Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.654
Filtrar
1.
Sci Rep ; 14(1): 18817, 2024 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138283

RESUMO

This study aimed to investigate the biodegradation behaviour of starch/nanocellulose/black tea extract (SNBTE) films in a 30-day soil burial test. The SNBTE films were prepared by mixing commercial starch, nanocellulose (2, 4, and 6%), and an aqueous solution of black tea extract by a simple mixing and casting process. The chemical and morphological properties of the SNBTE films before and after biodegradation were characterized using the following analytical techniques such as field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and fourier transform infrared (FTIR). The changes in soil composition, namely pH, electrical conductivity (EC), moisture content, water holding capacity (WHC), soil respiration, total nitrogen, weight mean diameter (MDW), and geometric mean diameter (GMD), as a result of the biodegradation process, were also estimated. The results showed that the films exhibited considerable biodegradability (35-67%) within 30 days while increasing soil nutrients. The addition of black tea extract reduced the biodegradation rate due to its polyphenol content, which likely resulted in a reduction in microbial activity. The addition of nanocellulose (2-6% weight of starch) increased the tensile strength, but decreased the elongation at break of the films. These results suggest that starch nanocellulose and SNBTE films are not only biodegradable under soil conditions but also positively contribute to soil health, highlighting their potential as an environmentally friendly alternative to traditional plastic films in the packaging industry.


Assuntos
Biodegradação Ambiental , Celulose , Extratos Vegetais , Solo , Amido , Chá , Amido/química , Amido/metabolismo , Solo/química , Chá/química , Celulose/química , Celulose/metabolismo , Extratos Vegetais/química , Resistência à Tração
2.
Food Res Int ; 192: 114781, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147469

RESUMO

To elucidate the relationship between the structural evolution of starch within noodles during cooking and the hardness, the panoramic and local microstructure of cooked noodles were quantitatively analyzed, and the structure of starch in noodles were measured. We found that in the case of starch within cooked noodles with a high degree of swelling, the quantitative analysis of each ring was sufficient to represent the structural differences. Changes occurring in starch inside noodles during cooking were not homogeneous. The structural modifications of starch in the outer ring were greater than in the inner ring along with the extension of cooking time. The main reason responsible for the high hardness was attributed to low swelling degree and high short-range order of starch in the center. Water migration from the periphery to the center of the noodles, which was closely related to the fine structure of amylopectin, determined the state of central starch. Wheat starch with more large amylopectin molecules and more long amylopectin chains could enhance the inhibition of water migration and decrease the swelling degree of starch in the center, in order to endow a high hardness to noodles. These results will be useful for the ingredients selection for the production of noodles with desirable quality. In addition, the analysis method established in this work promoted the realization of quantitative comparison of the cooked noodles microstructure, that is an effective tool to clarify the structural basis of macroscopic quality of noodles.


Assuntos
Culinária , Farinha , Dureza , Amido , Triticum , Água , Triticum/química , Culinária/métodos , Água/química , Amido/química , Farinha/análise , Amilopectina/química
3.
Food Res Int ; 192: 114810, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147505

RESUMO

Using green techniques to convert native starches into nanoparticles is an interesting approach to producing stabilizers for Pickering emulsions, aiming at highly stable emulsions in clean label products. Nanoprecipitation was used to prepare the Pickering starch nanoparticles, while ultrasound technique has been used to modulate the size of these nanoparticles at the same time as the emulsion was developed. Thus, the main objective of this study was to evaluate the stabilizing effect of cassava starch nanoparticles (SNP) produced by the nanoprecipitation technique combined with ultrasound treatment carried out in the presence of water and oil (more hydrophobic physicochemical environment), different from previous studies that carry out the mechanical treatment only in the presence of water. The results showed that the increased ultrasound energy input could reduce particle size (117.58 to 55.75 nm) and polydispersity (0.958 to 0.547) in aqueous dispersions. Subsequently, Pickering emulsions stabilized by SNPs showed that increasing emulsification (ultrasonication) time led to smaller droplet sizes and monomodal size distribution. Despite flocculation, long-term ultrasonication (6 and 9 min) caused little variation in the droplet size after 7 days of storage. The cavitation effects favored the interaction between oil droplets through weak attraction forces and particle sharing, favoring the Pickering stabilization against droplet coalescence. Our results show the potential to use only physical modifications to obtain nanoparticles that can produce coalescence-stable emulsions that are environmentally friendly.


Assuntos
Emulsões , Manihot , Nanopartículas , Tamanho da Partícula , Amido , Manihot/química , Amido/química , Emulsões/química , Nanopartículas/química , Água/química , Sonicação/métodos , Floculação
4.
Food Res Int ; 192: 114844, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147527

RESUMO

Non-digestible oligosaccharides (OS) and allulose have beneficial health properties and could reduce the amount of added sugar in baked goods. In this study allulose and various OS [fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), lactosucrose (LOS), isomalto-oligosaccharides (IMO), Promitor 70R (P70R), and xylo-oligosaccharides (XOS)] were added to a wire-cut cookie formulation at concentrations determined to have similar effects on the gelatinization temperature (Tgel) of starch relative to sucrose. Different baking performance attributes of the doughs and cookies were assessed, including: appearance, spread, color, texture, and % moisture loss after baking. The results were correlated to: OS solution and solid properties and OS effects on starch thermal events (gelatinization, pasting, and retrogradation). The Tgel-matching formulation protocol was effective in producing reduced-sugar cookies which had similar appearance, color, and spread attributes compared to the sucrose control; however, cookie texture significantly varied. Cookies containing allulose were the least similar to the control, having darker color, reduced spread, and softer cake-like texture. The only OS cookies that matched the texture of the sucrose control contained LOS, while P70R cookies were the hardest. Cookie texture correlated strongly with the % total moisture loss after baking (r = -0.8763) and was best explained by OS solution viscosity: more viscous OS solutions limited moisture release and resulted in harder cookies. The Tgel of starch also correlated with OS solution viscosity (r = 0.7861) and should be accounted for in reduced sugar applications. The OS recommended as sucrose replacers in cookies based on principal component analysis groupings were: XOS > IMO > LOS > and GOS.


Assuntos
Oligossacarídeos , Oligossacarídeos/química , Culinária/métodos , Sacarose/química , Amido/química , Cor , Água/química , Frutose/química , Manipulação de Alimentos/métodos , Viscosidade , Temperatura
5.
Medicine (Baltimore) ; 103(32): e39091, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121286

RESUMO

RATIONALE: Glycogen storage disease type 0a (GSD0a) is a rare autosomal recessive disorder caused by glycogen synthase deficiency. Short stature is a characteristic feature in 29% of GSD0a patients, but isolated short stature as the only presenting symptom is exceedingly rare, with only 2 cases reported worldwide. PATIENT CONCERNS: A 4-year-old girl presented with persistent growth retardation despite previous treatment for renal tubular acidosis. DIAGNOSES: Based on clinical presentation and whole exome sequencing results, the patient was diagnosed with GSD0a. INTERVENTIONS: Uncooked cornstarch therapy was initiated at 2 g/kg every 6 hours. OUTCOMES: After 3 years of treatment, the patient's height SDS improved from -2.24 to -1.06, with enhanced glycemic control and no complications. LESSONS: This case emphasizes considering GSD0a in unexplained short stature and the value of continuous glucose monitoring. Early diagnosis and treatment can optimize growth in GSD0a patients.


Assuntos
Doença de Depósito de Glicogênio , Humanos , Feminino , Pré-Escolar , Doença de Depósito de Glicogênio/diagnóstico , Estatura , Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/etiologia , Amido/uso terapêutico , China , População do Leste Asiático , Doença de Depósito de Glicogênio Tipo I
6.
Bioresour Technol ; 408: 131216, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39106906

RESUMO

Fractionated corn bran was processed to maximize ethanol production from starch, cellulose, and xylan. After various bench-scale experiments, an optimized process with dilute acid pretreatment (1.5 % w/w H2SO4) at 90 °C for 60 min was utilized followed by enzymatic hydrolysis using cellulase and hemicellulase for 48 hr. After simultaneous saccharification (regarding starch) and fermentation at 150 L using an engineered yeast, which consumes both glucose and xylose to make ethanol, the 86 % total sugar conversion yield was achieved, including conversions of 95 % for starch, 77 % for cellulose and 77 % for xylan. Also, an accurate mass balance was formulated for ethanol-producing carbohydrates including starch, cellulose, and xylan from feedstock to final ethanol. A highly efficient process of converting corn fiber to ethanol was successfully scaled up to 150 L.


Assuntos
Etanol , Fermentação , Zea mays , Etanol/metabolismo , Zea mays/química , Hidrólise , Saccharomyces cerevisiae/metabolismo , Amido/química , Amido/metabolismo , Celulose/química , Biotecnologia/métodos , Xilanos
7.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39126018

RESUMO

Cassava starch solid biopolymer electrolyte (SBPE) films were prepared by a thermochemical method with different concentrations of lithium triflate (LiTFT) as a dopant salt. The process began with dispersing cassava starch in water, followed by heating to facilitate gelatinization; subsequently, plasticizers and LiTFT were added at differing concentrations. The infrared spectroscopy analysis (FTIR-ATR) showed variations in the wavenumber of some characteristic bands of starch, thus evidencing the interaction between the LiTFT salt and biopolymeric matrix. The short-range crystallinity index, determined by the ratio of COH to COC bands, exhibited the highest crystallinity in the salt-free SBPEs and the lowest in the SBPEs with a concentration ratio (Xm) of 0.17. The thermogravimetric analysis demonstrated that the salt addition increased the dehydration process temperature by 5 °C. Additionally, the thermal decomposition processes were shown at lower temperatures after the addition of the LiTFT salt into the SBPEs. The differential scanning calorimetry showed that the addition of the salt affected the endothermic process related to the degradation of the packing of the starch molecules, which occurred at 70 °C in the salt-free SBPEs and at lower temperatures (2 or 3 °C less) in the films that contained the LiTFT salt at different concentrations. The cyclic voltammetry analysis of the SBPE films identified the redox processes of the glucose units in all the samples, with observed differences in peak potentials (Ep) and peak currents (Ip) across various salt concentrations. Electrochemical impedance spectroscopy was used to establish the equivalent circuit model Rf-(Cdl/(Rct-(CPE/Rre))) and determine the electrochemical parameters, revealing a higher conduction value of 2.72 × 10-3 S cm-1 for the SBPEs with Xm = 17 and a lower conduction of 5.80 × 10-4 S cm-1 in the salt-free SBPEs. It was concluded that the concentration of LiTFT salt in the cassava starch SBPE films influences their morphology and slightly reduces their thermal stability. Furthermore, the electrochemical behavior is affected in terms of variations in the redox potentials of the glucose units of the biopolymer and in their ionic conductivity.


Assuntos
Condutividade Elétrica , Eletrólitos , Manihot , Amido , Amido/química , Manihot/química , Eletrólitos/química , Termogravimetria , Biopolímeros/química , Mesilatos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Varredura Diferencial de Calorimetria
8.
Food Res Int ; 193: 114808, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39160056

RESUMO

The digestion of starch-based foods in the intestinal tract is important for human health. Modeling the details enhances fundamental understanding and glycemic prediction accuracy. It is, however, a challenge to take granular properties into account. A multiscale digestion model has been proposed to characterize mass transfer and hydrolysis reaction at both the intestine and particle scales, seamlessly integrating inter-scale mass exchange. A specific grid scheme was formulated for the shrinkage and transport of the particle computational domain. By incorporating additional glycemic-related processes, e.g., intestinal absorption, a dietary property-based glycemic prediction system has been developed. Its effectiveness was validated based on a human tolerance experiment of cooked rice particles. The model-based investigation comprehensively reveals the impact of initial size on digestion behavior, specifically in terms of enzyme distribution and particle evolution. This work also demonstrates the significance of modeling both particle-scale diffusion and intestine-scale transport, a combination not previously explored. The results indicate that ignoring the former mechanism leads to an overestimation of the glycemic peak by at least 50.8%, while ignoring the latter results in an underestimation of 16.3%.


Assuntos
Digestão , Modelos Biológicos , Amido , Amido/química , Amido/metabolismo , Humanos , Oryza/química , Índice Glicêmico , Tamanho da Partícula , Hidrólise , Absorção Intestinal
9.
Physiol Plant ; 176(4): e14469, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39129660

RESUMO

Poor grain filling in inferior spikelets (IS), which is influenced by the remobilization of nonstructural carbohydrates (NSC) stored in the sheath and internode of rice plants, limits the expected high yield of large-panicle rice. NSC remobilization from the sheath to the panicle is regulated by the T6P/SnRK1 pathway. However, in large-panicle rice, it is unclear whether IS grain filling is related to the NSC remobilization mediated by T6P/SnRK1 signaling. In this study, two large-panicle cultivars-W1844 and CJ03-with distinct differences in IS grain filling were used to explore the physiological mechanism mediating IS development. Compared to W1844, CJ03 IS showed lower expression of the genes related to sucrose uploading, later sucrose peaking, and delayed starch accumulation. In the CJ03, low OsSUTs expression and NSC output, transport rate, and contribution rate were detected in the sheaths and internodes. These results suggest that poor NSC remobilization results in insufficient assimilate supply for the IS, and consequently, poor IS grain filling. Furthermore, poor NSC remobilization coincided with the increased T6P content and decreased SnRK1 activity during grain filling in CJ03 IS. The expression levels of genes related to T6P metabolism and those encoding the catalytic subunit of SnRK1 were consistent with the observed T6P content and SnRK1 activity in the sheaths and internodes. Therefore, IS grain filling is potentially affected by T6P/SnRK1 signaling-mediated NSC remobilization in large-panicle rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Amido/metabolismo , Sacarose/metabolismo , Metabolismo dos Carboidratos/genética , Grão Comestível/genética , Grão Comestível/metabolismo , Grão Comestível/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento
10.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39125807

RESUMO

(1) The development of sweet potato storage roots is impacted by nitrogen (N) levels, with excessive nitrogen often impeding development. Starch synthesis enzymes such as sucrose synthase (SUS) and ADP-glucose pyrophosphorylase (AGPase) are pivotal in this context. Although the effects of excessive nitrogen on the formation of sweet potato storage roots are well documented, the specific responses of IbSUSs and IbAGPases have not been extensively reported on. (2) Pot experiments were conducted using the sweet potato cultivar "Pushu 32" at moderate (MN, 120 kg N ha-1) and excessive nitrogen levels (EN, 240 kg N ha-1). (3) Nine IbSUS and nine IbAGPase genes were categorized into three and two distinct subgroups based on phylogenetic analysis. Excessive nitrogen significantly (p < 0.05) suppressed the expression of IbAGPL1, IbAGPL2, IbAGPL4, IbAGPL5, IbAGPL6, IbAGPS1, and IbAGPS2 in fibrous roots and IbSUS2, IbSUS6, IbSUS7, IbSUS8, IbSUS9, IbAGPL2, and IbAGPL4 in storage roots, and then significantly (p < 0.05) decreased the SUS and AGPase activities and starch content of fibrous root and storage root, ultimately reducing the storage root formation of sweet potato. Excessive nitrogen extremely significantly (p < 0.01) enhanced the expression of IbAGPL3, which was strongly negatively correlated with the number and weight of storage roots per plant. (4) IbAGPL3 may be a key gene in the response to excessive nitrogen stress and modifying starch synthesis in sweet potato.


Assuntos
Regulação da Expressão Gênica de Plantas , Glucose-1-Fosfato Adenililtransferase , Glucosiltransferases , Ipomoea batatas , Nitrogênio , Filogenia , Raízes de Plantas , Estresse Fisiológico , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Ipomoea batatas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Glucose-1-Fosfato Adenililtransferase/metabolismo , Glucose-1-Fosfato Adenililtransferase/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Família Multigênica
11.
Commun Biol ; 7(1): 928, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39090206

RESUMO

Wheat grain starch content displays large variations within different pearling fractions, which affecting the processing quality of corresponding flour, while the underlying mechanism on starch gradient formation is unclear. Here, we show that wheat caryopses acquire sugar through the transfer of cells (TCs), inner endosperm (IE), outer endosperm (OE), and finally aleurone (AL) via micro positron emission tomography-computed tomography (PET-CT). To obtain integrated information on spatial transcript distributions, developing caryopses are laser microdissected into AL, OE, IE, and TC. Most genes encoding carbohydrate transporters are upregulated or specifically expressed, and sugar metabolites are more highly enriched in the TC group than in the AL group, in line with the PET-CT results. Genes encoding enzymes in sucrose metabolism, such as sucrose synthase, beta-fructofuranosidase, glucose-1-phosphate adenylyltransferase show significantly lower expression in AL than in OE and IE, indicating that substrate supply is crucial for the formation of starch gradients. Furthermore, the low expressions of gene encoding starch synthase contribute to low starch content in AL. Our results imply that transcriptional regulation represents an important means of impacting starch distribution in wheat grains and suggests breeding targets for enhancing specially pearled wheat with higher quality.


Assuntos
Regulação da Expressão Gênica de Plantas , Amido , Triticum , Triticum/metabolismo , Triticum/genética , Amido/metabolismo , Endosperma/metabolismo , Transporte Biológico , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sacarose/metabolismo , Açúcares/metabolismo
12.
New Phytol ; 243(5): 1855-1869, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38962989

RESUMO

Grain filling in maize (Zea mays) is intricately linked to cell development, involving the regulation of genes responsible for the biosynthesis of storage reserves (starch, proteins, and lipids) and phytohormones. However, the regulatory network coordinating these biological functions remains unclear. In this study, we identified 1744 high-confidence target genes co-regulated by the transcription factors (TFs) ZmNAC128 and ZmNAC130 (ZmNAC128/130) through chromatin immunoprecipitation sequencing coupled with RNA-seq analysis in the zmnac128/130 loss-of-function mutants. We further constructed a hierarchical regulatory network using DNA affinity purification sequencing analysis of downstream TFs regulated by ZmNAC128/130. In addition to target genes involved in the biosynthesis of starch and zeins, we discovered novel target genes of ZmNAC128/130 involved in the biosynthesis of lipids and indole-3-acetic acid (IAA). Consistently, the number of oil bodies, as well as the contents of triacylglycerol, and IAA were significantly reduced in zmnac128/130. The hierarchical regulatory network centered by ZmNAC128/130 revealed a significant overlap between the direct target genes of ZmNAC128/130 and their downstream TFs, particularly in regulating the biosynthesis of storage reserves and IAA. Our results indicated that the biosynthesis of storage reserves and IAA is coordinated by a multi-TFs hierarchical regulatory network in maize endosperm.


Assuntos
Endosperma , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos , Proteínas de Plantas , Fatores de Transcrição , Zea mays , Zea mays/genética , Zea mays/metabolismo , Ácidos Indolacéticos/metabolismo , Endosperma/metabolismo , Endosperma/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Genes de Plantas , Mutação/genética , Amido/metabolismo , Amido/biossíntese
13.
Int J Biol Macromol ; 275(Pt 1): 134076, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39053820

RESUMO

This study aims to enhance the physical properties and color stability of anthocyanin-based intelligent starch films. Three dual-modified starches, namely crosslinked-oxidized starch (COS), acetylated distarch phosphate (ADSP), and hydroxypropyl distarch phosphate (HDSP), were utilized as film matrices. Aronia melanocarpa anthocyanins were incorporated through three different pre-treatments (free, spray-drying microencapsulation, and freeze-drying microencapsulation) to assess the prepared films' functionality, stability, and applicability. The results indicate that the ADSP film exhibited an approximately two-fold increase in elongation at break (EAB) compared to native starch film. Specifically, the ADSP film's water contact angle (WCA) reached 90°, demonstrating excellent flexibility and hydrophobicity. Scanning electron microscopy (SEM) revealed stronger interactions between anthocyanins and the film matrix after microencapsulation. Furthermore, after 30 days of exposure to 37 °C heat and light radiation, the freeze-dried anthocyanin-based intelligent film (FDA film) exhibited minimal fading, displaying the highest stability among the tested films. Notably, during beef freshness monitoring, the intelligent films underwent significant color changes as the beef deteriorated. In conclusion, the developed FDA film, with its outstanding stability and responsive pH characteristics, holds immense potential as a novel packaging material for food applications.


Assuntos
Antocianinas , Photinia , Amido , Antocianinas/química , Amido/química , Amido/análogos & derivados , Photinia/química , Embalagem de Alimentos/métodos , Composição de Medicamentos/métodos , Liofilização , Materiais Inteligentes/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas
14.
Int J Biol Macromol ; 275(Pt 1): 133587, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960252

RESUMO

To investigate the response and the regulatory mechanism of common buckwheat starch, amylose, and amylopectin biosynthesis to P management strategies, field experiments were conducted in 2021 and 2022 using three phosphorus (P) levels. Results revealed that the application of 75 kg hm-2 phosphate fertilizer significantly enhanced amylopectin and total starch content in common buckwheat, leading to improved grain weight and starch yield, and decreased starch granule size. The number of upregulated differentially expressed proteins induced by phosphate fertilizer increased with the application rate, with 56 proteins identified as shared differential proteins between different P levels, primarily associated with carbohydrate and amino acid metabolism. Phosphate fertilizer inhibited amylose synthesis by downregulating granule-bound starch synthase protein expression and promoted amylopectin accumulation by upregulating 1,4-alpha-glucan branching enzyme and starch synthase proteins expression. Additionally, Phosphate fertilizer primarily promoted the accumulation of hydrophobic and essential amino acids. These findings elucidate the mechanism of P-induced starch accumulation and offer insights into phosphate fertilizer management and high-quality cultivation of common buckwheat.


Assuntos
Aminoácidos , Fagopyrum , Fertilizantes , Fosfatos , Amido , Fagopyrum/metabolismo , Fagopyrum/efeitos dos fármacos , Aminoácidos/metabolismo , Amido/metabolismo , Amido/biossíntese , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Amilopectina/metabolismo , Amilose/metabolismo
15.
Int J Biol Macromol ; 275(Pt 1): 133397, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960261

RESUMO

Flavor is considered one of the most significant factors affecting food quality. However, it is often susceptible to environmental factors, so encapsulation is highly necessary to facilitate proper handling and processing. In this study, the structural changes in starch encapsulation and their effects on flavor retention were investigated using indica starch (RS) as a matrix to encapsulate three flavoring compounds, namely nonanoic acid, 1-octanol, and 2-pentylfuran. The rheological and textural results suggested that the inclusion of flavor compounds improved the intermolecular interactions between starch molecules, resulting in a significant increase in the physicochemical properties of starch gels in the order: nonanoic acid > 1-octanol > 2-pentylfuran. The XRD results confirmed the successful preparation of v-starch. Additionally, the inclusion complexes (ICs) were characterized using FT-IR, SEM, and DSC techniques. The results showed that v-starch formed complexes with Flavor molecules. The higher enthalpy of the complexes suggested that the addition of alcohols and acids could improve the intermolecular complexation between starch molecules. The retention rates of three flavor compounds in starch were determined using HS-GC, with the values of 51.7 %, 32.37 %, and 35.62 %. Overall, this study provides insights into novel approaches to enhance the quality and flavor retention, improve the storability and stability, reduce losses during processing and storage, and extend the shelf life of starchy products.


Assuntos
Aromatizantes , Oryza , Amido , Amido/química , Oryza/química , Aromatizantes/química , Reologia , Paladar
16.
Int J Biol Macromol ; 275(Pt 1): 133628, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964689

RESUMO

Understanding the interplay among salt ions, anthocyanin and starch within food matrices under thermal conditions is important for the development of starch-based foods with demanded quality attributes. However, how salt ions presence influences the microstructure and properties of starch/anthocyanin binary system remains largely unclear. Herein, indica rice starch (IRS) and rice anthocyanin (RA) were used to construct an IRS-RA binary system, with thermal treatment under different concentrations of Na+ (10-40 mM) and types of salt ions (Na+ and Ca2+). The incorporation of salt ions induced the formation of a porous gel matrix, and destroyed the hydrogen bond between starch and anthocyanin through electrostatic interactions, reducing the storage modulus and radius of gyration of the binary system, and increasing the relative crystallinity (from 1.08 % to 1.51 % (20 mM Na+) and 1.69 % (20 mM Ca+)) of the IRS-RA binary system at 90 °C. Also, the DPPH radical scavenging ability of the binary system at 90 °C was enhanced upon incorporating salt ions (0.93 for Na+ condition and 0.94 for Ca2+ condition at 20 mM ion concentration). It is noteworthy that Ca2+ inclusion had more significant effects than the case for Na+ presence, presumably due to the increased charge density.


Assuntos
Antocianinas , Íons , Oryza , Amido , Amido/química , Oryza/química , Antocianinas/química , Íons/química , Sódio/química , Temperatura , Cálcio/química
17.
Sci Rep ; 14(1): 17343, 2024 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-39069554

RESUMO

In recent years, academic and industrial research has focused on using agro-waste for energy and new material production to promote sustainable development and lessen environmental issues. In this study, new nanocomposites based on polyvinyl alcohol (PVA)-Starch using two affordable agricultural wastes, Citrus limon peels (LP) and Citrullus colocynthis (Cc) shells and seeds powders with different concentrations (2, 5, 10, and 15 wt%) as bio-fillers were prepared. The nanocomposites were characterized by Dielectric Spectroscopy, Fourier-Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and water swelling ratio. The antimicrobial properties of the nanocomposites against Escherichia coli, Staphylococcus aureus, and Candida albicans were examined to investigate the possibility of using such composites in biomedical applications. Additionally, the biocompatibility of the composites on human normal fibroblast cell lines (HFB4) was tested using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The results demonstrate that the filler type and concentration strongly affect the film's properties. The permittivity ε', dielectric loss ε″ and conductivity σdc increased by increasing filler content but still in the insulators range that recommend such composites to be used in the insulation purposes. Both bio fillers control the water uptake, and the samples filled with LP were more water resistant. The polyvinyl alcohol/starch incorporated with 5 wt% LP and Cc have antimicrobial effects against all the tested microorganisms. Increasing the filler content has a negative impact on cell viability.


Assuntos
Citrullus colocynthis , Citrus , Nanocompostos , Citrus/química , Nanocompostos/química , Humanos , Citrullus colocynthis/química , Candida albicans/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Staphylococcus aureus/efeitos dos fármacos , Álcool de Polivinil/química , Escherichia coli/efeitos dos fármacos , Agricultura/métodos , Linhagem Celular , Amido/química , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Int J Biol Macromol ; 275(Pt 1): 134082, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084968

RESUMO

Three environmentally friendly organic acids, acetic acid, citric acid and oxalic acid, were used to treat citrus insoluble dietary fiber (CIDF) in present study, aiming to explore the changes in structural properties as well as their inhibitory effects on starch digestion. The results showed that organic acid treatment significantly reduced the particle size of all three CIDFs, with rougher and folded surfaces, improved crystallinity and thermal stability. During in vitro digestion, it was found that organic acid treatment could increase the particle size and viscosity of digestion, and also effectively enhance the inhibitory ability of α-glucosidase activity, resulting in a further blockage of starch digestion. The starch digestion in oxalic acid-treated group (with 3 wt% addition) was significantly reduced by 18.72 % compared to blank group and 9.05 % compared to untreated. These findings provide evidence of the potential of organic acid-treated insoluble dietary fiber as a functional food.


Assuntos
Citrus , Fibras na Dieta , Solubilidade , Amido , Citrus/química , Amido/química , Amido/metabolismo , Digestão/efeitos dos fármacos , Tamanho da Partícula , Ácido Cítrico/química , Viscosidade , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , Ácido Acético/química , Ácido Oxálico/química
19.
Int J Biol Macromol ; 275(Pt 2): 133682, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084976

RESUMO

This study aimed to investigate the impact of alginate (AG) on the retrogradation properties of corn starch (CS) in conjunction with three phenolic compounds, including naringin (NA), rutin (RT), and soy isoflavones (SI). The findings indicated that AG, NA, RT, and SI collectively resulted in a significant reduction in the hardness, retrogradation enthalpy, and relaxation time of CS gel. This effect was more pronounced when compared to NA, RT, and SI individually. The findings suggested that the elemental system comprising AG, phenolic compounds, and CS yielded enhanced water retention capacity and thermal stability. Moreover, a noticeable decrease in the short-range ordered structure and crystallinity was observed, indicating that AG and phenolic compounds effectively inhibited the retrogradation of CS; notably, the synergistic interaction between AG and SI resulted in the most favorable outcome. The results of this study provide new ideas for the design, development, and quality improvement of starch-based food.


Assuntos
Alginatos , Polifenóis , Amido , Zea mays , Amido/química , Alginatos/química , Alginatos/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Zea mays/química , Água/química
20.
World J Microbiol Biotechnol ; 40(9): 271, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030369

RESUMO

Microalgal biomass for biofuel production, integration into functional food, and feed supplementation has generated substantial interest worldwide due to its high growth rate, non-competitiveness for agronomic land, ease of cultivation in containments, and presence of several bioactive molecules. In this study, genetic engineering tools were employed to develop transgenic lines of freshwater microalga Chlorella vulgaris with a higher starch content, by up-regulating ADP-glucose pyrophosphorylase (AGPase), which is a rate-limiting enzyme in starch biosynthesis. Expression of the Escherichia coli glgC (AGPase homolog) gene in C. vulgaris led to an increase in total carbohydrate content up to 45.1% (dry cell weight, DCW) in the transgenic line as compared to 34.2% (DCW) in the untransformed control. The starch content improved up to 16% (DCW) in the transgenic alga compared to 10% (DCW) in the control. However, the content of total lipid, carotenoid, and chlorophyll decreased differentially in the transgenic lines. The carbohydrate-rich biomass from the transgenic algal line was used to produce bioethanol via yeast fermentation, which resulted in a higher ethanol yield of 82.82 mg/L as compared to 54.41 mg/L from the untransformed control. The in vitro digestibility of the transgenic algal starch revealed a resistant starch content of up to 7% of total starch. Faster growth of four probiotic bacterial species along with a lowering of the pH of the growth medium indicated transgenic alga to exert a positive prebiotic effect. Taken together, the study documents the utilization of genetically engineered C. vulgaris with enriched carbohydrates as bioethanol feedstock and functional food ingredients.


Assuntos
Biocombustíveis , Biomassa , Chlorella vulgaris , Escherichia coli , Etanol , Fermentação , Glucose-1-Fosfato Adenililtransferase , Microalgas , Prebióticos , Amido , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Etanol/metabolismo , Amido/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Microalgas/metabolismo , Microalgas/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Glucose-1-Fosfato Adenililtransferase/genética , Engenharia Genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Engenharia Metabólica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA