Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Int J Pharm ; 656: 124056, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38548072

RESUMO

Bacterial corneal keratitis is a damage to the corneal tissue that if not treated, can cause various complications like severe vision loss or even blindness. Combination therapy with two antibiotics which are effective against Gram-positive and Gram-negative bacteria offers sufficient broad-spectrum antibiotic coverage for the treatment of keratitis. Nanofibers can be a potential carrier in dual drug delivery due to their structural characteristics, specific surface area and high porosity. In order to achieve a sustained delivery of amikacin (AMK) and vancomycin (VAN), the current study designed, assessed, and compared nanofibrous inserts utilizing polyvinyl alcohol (PVA) and polycaprolactone (PCL) as biocompatible polymers. Electrospinning method was utilized to prepare two different formulations, PVA-VAN/AMK and PCL/PVA-VAN/AMK, with 351.8 ± 53.59 nm and 383.85 ± 49 nm diameters, respectively. The nanofibers were simply inserted in the cul-de-sac as a noninvasive approach for in vivo studies. The data obtained from the physicochemical and mechanical properties studies confirmed the suitability of the formulations. Antimicrobial investigations showed the antibacterial properties of synthesized nanofibers against Staphylococcus aureus and Pseudomonas aeruginosa. Both in vitro and animal studies demonstrated sustained drug release of the prepared nanofibers for 120 h. Based on the in vivo findings, the prepared nanofibers' AUC0-120 was found to be 20 to 31 times greater than the VAN and AMK solutions. Considering the results, the nanofibrous inserts can be utilized as an effective and safe system in drug delivery.


Assuntos
Administração Oftálmica , Amicacina , Antibacterianos , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Nanofibras , Poliésteres , Álcool de Polivinil , Pseudomonas aeruginosa , Staphylococcus aureus , Vancomicina , Animais , Coelhos , Nanofibras/química , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Antibacterianos/química , Álcool de Polivinil/química , Staphylococcus aureus/efeitos dos fármacos , Poliésteres/química , Pseudomonas aeruginosa/efeitos dos fármacos , Vancomicina/administração & dosagem , Vancomicina/farmacocinética , Vancomicina/química , Amicacina/farmacocinética , Amicacina/administração & dosagem , Amicacina/química , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Masculino
2.
Nat Commun ; 14(1): 4666, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537169

RESUMO

Aminoglycosides are a class of antibiotics that bind to ribosomal RNA and exert pleiotropic effects on ribosome function. Amikacin, the semisynthetic derivative of kanamycin, is commonly used for treating severe infections with multidrug-resistant, aerobic Gram-negative bacteria. Amikacin carries the 4-amino-2-hydroxy butyrate (AHB) moiety at the N1 amino group of the central 2-deoxystreptamine (2-DOS) ring, which may confer amikacin a unique ribosome inhibition profile. Here we use in vitro fast kinetics combined with X-ray crystallography and cryo-EM to dissect the mechanisms of ribosome inhibition by amikacin and the parent compound, kanamycin. Amikacin interferes with tRNA translocation, release factor-mediated peptidyl-tRNA hydrolysis, and ribosome recycling, traits attributed to the additional interactions amikacin makes with the decoding center. The binding site in the large ribosomal subunit proximal to the 3'-end of tRNA in the peptidyl (P) site lays the groundwork for rational design of amikacin derivatives with improved antibacterial properties.


Assuntos
Amicacina , Antibacterianos , Amicacina/farmacologia , Amicacina/química , Amicacina/metabolismo , Antibacterianos/química , Modelos Moleculares , Ribossomos/metabolismo , Canamicina/farmacologia , Canamicina/análise , Canamicina/metabolismo , RNA de Transferência/metabolismo
3.
J Vet Pharmacol Ther ; 45(4): 409-414, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35307838

RESUMO

Eight horses underwent IVRLP at two occasions through a 23-gauge 2 cm long butterfly catheter. Regional anaesthesia of the ulnar, median and medial cutaneous antebrachial nerves was performed prior, and an 8 cm rubber tourniquet was placed on the proximal radius for 30 minutes following the infusion. The first infusion consisted of 2 g of amikacin sulphate and 10 mg of dexamethasone phosphate diluted with 0.9% NaCl to a total volume of 100 ml. The second perfusion was performed after a 2-week washout period, the same protocol was used but without dexamethasone phosphate. Synovial fluid samples were collected from the metacarpophalangeal joint at T = 0, 0.5, 2, 12, 24 and 36 h post-infusion. Synovial fluid amikacin sulphate concentrations were determined by use of liquid chromatography/tandem mass-spectrometry. All horses (n = 8) remained healthy throughout the study, and no adverse effects associated with the study were encountered. No statistically significant differences were found in synovial fluid amikacin sulphate concentrations between the treatment and the control group at any of the time points. In conclusion, dexamethasone phosphate can be used in IVRLP concomitantly with amikacin sulphate in cases of distal limb inflammation and pain without decreasing the synovial fluid concentration of amikacin sulphate.


Assuntos
Amicacina , Líquido Sinovial , Amicacina/análise , Amicacina/química , Animais , Antibacterianos/análise , Dexametasona/análogos & derivados , Membro Anterior , Cavalos , Perfusão/veterinária , Líquido Sinovial/química
4.
Microbiol Spectr ; 10(1): e0254621, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35080463

RESUMO

Mycobacterium abscessus is the etiological agent of severe pulmonary infections in vulnerable patients, such as those with cystic fibrosis (CF), where it represents a relevant cause of morbidity and mortality. Treatment of pulmonary infections caused by M. abscessus remains extremely difficult, as this species is resistant to most classes of antibiotics, including macrolides, aminoglycosides, rifamycins, tetracyclines, and ß-lactams. Here, we show that apoptotic body like liposomes loaded with phosphatidylinositol 5-phosphate (ABL/PI5P) enhance the antimycobacterial response, both in macrophages from healthy donors exposed to pharmacological inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) and in macrophages from CF patients, by enhancing phagosome acidification and reactive oxygen species (ROS) production. The treatment with liposomes of wild-type as well as CF mice, intratracheally infected with M. abscessus, resulted in about a 2-log reduction of pulmonary mycobacterial burden and a significant reduction of macrophages and neutrophils in bronchoalveolar lavage fluid (BALF). Finally, the combination treatment with ABL/PI5P and amikacin, to specifically target intracellular and extracellular bacilli, resulted in a further significant reduction of both pulmonary mycobacterial burden and inflammatory response in comparison with the single treatments. These results offer the conceptual basis for a novel therapeutic regimen based on antibiotic and bioactive liposomes, used as a combined host- and pathogen-directed therapeutic strategy, aimed at the control of M. abscessus infection, and of related immunopathogenic responses, for which therapeutic options are still limited. IMPORTANCE Mycobacterium abscessus is an opportunistic pathogen intrinsically resistant to many antibiotics, frequently linked to chronic pulmonary infections, and representing a relevant cause of morbidity and mortality, especially in immunocompromised patients, such as those affected by cystic fibrosis. M. abscessus-caused pulmonary infection treatment is extremely difficult due to its high toxicity and long-lasting regimen with life-impairing side effects and the scarce availability of new antibiotics approved for human use. In this context, there is an urgent need for the development of an alternative therapeutic strategy that aims at improving the current management of patients affected by chronic M. abscessus infections. Our data support the therapeutic value of a combined host- and pathogen-directed therapy as a promising approach, as an alternative to single treatments, to simultaneously target intracellular and extracellular pathogens and improve the clinical management of patients infected with multidrug-resistant pathogens such as M. abscessus.


Assuntos
Antibacterianos/administração & dosagem , Fibrose Cística/imunologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Mycobacterium abscessus/efeitos dos fármacos , Fosfatos de Fosfatidilinositol/administração & dosagem , Amicacina/administração & dosagem , Amicacina/química , Animais , Antibacterianos/química , Fibrose Cística/complicações , Fibrose Cística/genética , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Feminino , Humanos , Lipossomos/química , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Mycobacterium não Tuberculosas/etiologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/fisiologia , Fagossomos/imunologia , Fosfatos de Fosfatidilinositol/química , Espécies Reativas de Oxigênio/imunologia
5.
Vet Dermatol ; 33(1): 23-e8, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34545642

RESUMO

BACKGROUND: Anecdotally, amikacin has been added to compounded topical preparations for the management of canine bacterial otitis externa. However, the stability of amikacin within these solutions is unknown. HYPOTHESIS/OBJECTIVES: The purpose of this study was to determine the stability of amikacin at 10 and 30 mg/mL concentrations in four topical solutions over a 56 day period. We hypothesised that amikacin would maintain chemical stability within the various solutions. METHODS AND MATERIALS: Amikacin was formulated to 10 and 30 mg/mL (1% and 3%) concentrations within four topical solutions: tris-EDTA (TrizEDTA Aqueous Flush) (TE); 0.15% chlorhexidine gluconate and tris-EDTA (TrizCHLOR Flush) (TC); 0.9% NaCl (NA); and 0.9% NaCl + 2 mg/mL dexamethasone (ND). Samples were made in duplicate and stored at room temperature (25°C) for 0, 7,14, 21, 28 and 56 days. Amikacin content was quantified, in triplicate, by ultrahigh-performance liquid chromatography tandem mass spectrometry. RESULTS: The recovered amikacin concentrations for the 10 mg/mL solutions ranged from 10 to 13.5 mg/mL (mean 11.5 mg/mL) with the exception of NA sample 2 at Day (D)0 (9.4 mg/mL) and D7 (9.2 mg/mL). The recovered amikacin concentrations for the 30 mg/mL solutions ranged from 30 to 40.2 mg/mL (mean 35.7 mg/mL). No significant difference was seen between the amikacin concentrations at D0 compared to D56 for all solutions except 10 mg/mL TE (P < 0.001). CONCLUSIONS AND CLINICAL RELEVANCE: Amikacin maintained stability within TE, TC, NA and ND over 56 days except when formulated at 10 mg/mL within TE.


Assuntos
Amicacina/química , Estabilidade de Medicamentos , Animais , Cromatografia Líquida de Alta Pressão/veterinária , Doenças do Cão/tratamento farmacológico , Cães , Otite Externa/veterinária , Soluções
6.
Eur J Hosp Pharm ; 29(e1): e77-e82, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34789474

RESUMO

OBJECTIVES: As part of the service provided by clinical pharmacists in our hospital, an assay for plasma amikacin quantification by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been established for clinical use since 2018. This study was undertaken to describe: (1) the establishment of this assay; (2) the application and results of the testing; and (3) the analysis and impact for patients. METHODS: The amikacin quantification assay was validated and the plasma amikacin concentration data were extracted and analysed. The clinical data for related patients were collected from electronic health and medical records. RESULTS: 121 plasma samples from 53 patients were included in this statistical analysis. The use of amikacin was mostly monitored in the intensive care unit and the haematology department, and the monitoring range of amikacin concentrations were about 0.1-57µg/mL. The main indications for amikacin concentration detection were combined medications, impaired renal function, or people over 65 years old, which may increase the incidence of adverse reactions. Amikacin prescribing decisions were diversified due to the combination of assay results and clinical disease progression, and the effective rate of amikacin administration was about 52.8% (28/53). CONCLUSIONS: The assay for plasma amikacin concentration has been successfully established to monitor the clinical use of amikacin, and the assay results served as one of the references for amikacin prescribing decisions.


Assuntos
Amicacina , Monitoramento de Medicamentos , Idoso , Amicacina/química , Cromatografia Líquida/métodos , Monitoramento de Medicamentos/métodos , Humanos , Farmacêuticos , Espectrometria de Massas em Tandem/métodos
7.
PLoS One ; 16(10): e0258426, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34648556

RESUMO

Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) poses a major threat to human health worldwide. Combination therapies of antibiotics with different mechanisms have been recommended in literatures. This study assessed in vitro antibacterial activities and synergistic activities of ceftazidime/avibactam alone and in combinations against KPC-Kp. In total, 70 isolates from 2 hospitals in Beijing were examined in our study. By using the agar dilution method and broth dilution method, we determined the minimum inhibitory concentration (MIC) of candidate antibiotics. Ceftazidime/avibactam demonstrated promising susceptibility against KPC-Kp (97.14%). Synergistic activities testing was achieved by checkerboard method and found ceftazidime/avibactam-amikacin displayed synergism in 90% isolates. Ceftazidime/avibactam-colistin displayed partial synergistic in 43% isolates, and ceftazidime/avibactam-tigecycline displayed indifference in 67% isolates. In time-kill assays, antibiotics at 1-fold MIC were mixed with bacteria at 1 × 105 CFU/ml and Mueller-Hinton broth (MHB). Combinations of ceftazidime/avibactam with amikacin and tigecycline displayed better antibacterial effects than single drug. Ceftazidime/avibactam-colistin combination did not exhibit better effect than single drug. In KPC-Kp infections, susceptibility testing suggested that ceftazidime/avibactam may be considered as first-line choice. However, monotherapy is often inadequate in infection management. Thus, our study revealed that combination therapy including ceftazidime/avibactam colistin and ceftazidime/avibactam tigecycline may benefit than monotherapy in KPC-Kp treatment. Further pharmacokinetic/pharmacodynamic and mutant prevention concentration studies should be performed to optimize multidrug-regimens.


Assuntos
Amicacina/química , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Colistina/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Tigeciclina/química , Antibacterianos/química , Compostos Azabicíclicos/química , Proteínas de Bactérias/metabolismo , Ceftazidima/química , Combinação de Medicamentos , Sinergismo Farmacológico , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana , Fatores de Tempo , beta-Lactamases/metabolismo
8.
Life Sci ; 284: 119883, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390724

RESUMO

Hypodermic delivery of amikacin is a widely adopted treatment modality for severe infections, including bacterial septicemia, meningitis, intra-abdominal infections, burns, postoperative complications, and urinary tract infections in both paediatric and adult populations. In most instances, the course of treatment requires repeated bolus doses of amikacin, prolonged hospitalization, and the presence of a skilled healthcare worker for administration and continuous therapeutic monitoring to manage the severe adverse effects. Amikacin is hydrophilic and exhibits a short half-life, which further challenges the delivery of sufficient systemic concentrations when administered by the oral or transdermal route. In this purview, the exploitation of novel controlled and sustained release drug delivery platforms is warranted. Furthermore, it has been shown that novel delivery systems are capable of increasing the antibacterial activity of amikacin at lower doses when compared to the conventional formulations and also aid in overcoming the development of drug-resistance, which currently is a significant threat to the healthcare system worldwide. The current review presents a comprehensive overview of the developmental history of amikacin, the mechanism of action in virulent strains as well as the occurrence of resistance, and various emerging drug delivery solutions developed both by the academia and the industry. The examples outlined within the review provides significant pieces of evidence on novel amikacin formulations in the field of antimicrobial research paving the path for future therapeutic interventions that will result in improved clinical outcome.


Assuntos
Amicacina/administração & dosagem , Sistemas de Liberação de Medicamentos , Amicacina/química , Amicacina/farmacocinética , Animais , Ensaios Clínicos como Assunto , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Nanopartículas/química , Nanopartículas/ultraestrutura
9.
Mol Pharm ; 18(8): 2986-2996, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34196555

RESUMO

The aim of this study was to fabricate novel microparticles (MPs) for efficient and long-term delivery of amikacin (AMI). The emulsification method proposed for encapsulating AMI employed low-molecular-weight poly(lactic acid) (PLA) and poly(lactic acid-co-polyethylene glycol) (PLA-PEG), both supplemented with poly(vinyl alcohol) (PVA). The diameters of the particles obtained were determined as less than 30 µm. Based on an in-vitro release study, it was proven that the MPs (both PLA/PVA- and PLA-PEG/PVA-based) demonstrated long-term AMI release (2 months), the kinetics of which adhered to the Korsmeyer-Peppas model. The loading efficiencies of AMI in the study were determined at the followings levels: 36.5 ± 1.5 µg/mg for the PLA-based MPs and 106 ± 32 µg/mg for the PLA-PEG-based MPs. These values were relatively high and draw parallels with studies published on the encapsulation of aminoglycosides. The MPs provided antimicrobial action against the Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae bacterial strains. The materials were also comprehensively characterized by the following methods: differential scanning calorimetry; gel permeation chromatography; scanning electron microscopy; Fourier transform infrared spectroscopy-attenuated total reflectance; energy-dispersive X-ray fluorescence; and Brunauer-Emmett-Teller surface area analysis. The findings of this study contribute toward discerning new means for conducting targeted therapy with polar, broad spectrum antibiotics.


Assuntos
Amicacina/administração & dosagem , Antibacterianos/administração & dosagem , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Lactatos/química , Poliésteres/química , Polietilenoglicóis/química , Amicacina/química , Antibacterianos/química , Cápsulas , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peso Molecular , Tamanho da Partícula , Álcool de Polivinil/química , Pseudomonas aeruginosa/efeitos dos fármacos , Solubilidade , Staphylococcus aureus/efeitos dos fármacos
10.
Sci Rep ; 11(1): 11614, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078922

RESUMO

Plazomicin is currently the only next-generation aminoglycoside approved for clinical use that has the potential of evading the effects of widespread enzymatic resistance factors. However, plazomicin is still susceptible to the action of the resistance enzyme AAC(2')-Ia from Providencia stuartii. As the clinical use of plazomicin begins to increase, the spread of resistance factors will undoubtedly accelerate, rendering this aminoglycoside increasingly obsolete. Understanding resistance to plazomicin is an important step to ensure this aminoglycoside remains a viable treatment option for the foreseeable future. Here, we present three crystal structures of AAC(2')-Ia from P. stuartii, two in complex with acetylated aminoglycosides tobramycin and netilmicin, and one in complex with a non-substrate aminoglycoside, amikacin. Together, with our previously reported AAC(2')-Ia-acetylated plazomicin complex, these structures outline AAC(2')-Ia's specificity for a wide range of aminoglycosides. Additionally, our survey of AAC(2')-I homologues highlights the conservation of residues predicted to be involved in aminoglycoside binding, and identifies the presence of plasmid-encoded enzymes in environmental strains that confer resistance to the latest next-generation aminoglycoside. These results forecast the likely spread of plazomicin resistance and highlight the urgency for advancements in next-generation aminoglycoside design.


Assuntos
Acetiltransferases/química , Antibacterianos/química , Proteínas de Bactérias/química , Farmacorresistência Bacteriana/genética , Providencia/enzimologia , Sisomicina/análogos & derivados , Acetiltransferases/genética , Acetiltransferases/metabolismo , Amicacina/química , Amicacina/metabolismo , Amicacina/farmacologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Modelos Moleculares , Netilmicina/química , Netilmicina/metabolismo , Netilmicina/farmacologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Providencia/química , Providencia/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sisomicina/química , Sisomicina/metabolismo , Sisomicina/farmacologia , Especificidade por Substrato , Tobramicina/química , Tobramicina/metabolismo , Tobramicina/farmacologia
11.
Eur J Pharm Biopharm ; 162: 82-91, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33737147

RESUMO

AIM: The aim was to develop a self-emulsifying drug delivery system (SEDDS) for amikacin via imine bond formation with hydrophobic aldehydes. METHODS: Trans-2, cis-6-nonadienal, trans-cinnamaldehyde, citral and benzaldehyde were conjugated to amikacin at pH 8.5. Based on results of precipitation efficiency, Fourier-transform infrared spectroscopy (FTIR) and NMR analysis, amikacin-trans-cinnamaldehyde conjugates were further characterized regarding log Poctanol/water via HPLC. The release of amikacin from the amikacin-trans-cinnamaldehyde conjugates was examined through in vitro incubation with bovine serum albumin (BSA). SEDDS containing the amikacin-trans-cinnamaldehyde conjugates were tested regarding mean droplet size (MDS), polydispersity index (PDI), log DSEDDS/release medium and cell viability. RESULTS: Trans-cinnamaldehyde formed the most hydrophobic conjugates with amikacin whereas benzaldehyde did not form hydrophobic conjugates at all. Imine bond formation was confirmed by FTIR and NMR analysis. The highest increase in log P was achieved for the amikacin-trans-cinnamaldehyde conjugate in a molar ratio of 1:5, shifting from -8.58 up to 1.59. Incubation of this conjugate with BSA led to the formation of BSA-trans-cinnamaldehyde releasing in turn amikacin. SEDDS based on Capmul MCM, Cremophor EL and propylene glycol containing the conjugate demonstrated a MDS of 61.4 nm and PDI of 0.265. Log DSEDDS/release medium was calculated to be 3.38. Cell viability studies showed very good tolerability of conjugate loaded SEDDS in concentrations of 0.1% - 0.5%. CONCLUSION: Imine bond formation of amikacin with trans-cinnamaldehyde and the incorporation of the resulting conjugate into SEDDS represents a promising strategy for oral delivery of amikacin.


Assuntos
Amicacina/farmacocinética , Portadores de Fármacos/química , Acroleína/análogos & derivados , Acroleína/química , Administração Oral , Amicacina/administração & dosagem , Amicacina/química , Benzaldeídos/química , Células CACO-2 , Liberação Controlada de Fármacos , Emulsões , Humanos , Interações Hidrofóbicas e Hidrofílicas , Permeabilidade , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Solubilidade , Testes de Toxicidade Aguda
12.
Molecules ; 26(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513993

RESUMO

Amikacin (Amk) analysis and quantitation, for pharmacokinetics studies and other types of investigations, is conventionally performed after extraction from plasma. No report exists so far regarding drug extraction from whole blood (WB). This can represent an issue since quantification in plasma does not account for drug partitioning to the blood cell compartment, significantly underrating the drug fraction reaching the blood circulation. In the present work, the optimization of an extraction method of Amk from murine WB has been described. The extraction yield was measured by RP-HPLC-UV after derivatization with 1-fluoro-2,4-dinitrobenzene, which produced an appreciably stable derivative with a favorable UV/vis absorption. Several extraction conditions were tested: spiked Amk disulfate solution/acetonitrile/WB ratio; presence of organic acids and/or ammonium hydroxide and/or ammonium acetate in the extraction mixture; re-dissolution of the supernatant in water after a drying process under vacuum; treatment of the supernatant with a solution of inorganic salts. The use of 5% (by volume) of ammonium hydroxide in a hydro-organic solution with acetonitrile, allowed the almost quantitative (95%) extraction of the drug from WB.


Assuntos
Amicacina/química , Sangue/metabolismo , Plasma/química , Acetonitrilas/química , Hidróxido de Amônia/química , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Feminino , Camundongos
13.
J Nanobiotechnology ; 18(1): 174, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228673

RESUMO

BACKGROUND: Treatment of patients affected by severe burns is challenging, especially due to the high risk of Pseudomonas infection. In the present work, we have generated a novel model of bioartificial human dermis substitute by tissue engineering to treat infected wounds using fibrin-agarose biomaterials functionalized with nanostructured lipid carriers (NLCs) loaded with two anti-Pseudomonas antibiotics: sodium colistimethate (SCM) and amikacin (AMK). RESULTS: Results show that the novel tissue-like substitutes have strong antibacterial effect on Pseudomonas cultures, directly proportional to the NLC concentration. Free DNA quantification, WST-1 and Caspase 7 immunohistochemical assays in the functionalized dermis substitute demonstrated that neither cell viability nor cell proliferation were affected by functionalization in most study groups. Furthermore, immunohistochemistry for PCNA and KI67 and histochemistry for collagen and proteoglycans revealed that cells proliferated and were metabolically active in the functionalized tissue with no differences with controls. When functionalized tissues were biomechanically characterized, we found that NLCs were able to improve some of the major biomechanical properties of these artificial tissues, although this strongly depended on the type and concentration of NLCs. CONCLUSIONS: These results suggest that functionalization of fibrin-agarose human dermal substitutes with antibiotic-loaded NLCs is able to improve the antibacterial and biomechanical properties of these substitutes with no detectable side effects. This opens the door to future clinical use of functionalized tissues.


Assuntos
Antibacterianos , Lipídeos/química , Nanoestruturas , Pele Artificial , Engenharia Tecidual/métodos , Amicacina/química , Amicacina/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colistina/análogos & derivados , Colistina/química , Colistina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Fibroblastos/citologia , Humanos , Nanoestruturas/química , Nanoestruturas/toxicidade
14.
Structure ; 28(10): 1087-1100.e3, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32857965

RESUMO

Acinetobacter baumannii is a Gram-negative bacterium primarily associated with hospital-acquired, often multidrug-resistant (MDR) infections. The ribosome-targeting antibiotics amikacin and tigecycline are among the limited arsenal of drugs available for treatment of such infections. We present high-resolution structures of the 70S ribosome from A. baumannii in complex with these antibiotics, as determined by cryoelectron microscopy. Comparison with the ribosomes of other bacteria reveals several unique structural features at functionally important sites, including around the exit of the polypeptide tunnel and the periphery of the subunit interface. The structures also reveal the mode and site of interaction of these drugs with the ribosome. This work paves the way for the design of new inhibitors of translation to address infections caused by MDR A. baumannii.


Assuntos
Acinetobacter baumannii/citologia , Amicacina/química , Antibacterianos/química , Ribossomos/química , Tigeciclina/química , Acinetobacter baumannii/química , Sítios de Ligação , Microscopia Crioeletrônica , Modelos Moleculares , Subunidades Ribossômicas/química , Subunidades Ribossômicas/metabolismo , Ribossomos/metabolismo
15.
Curr Top Med Chem ; 20(25): 2300-2307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32819244

RESUMO

BACKGROUND: The increasing and inappropriate use of antibiotics has increased the number of multidrug-resistant microorganisms to these drugs, causing the emergence of infections that are difficult to control and manage by health professionals. As an alternative to combat these pathogens, some monoterpenes have harmful effects on the bacterial cell membrane, showing themselves as an alternative in combating microorganisms. Therefore, the positive enantiomer α -pinene becomes an alternative to fight bacteria, since it was able to inhibit the growth of the species Escherichia coli ATCC 25922, demonstrating the possibility of its use as an isolated antimicrobial or associated with other drugs. AIMS: The aim of this study is to evaluate the sensitivity profile of E. coli ATCC 25922 strain against clinical antimicrobials associated with (+) -α-pinene and how it behaves after successive exposures to subinhibitory concentrations of the phytochemicals. METHODS: The minimum inhibitory concentration (MIC) was determined using the microdilution method. The study of the modulating effect of (+) -α-pinene on the activity of antibiotics for clinical use in strains of E. coli and the analysis of the strain's adaptation to the monoterpene were tested using the adapted disk-diffusion method. RESULTS: The results demonstrate that the association of monoterpene with the antimicrobials ceftazidime, amoxicillin, cefepime, cefoxitin and amikacin is positive since it leads to the potentiation of the antibiotic effect of these compounds. It was observed that the monoterpene was able to induce crossresistance only for antimicrobials: cefuroxime, ceftazidime, cefepime and chloramphenicol. CONCLUSION: It is necessary to obtain more concrete data for the safe use of these combinations, paying attention to the existence of some type of existing toxicity reaction related to the herbal medicine and to understand the resistance mechanisms acquired by the microorganism.


Assuntos
Antibacterianos/farmacologia , Monoterpenos Bicíclicos/farmacologia , Escherichia coli/efeitos dos fármacos , Amicacina/química , Amicacina/farmacologia , Amoxicilina/química , Amoxicilina/farmacologia , Antibacterianos/química , Monoterpenos Bicíclicos/química , Cefepima/química , Cefepima/farmacologia , Cefoxitina/química , Cefoxitina/farmacologia , Ceftazidima/química , Ceftazidima/farmacologia , Testes de Sensibilidade Microbiana
16.
Nanomedicine ; 29: 102259, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32619707

RESUMO

Sodium colistimethate (SCM) and amikacin (AMK) are among the few antibiotics effective against resistant P. aeruginosa, K. pneumoniae and A. baumannii; however, their toxicity severely limits their use. Enclosing antibiotics into nanostructured lipid carriers (NLC) might decrease drug toxicity and improve antibiotic disposition. In this work, SCM or AMK was loaded into different NLC formulations, through high pressure homogenization, and their in vitro and in vivo effectiveness was analyzed. The encapsulation process did not reduce drug effectiveness since in vitro SCM-NLC and AMK-NLC drug activity was equal to that of the free drugs. As cryoprotectant, trehalose showed better properties than dextran. Instead, positive chitosan coating was discarded due to its limited cost-efficiency. Finally, the in vivo study in acute pneumonia model revealed that intraperitoneal administration was superior to the intramuscular route and confirmed that (-) SCM-NLC with trehalose, was the most suitable formulation against an extensively drug-resistant A. baumannii strain.


Assuntos
Amicacina/química , Colistina/análogos & derivados , Farmacorresistência Bacteriana/efeitos dos fármacos , Nanoestruturas/química , Amicacina/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Colistina/química , Colistina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Lipídeos/química , Lipídeos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade
17.
Int J Artif Organs ; 43(12): 758-766, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32356511

RESUMO

INTRODUCTION: In continuous renal replacement therapy, conduction and convection are controlled allowing prescribing dosage regimen improving survival. In contrast, adsorption is an uncontrolled property altering drug disposition. Whether adsorption depends on flowrates is unknown. We hypothesized an in vitro model may provide information in conditions mimicking continuous renal replacement therapy in humans. METHODS: ST150®-AN69 filter and Prismaflex dialyzer, Baxter-Gambro were used. Simulated blood flowrate was set at 200 mL/min. The flowrates in the filtration (continuous filtration), dialysis (continuous dialysis), and diafiltration (continuous diafiltration) were 1500, 2500, and 4000 mL/h, respectively. Routes of elimination were assessed using NeckEpur® analysis. RESULTS: The percentages of the total amount eliminated by continuous filtration, continuous dialysis, and continuous diafiltration were 82%, 86%, and 94%, respectively. Elimination by effluents and adsorption accounted for 42% ± 7% and 58% ± 5%, 57% ± 7% and 43% ± 6%, and 84% ± 6% and 16% ± 6% of amikacin elimination, respectively. There was a linear regression between flowrates and amikacin clearance: Y = 0.6 X ± 1.7 (R2 = 0.9782). Conversely, there was a linear inverse correlation between the magnitude of amikacin adsorption and flowrate: Y = -16.9 X ± 84.1 (R2 = 0.9976). CONCLUSION: Low flowrates resulted in predominant elimination by adsorption, accounting for 58% of the elimination of amikacin from the central compartment in the continuous filtration mode at 1500 mL/h of flowrate. Thereafter, the greater the flowrate, the lower the adsorption of amikacin in a linear manner. Flowrate is a major determinant of adsorption of amikacin. There was an about 17% decrease in the rate of adsorption per increase in the flowrate of 1 L/min.


Assuntos
Adsorção , Amicacina , Antibacterianos , Filtração , Rins Artificiais/classificação , Amicacina/química , Amicacina/farmacocinética , Antibacterianos/química , Antibacterianos/farmacocinética , Filtração/instrumentação , Filtração/métodos , Humanos , Hidrodinâmica , Diálise Renal/efeitos adversos , Diálise Renal/instrumentação , Terapia de Substituição Renal/métodos
18.
Vet Surg ; 49(5): 1035-1042, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32311144

RESUMO

OBJECTIVE: To characterize the in vitro elution of amikacin and Dispersin B (ß-N-acetylglucosaminidase) in a degradable hydrogel. STUDY DESIGN: In vitro, prospective study. METHODS: Amikacin (group A; 40 mg/mL), Dispersin B (group D; 70 µg/mL), or combined amikacin and Dispersin B (group AD; 40 mg/mL and 70 µg/mL, respectively) were added to a hydrogel. Ten aliquots per group were incubated in phosphate-buffered saline that was exchanged at 1, 4, 8, 12, and 24 hours and then once daily for 10 days. Eluted amikacin and Dispersin B were quantitated by using an amikacin reagent kit and a Dispersin B enzyme-linked immunosorbent assay kit, respectively. Time point drug concentrations were compared between groups by using repeated-measures analysis of variance, and total drug elution was compared by using an area under the curve calculation. RESULTS: Amikacin alone, Dispersin B alone, and amikacin and Dispersin B combined together underwent rapid elution in the first 24 hours, followed by a gradual decrease over 10 days. The concentration of Dispersin B eluted in group D was higher at 1 day and lower from day 5 to day 10 compared with that in group AD. The concentration of amikacin eluted in group A was higher at 1, 4, and 8 hours and on day 10 and lower on day 1 compared with that in group AD. The total elution of amikacin was greater from group AD compared with that from group A (P = .02). CONCLUSION: Combining amikacin and Dispersin B had an affect on the total elution of amikacin but not Dispersin B. CLINICAL SIGNIFICANCE: The combination of amikacin and Dispersin B in a degradable hydrogel could allow local treatment of complex infections without the requirement for multiple invasive procedures.


Assuntos
Amicacina/química , Proteínas de Bactérias/química , Liberação Controlada de Fármacos , Glicosídeo Hidrolases/química , Hidrogéis/química , Animais , Antibacterianos/administração & dosagem , Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Polímeros , Estudos Prospectivos
19.
J Pharm Biomed Anal ; 184: 113201, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32113122

RESUMO

Amikacin (AMI) is an aminoglycoside antibiotic widely used in the treatment of severe infections caused by multi-resistant bacteria, with established exposition targets in therapeutic drug monitoring (TDM). The usual specimen for AMI concentration measurement is plasma or serum. The access to TDM of AMI in Developing Countries is constrained by the limited availability of laboratories performing the quantitation of this drug. In this context, the use of dried microsamples, such as dried plasma spots (DPS) could be an alternative to allow reduced specimen transportation and storage costs in resource-limited settings, increasing the access to TDM of AMI. This study aimed to develop and validate the first report of simultaneous determination of AMI and creatinine (CRE) in DPS, using UHPLC-MS/MS. Precision, accuracy and stability assays showed acceptable results. AMI was stable in DPS for 14 days at 6 °C, 2 days at 22 °C, and one day at 42 °C. CRE was stable during 14 days at all tested temperatures. AMI and CRE concentrations in DPS and plasma were compared by Passing-Bablok regression and Bland and Altmann plots and presented comparable results. Estimates of patient's clearance, volume of distribution and suggested doses of AMI were also similar using DPS or plasma concentrations. The assay provides a useful logistic alternative to allow more widespread access to dose individualization of AMI in limited resources settings.


Assuntos
Amicacina/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Teste em Amostras de Sangue Seco/métodos , Monitoramento de Medicamentos/métodos , Plasma/química , Espectrometria de Massas em Tandem/métodos , Amicacina/sangue , Amicacina/química , Bioensaio/métodos , Calibragem , Creatinina/sangue , Humanos , Limite de Detecção , Reprodutibilidade dos Testes
20.
Adv Healthc Mater ; 9(2): e1901329, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31814315

RESUMO

Multistimuli-responsive hydrogels with specific functions have attracted great interest for biomedical applications; however, these smart hydrogels usually require the presynthesis of macromolecular building blocks with multiple ligands and the integration of bioactive cargoes into the gels. Here, a multistimuli-responsive hydrogel with potent antibacterial activity by a combination of supramolecular assembly and iminoboronate chemistry is reported. The hydrogel consists of all-small-molecule building blocks including aminoglycoside, guanosine, potassium ion, and a bifunctional anchor bearing both boronic acid and aldehyde groups. Guanosines form quadruplexes in the presence of potassium ions via supramolecular assembly, and the bifunctional anchor connects aminoglycosides, a class of potent antibiotics to cis-diol groups on quadruplexes via dynamic iminoboronate chemistry, yielding a smart hydrogel containing abundant antibiotics. The hydrogel is sensitive to multistimuli such as heat, acids, oxidants, glucose and crown ether, which promote the release of antibiotics from the gels. Moreover, the prepared hydrogels show potent antibacterial activities both in vitro and in vivo. The results provide a new option to prepare antibacterial hydrogels with multistimuli responsiveness via facile chemistry using all-small-molecule building blocks.


Assuntos
Aminoglicosídeos/química , Antibacterianos/química , Antibacterianos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Amicacina/química , Amicacina/farmacocinética , Aminoglicosídeos/farmacocinética , Aminoglicosídeos/farmacologia , Animais , Antibacterianos/farmacocinética , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Guanosina/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Células NIH 3T3 , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...