surmise that this signaling repertoire provided sufficient building blocks to accommodate the relatively simple demands for cell-cell communication in the early multicellular forms.


Assuntos
Amebozoários/crescimento & desenvolvimento , Amebozoários/genética , Regulação da Expressão Gênica no Desenvolvimento , Amebozoários/citologia , Comunicação Celular , Dictyostelium/citologia , Dictyostelium/genética , Dictyostelium/crescimento & desenvolvimento , Evolução Molecular , Filogenia , Proteínas de Protozoários/genética , Transcriptoma
7.
J Fish Dis ; 41(2): 291-298, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28944485

RESUMO

There have been recent efforts amongst immunologists to develop approaches for following individual fish during challenges with viral and bacterial pathogens. This study contributes to assessing the feasibility of using such approaches to study amoebic gill disease (AGD). Neoparamoeba perurans, agent of AGD, has been responsible for widespread economic and fish loss in salmonid aquaculture. With the emergence of AGD in Europe, research into infection dynamics and host response has increased. This study investigated the effect of repeat exposure to anaesthesia, a necessary requirement when following disease progression in individual fish, on N. perurans. In vitro cultures of N. perurans were exposed every 4 days over a 28-day period to AQUI-S® (isoeugenol), a popular anaesthetic choice for AGD challenges, at a concentration and duration required to sedate post-smolt salmonids. Population growth was measured by sequential counts of amoeba over the period, while viability of non-attached amoeba in the culture was assessed with a vital stain. AQUI-S® was found to be a suitable choice for in vivo ectoparasitic challenges with N. perurans during which repetitive anaesthesia is required for analysis of disease progression.


Assuntos
Aminobenzoatos/efeitos adversos , Amebozoários/efeitos dos fármacos , Amebozoários/fisiologia , Anestésicos/efeitos adversos , Etomidato/análogos & derivados , Eugenol/análogos & derivados , Amebíase/parasitologia , Amebíase/veterinária , Amebozoários/crescimento & desenvolvimento , Animais , Relação Dose-Resposta a Droga , Etomidato/efeitos adversos , Eugenol/efeitos adversos , Doenças dos Peixes/parasitologia , Crescimento Demográfico
8.
Sci Rep ; 7(1): 11688, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916813

RESUMO

Endosymbiotic relationships between eukaryotic and prokaryotic cells are common in nature. Endosymbioses between two eukaryotes are also known; cyanobacterium-derived plastids have spread horizontally when one eukaryote assimilated another. A unique instance of a non-photosynthetic, eukaryotic endosymbiont involves members of the genus Paramoeba, amoebozoans that infect marine animals such as farmed fish and sea urchins. Paramoeba species harbor endosymbionts belonging to the Kinetoplastea, a diverse group of flagellate protists including some that cause devastating diseases. To elucidate the nature of this eukaryote-eukaryote association, we sequenced the genomes and transcriptomes of Paramoeba pemaquidensis and its endosymbiont Perkinsela sp. The endosymbiont nuclear genome is ~9.5 Mbp in size, the smallest of a kinetoplastid thus far discovered. Genomic analyses show that Perkinsela sp. has lost the ability to make a flagellum but retains hallmark features of kinetoplastid biology, including polycistronic transcription, trans-splicing, and a glycosome-like organelle. Mosaic biochemical pathways suggest extensive 'cross-talk' between the two organisms, and electron microscopy shows that the endosymbiont ingests amoeba cytoplasm, a novel form of endosymbiont-host communication. Our data reveal the cell biological and biochemical basis of the obligate relationship between Perkinsela sp. and its amoeba host, and provide a foundation for understanding pathogenicity determinants in economically important Paramoeba.


Assuntos
Amebozoários/crescimento & desenvolvimento , Amebozoários/metabolismo , Kinetoplastida/crescimento & desenvolvimento , Kinetoplastida/metabolismo , Simbiose , Amebozoários/genética , Genoma de Protozoário , Kinetoplastida/genética , Análise de Sequência de DNA
9.
J Eukaryot Microbiol ; 64(2): 257-265, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27543384

RESUMO

Since the first environmental DNA surveys, entire groups of sequences called "environmental clades" did not have any cultured representative. LKM74 is an amoebozoan clade affiliated to Dermamoebidae, whose presence is pervasively reported in soil and freshwater. We obtained an isolate from soil that we assigned to LKM74 by molecular phylogeny, close related to freshwater clones. We described Mycamoeba gemmipara based on observations made with light- and transmission electron microscopy. It is an extremely small amoeba with typical lingulate shape. Unlike other Dermamoebidae, it lacked ornamentation on its cell membrane, and condensed chromatin formed characteristic patterns in the nucleus. M. gemmipara displayed a unique life cycle: trophozoites formed walled coccoid stages which grew through successive buddings and developed into branched structures holding cysts. These structures, measuring hundreds of micrometres, are built as the exclusive product of osmotrophic feeding. To demonstrate that M. gemmipara is a genuine soil inhabitant, we screened its presence in an environmental soil DNA diversity survey performed on an experimental setup where pig cadavers were left to decompose in soils to follow changes in eukaryotic communities. Mycamoeba gemmipara was present in all samples, although related reads were uncommon underneath the cadaver.


Assuntos
Amebozoários/classificação , Amebozoários/crescimento & desenvolvimento , Meio Ambiente , Estágios do Ciclo de Vida , Filogenia , Amoeba/classificação , Amoeba/citologia , Amebozoários/genética , Amebozoários/ultraestrutura , Animais , Biodiversidade , Cadáver , Membrana Celular , DNA de Protozoário/genética , Água Doce/parasitologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microscopia Eletrônica de Transmissão , Organelas/ultraestrutura , RNA Ribossômico 18S/genética , Solo/parasitologia , Suínos/parasitologia , Suíça , Trofozoítos/crescimento & desenvolvimento
10.
Protist ; 165(3): 364-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24859009

RESUMO

Amoebae of the genus Cochliopodium are characterized by a tectum that is a layer of scales covering the dorsal surface of the cell. A combination of scale structure, morphological features and, nowadays, molecular information allows species discrimination. Here we describe a soil species Cochliopodium plurinucleolum n. sp. that besides strong genetic divergence from all currently described species of Cochliopodium differs morphologically by the presence of several peripheral nucleoli in the nucleus. Further, we unambiguously show that the Golgi attachment associated with a dictyosome in Cochliopodium is a cytoplasmic microtubule organizing center (MTOC). Last, we provide detailed morphological and molecular information on the sister clade of C. plurinucleolum, containing C. minus, C. minutoidum, C. pentatrifurcatum and C. megatetrastylus. These species share nearly identical sequences of both, small subunit ribosomal RNA and partial Cox1 genes, and nearly identical structure of the scales. Scales of C. pentatrifurcatum differ, however, strongly from scales of the others while sequences of C. pentatrifurcatum and C. minus are nearly identical. These discrepancies urge for future sampling efforts to disentangle species characteristics within Cochliopdium and to investigate morphological and molecular patterns that allow reliable species differentiation.


Assuntos
Amebozoários/classificação , Amebozoários/crescimento & desenvolvimento , Amebozoários/genética , Amebozoários/metabolismo , Sequência de Bases , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Centro Organizador dos Microtúbulos/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
11.
Ying Yong Sheng Tai Xue Bao ; 24(6): 1633-8, 2013 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-24066551

RESUMO

A field experiment with successive planting of tomato was conducted to study the effects of adding different amounts of winter wheat straw (2.08 g x kg(-1), 1N; 4.16 g x kg(-1), 2N; and 8.32 g x kg(-1), 4N) to the soil seriously suffered from root knot nematode disease on the soil microbial biomass and protozoa abundance. Adding straw carbon source had significant effects on the contents of soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) and the abundance of soil protozoa, which all decreased in the order of 4N > 2N > 1N > CK. The community structure of soil protozoa also changed significantly under straw addition. In the treatments with straw addition, the average proportion of fagellate, amoeba, and ciliates accounted for 36.0%, 59.5%, and 4.5% of the total protozoa, respectively. Under the same adding amounts of wheat straw, there was an increase in the soil MBC and MBN contents, MBC/MBN ratio, and protozoa abundance with increasing cultivation period.


Assuntos
Carbono/metabolismo , Nematoides/fisiologia , Microbiologia do Solo , Solo/parasitologia , Amebozoários/crescimento & desenvolvimento , Animais , Biomassa , Ecossistema , Caules de Planta/química , Triticum/química
12.
Int J Parasitol ; 42(5): 511-5, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22549025

RESUMO

Amoebic gill disease (AGD) in marine farmed Atlantic salmon is of growing concern worldwide and remains a significant health issue for salmon growers in Australia. Until now the aetiological agent, Neoparamoeba perurans, has not been amenable to in vitro culture and therefore Koch's postulates could not be fulfilled. The inability to culture the amoeba has been a limiting factor in the progression of research into AGD and required the maintenance of an on-going laboratory-based infection to supply infective material. Culture methods using malt yeast agar with sea water overlaid and subculturing every 3-4 days have resulted in the establishment of a clonal culture of N. perurans, designated clone 4. Identity of the amoeba was confirmed by PCR. After 70 days in culture clone 4 infected Atlantic salmon, causing AGD, and was re-isolated from the infected fish. Diagnosis was confirmed by histology and the infectious agent identified by PCR and in situ hybridisation using oligonucleotide primers and probes previously developed and specific to N. perurans. This study has fulfilled Koch's postulates for N. perurans as a causative agent of AGD and illustrates its free-living and parasitic nature.


Assuntos
Amebíase/veterinária , Amebozoários/crescimento & desenvolvimento , Amebozoários/patogenicidade , Doenças dos Peixes/parasitologia , Brânquias/parasitologia , Salmo salar/parasitologia , Amebíase/parasitologia , Amebíase/patologia , Amebozoários/isolamento & purificação , Animais , Austrália , DNA de Protozoário/genética , DNA de Protozoário/isolamento & purificação , Doenças dos Peixes/patologia , Brânquias/patologia , Histocitoquímica , Parasitologia/métodos , Reação em Cadeia da Polimerase
13.
Protist ; 163(1): 25-37, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21371934

RESUMO

The social amoebae (Dictyostelia) use quorum sensing-like communication systems to coordinate the periodic transition from uni- to multicellularity. The monophyletic descent of the Dictyostelia provides a unique opportunity to study the origin and adaptive evolution of such intercellular communication systems. We determined that the ability of aggregation-competent cells to respond to the intercellular messenger glorin occurred in the most ancient taxa of the Dictyostelia. We show using Illumina sequencing technology that glorin mediates rapid changes in gene expression at the transition from vegetative growth to aggregation. We conclude that peptide-based communication is the most ancient form of intercellular signaling in the evolution of multicellularity in the social amoebae, but has been repeatedly replaced by other communication systems during the monophyletic evolution of the social amoebae. Glorin communication has parallels with quorum sensing in that the molecule diffuses into the field, stimulates gene expression in receptive cells and coordinates a population-wide response.


Assuntos
Amebozoários/crescimento & desenvolvimento , Amebozoários/fisiologia , Comunicação Celular , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Protozoários/genética , Amebozoários/classificação , Amebozoários/genética , Evolução Biológica , Dipeptídeos/metabolismo , Lactamas/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Protozoários/metabolismo
14.
Microb Ecol ; 62(2): 361-73, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21424821

RESUMO

The role of microhabitat and climate variation in structuring protosteloid amoebae communities has been investigated for the first time in the Mediterranean Basin, a biodiversity hotspot for plants and animals and the largest of the world's five areas with a Mediterranean climate. Abundance data were obtained from natural substrates collected in 13 localities from central Spain, and a total of 1,504 colonies and 18 species were recorded. For this new area, it has been carried out an optimization of the culturing effort based on rarefaction analyses, thus making possible to adapt the protocol to the objectives in future research. Canonical correspondence analysis and generalized linear models showed that microhabitat type was the most important factor for differentiating the niches of the species studied, but climatic variables, especially minimum temperature of the coldest month, precipitation seasonality, and temperature range, had secondary but also important effects. Bark inhabitants tend to be more abundant in localities with high temperature range and low annual precipitation. Aerial litter was the microhabitat with the highest species richness, abundance, and evenness. Species typical of this microhabitat are more abundant when there is high precipitation, low temperature of the warmest month, and low minimum temperature of the coldest month.


Assuntos
Amebozoários/crescimento & desenvolvimento , Biota , Clima , Amebozoários/isolamento & purificação , Técnicas de Cultura , Análise de Regressão , Espanha , Especificidade da Espécie , Temperatura
15.
FEMS Microbiol Lett ; 316(1): 16-22, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21204921

RESUMO

Different features can protect bacteria against protozoan grazing, for example large size, rapid movement, and production of secondary metabolites. Most papers dealing with these matters focus on bacteria. Here, we describe protozoan features that affect their ability to grow on secondary-metabolite-producing bacteria, and examine whether different bacterial secondary metabolites affect protozoa similarly. We investigated the growth of nine different soil protozoa on six different Pseudomonas strains, including the four secondary-metabolite-producing Pseudomonas fluorescens DR54 and CHA0, Pseudomonas chlororaphis MA342 and Pseudomonas sp. DSS73, as well as the two nonproducers P. fluorescens DSM50090(T) and P. chlororaphis ATCC43928. Secondary metabolite producers affected protozoan growth differently. In particular, bacteria with extracellular secondary metabolites seemed more inhibiting than bacteria with membrane-bound metabolites. Interestingly, protozoan response seemed to correlate with high-level protozoan taxonomy, and amoeboid taxa tolerated a broader range of Pseudomonas strains than did the non-amoeboid taxa. This stresses the importance of studying both protozoan and bacterial characteristics in order to understand bacterial defence mechanisms and potentially improve survival of bacteria introduced into the environment, for example for biocontrol purposes.


Assuntos
Amebozoários/crescimento & desenvolvimento , Cercozoários/crescimento & desenvolvimento , Chrysophyta/crescimento & desenvolvimento , Enterobacter aerogenes/metabolismo , Hartmannella/crescimento & desenvolvimento , Kinetoplastida/crescimento & desenvolvimento , Pseudomonas/metabolismo , Amebozoários/metabolismo , Cercozoários/metabolismo , Chrysophyta/metabolismo , Enterobacter aerogenes/crescimento & desenvolvimento , Hartmannella/metabolismo , Kinetoplastida/metabolismo , Pseudomonas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...