Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Curr Opin Plant Biol ; 65: 102116, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34653952

RESUMO

In seed plants, 1-amino-cyclopropane-1-carboxylic acid (ACC) is the well-known precursor of the plant hormone ethylene. In nonseed plants, the current view is that ACC is produced but is inefficiently converted to ethylene. Distinct responses to ACC that are uncoupled from ethylene biosynthesis have been discovered in diverse aspects of growth and development in liverworts and angiosperms, indicating that ACC itself can function as a signal. Evolutionarily, ACC may have served as a signal before acquiring its role as the ethylene precursor in seed plants. These findings pave the way for unraveling a potentially conserved ACC signaling pathway in plants and have ramifications for the use of ACC as a substitute for ethylene treatment in seed plants.


Assuntos
Aminoácidos Cíclicos , Etilenos , Aminoácidos Cíclicos/metabolismo , Ácidos Carboxílicos , Etilenos/metabolismo , Plantas/metabolismo , Transdução de Sinais
2.
World J Microbiol Biotechnol ; 38(1): 16, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34897563

RESUMO

The use of halotolerant beneficial plant-growth-promoting (PGP) bacteria is considered as a promising eco-friendly approach to improve the salt tolerance of cash crops. One strategy to enhance the possibility of obtaining stress-alleviating bacteria is to screen salt impacted soils. In this study, amongst the 40 endophytic bacteria isolated from the roots of Sahara-inhabiting halophytes Atriplex halimus L. and Lygeum spartum L., 8 showed interesting NaCl tolerance in vitro. Their evaluation, through different tomato plant trials, permitted the isolate IS26 to be distinguished as the most effective seed inoculum for both plant growth promotion and mitigation of salt stress. On the basis of 16S rRNA gene sequence, the isolate was closely related to Stenotrophomonas rhizophila. It was then screened in vitro for multiple PGP traits and the strain-complete genome was sequenced and analysed to further decipher the genomic basis of the putative mechanisms underlying its osmoprotective and plant growth abilities. A remarkable number of genes putatively involved in mechanisms responsible for rhizosphere colonization, plant association, strong competition for nutrients, and the production of important plant growth regulator compounds, such as AIA and spermidine, were highlighted, as were substances protecting against stress, including different osmolytes like trehalose, glucosylglycerol, proline, and glycine betaine. By having genes related to complementary mechanisms of osmosensing, osmoregulation and osmoprotection, the strain confirmed its great capacity to adapt to highly saline environments. Moreover, the presence of various genes potentially related to multiple enzymatic antioxidant processes, able to reduce salt-induced overproduction of ROS, was also detected.


Assuntos
Endófitos/fisiologia , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Poaceae/microbiologia , Tolerância ao Sal , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , África do Norte , Aminoácidos Cíclicos/metabolismo , Endófitos/classificação , Interações entre Hospedeiro e Microrganismos , RNA Ribossômico 16S , Espécies Reativas de Oxigênio/metabolismo , Rizosfera , Salinidade , Estresse Salino , Plantas Tolerantes a Sal/microbiologia , Análise de Sequência de DNA , Microbiologia do Solo
3.
Biomolecules ; 11(8)2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34439819

RESUMO

With the introduction of the new auxinic herbicide halauxifen-methyl into the oilseed rape (Brassica napus) market, there is a need to understand how this new molecule interacts with indigenous plant hormones (e.g., IAA) in terms of crop response. The aim of this study was to investigate the molecular background by using different growth conditions under which three different auxinic herbicides were administered. These were halauxifen-methyl (Hal), alone and together with aminopyralid (AP) as well as picloram (Pic). Three different hormone classes were determined, free and conjugated indole-3-acetic acid (IAA), aminocyclopropane carboxylic acid (ACC) as a precursor for ethylene, and abscisic acid (ABA) at two different temperatures and growth stages as well as over time (2-168 h after treatment). At 15 °C growth temperature, the effect was more pronounced than at 9 °C, and generally, the younger leaves independent of the developmental stage showed a larger effect on the alterations of hormones. IAA and ACC showed reproducible alterations after auxinic herbicide treatments over time, while ABA did not. Finally, a transcriptome analysis after treatment with two auxinic herbicides, Hal and Pic, showed different expression patterns. Hal treatment leads to the upregulation of auxin and hormone responses at 48 h and 96 h. Pic treatment induced the hormone/auxin response already after 2 h, and this continued for the other time points. The more detailed analysis of the auxin response in the datasets indicate a role for GH3 genes and genes encoding auxin efflux proteins. The upregulation of the GH3 genes correlates with the increase in conjugated IAA at the same time points and treatments. Also, genes for were found that confirm the upregulation of the ethylene pathway.


Assuntos
Ácido Abscísico/farmacologia , Aminoácidos Cíclicos/farmacologia , Brassica napus/efeitos dos fármacos , Herbicidas/farmacologia , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Ácido Abscísico/metabolismo , Aminoácidos Cíclicos/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Ácidos Carboxílicos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Ácidos Indolacéticos/metabolismo , Anotação de Sequência Molecular , Picloram/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Piridinas/farmacologia , Temperatura , Transcriptoma
4.
Plant Cell Physiol ; 62(5): 858-871, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33768225

RESUMO

Ethylene is a gaseous phytohormone involved in various physiological processes, including fruit ripening, senescence, root hair development and stress responses. Recent genomics studies have suggested that most homologous genes of ethylene biosynthesis and signaling are conserved from algae to angiosperms, whereas the function and biosynthesis of ethylene remain unknown in basal plants. Here, we examined the physiological effects of ethylene, an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) and an inhibitor of ethylene perception, silver thiosulfate (STS), in a basal land plant, Marchantia polymorpha. M. polymorpha plants biosynthesized ethylene, and treatment with high concentrations of ACC slightly promoted ethylene production. ACC remarkably suppressed the growth of thalli (vegetative organs) and rhizoids (root-hair-like cells), whereas exogenous ethylene slightly promoted thallus growth. STS suppressed thallus growth and induced ectopic rhizoid formation on the dorsal surface of thalli. Thus, ACC and ethylene have different effects on the vegetative growth of M. polymorpha. We generated single and double mutants of ACC synthase-like (ACSL) genes, MpACSL1 and MpACSL2. The mutants did not show obvious defects in thallus growth, ACC content and ethylene production, indicating that MpACSL genes are not essential for the vegetative growth and biosynthesis of ACC and ethylene. Gene expression analysis suggested the involvement of MpACSL1 and MpACSL2 in stress responses. Collectively, our results imply ethylene-independent function of ACC and the absence of ACC-mediated ethylene biosynthesis in M. polymorpha.


Assuntos
Aminoácidos Cíclicos/metabolismo , Etilenos/metabolismo , Marchantia/metabolismo , Aminoácidos Cíclicos/farmacologia , Etilenos/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Marchantia/efeitos dos fármacos , Marchantia/genética , Marchantia/crescimento & desenvolvimento , Mutação , Compostos Organofosforados/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tiossulfatos/farmacologia
5.
Arch Microbiol ; 203(5): 2279-2290, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33644819

RESUMO

Plant growth-promoting rhizobacteria that produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase can promote plant growth and enhance abiotic stress tolerance. In this study, Burkholderia pyrrocinia strain P10, with an ACC deaminase activity of 33.01-µmol/h/mg protein, was isolated from the tea rhizosphere and identified based on morphological, biochemical, and molecular characteristics. In addition to its ACC deaminase activity at pH 5.0-9.0 and in response to 5% NaCl and 20% polyethylene glycol, strain P10 can also solubilize phosphorus compounds, produce indole-3-acetic acid, and secrete siderophores. Pot experiments revealed that strain P10 can significantly enhance peanut seedling growth under saline conditions (100- and 170-mmol/L NaCl). Specifically, it increased the fresh weight and root length of plants by 90.12% and 79.22%, respectively, compared with high-salt stress. These results provide new insights into the biological characteristics of Burkholderia pyrrocinia, which may be useful as a bio-fertilizer.


Assuntos
Burkholderia/enzimologia , Burkholderia/metabolismo , Carbono-Carbono Liases/metabolismo , Raízes de Plantas/microbiologia , Chá/microbiologia , Aminoácidos Cíclicos/metabolismo , Burkholderia/isolamento & purificação , Ácidos Indolacéticos/metabolismo , Desenvolvimento Vegetal , Rizosfera , Plantas Tolerantes a Sal/metabolismo , Plântula/microbiologia , Sideróforos/metabolismo
6.
Methods Mol Biol ; 2213: 123-129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33270198

RESUMO

The gaseous hormone ethylene regulates a diverse range of plant development and stress responses. Ethylene biosynthesis is tightly regulated by the transcriptional and posttranscriptional regulation of ethylene biosynthetic enzymes. ACC synthase (ACS) is the rate-limiting enzyme that controls the speed of ethylene biosynthesis in plant tissues, thus serving as a primary target for biotic and abiotic stresses to modulate ethylene production. Despite the critical role of ACS in ethylene biosynthesis, only a few regulatory components regulating ACS stability or ACS transcript levels have been identified and characterized. Here we show a genetic approach for identifying novel regulatory components in ethylene biosynthesis by screening EMS-mutagenized Arabidopsis seeds.


Assuntos
Metanossulfonato de Etila/química , Etilenos/biossíntese , Testes Genéticos/métodos , Aminoácidos Cíclicos/metabolismo , Bioensaio , Citocininas/farmacologia , Genes Supressores , Mutação/genética , Fenótipo , Sementes/efeitos dos fármacos , Esterilização
7.
Sci Rep ; 10(1): 20951, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262413

RESUMO

1-Aminocyclopropane-1-carboxylate (ACC) deaminase activity is one of the most beneficial traits of plant growth promoting (PGP) rhizobacteria responsible for protecting the plants from detrimental effects of abiotic and biotic stress. The strain S3 with ACC deaminase activity (724.56 nmol α-ketobutyrate mg-1 protein hr-1) was isolated from rhizospheric soil of turmeric (Curcuma longa), a medicinal plant, growing in Motihari district of Indian state, Bihar. The halotolerant strain S3, exhibited optimum growth at 8% (w/v) NaCl. It also exhibited multiple PGP traits such as indole acetic acid production (37.71 µg mL-1), phosphate solubilization (69.68 mg L-1), siderophore, hydrocyanic acid (HCN) and ammonia production as well as revealed antagonism against Rhizoctonia solani. The potential of isolated strain to alleviate salinity stress in tomato plants was investigated through pots trials by inoculating strain S3 through-seed bacterization, soil drenching, root dipping as well as seed treatment + soil drenching. The strain S3 inoculated through seed treatment and soil drenching method led to improved morphological attributes (root/shoot length, root/shoot fresh weight and root/shoot dry weight), photosynthetic pigment content, increased accumulation of osmolytes (proline and total soluble sugar), enhanced activities of antioxidants (Catalase and Peroxidase) and phenolic content in salt stressed tomato plants. The biochemical characterisation, FAMEs analysis and 16S rRNA gene sequencing revealed that strain S3 belongs to the genus Pseudomonas. The overall findings of the study revealed that Pseudomonas sp. strain S3 can be explored as an effective plant growth promoter which stimulate growth and improve resilience in tomato plants under saline condition.


Assuntos
Pseudomonas/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Estresse Fisiológico , Aminoácidos Cíclicos/metabolismo , Antioxidantes/metabolismo , Biomassa , Carbono-Carbono Liases/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Ésteres/análise , Etilenos/metabolismo , Ácidos Graxos/análise , Germinação , Solanum lycopersicum/fisiologia , Osmose , Fenóis/análise , Fotossíntese , Filogenia , Desenvolvimento Vegetal , Folhas de Planta/enzimologia , Prolina/metabolismo , Rhizoctonia/fisiologia , Sementes/crescimento & desenvolvimento , Solubilidade , Açúcares/análise
8.
Nat Plants ; 6(11): 1335-1344, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33106638

RESUMO

The plant hormone ethylene has many roles in growth and development1. In seed plants, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is converted into ethylene by ACC oxidase (ACO), and treatment with ACC induces ethylene responses2. However, non-seed plants lack ACO homologues3-8, which led us to examine the relationship between ACC and ethylene in the liverwort Marchantia polymorpha. Here, we demonstrate that ACC and ethylene can induce divergent growth responses in Marchantia. Ethylene increases plant and gemma size, induces more gemma cups and promotes gemmae dormancy. As predicted, Mpctr1-knockout mutants display constitutive ethylene responses, whereas Mpein3-knockout mutants exhibit ethylene insensitivity. Compared with the wild type, Mpctr1 gemmae have more and larger epidermal cells, whereas Mpein3 gemmae have fewer and smaller epidermal cells, suggesting that ethylene promotes cell division and growth in developing gemmae. By contrast, ACC treatment inhibits gemma growth and development by suppressing cell division, even in the Mpein3-knockout alleles. Knockout mutants of one or both ACC SYNTHASE (ACS) gene homologues produce negligible levels of ACC, have more and larger gemma cups, and have more-expanded thallus branches. Mpacs2 and Mpacs1 Mpacs2 gemmae also display a high frequency of abnormal apical notches (meristems) that are not observed in ethylene mutants. These findings reveal that ethylene and ACC have distinct functions, and suggest that ACC is a signalling molecule in Marchantia. ACC may be an evolutionarily conserved signal that predates its efficient conversion to ethylene in higher plants.


Assuntos
Aminoácidos Cíclicos/metabolismo , Etilenos/metabolismo , Marchantia/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Técnicas de Inativação de Genes
9.
Int J Mol Sci ; 21(17)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872315

RESUMO

The toxic metal cadmium (Cd) is a major soil pollutant. Knowledge on the acute Cd-induced stress response is required to better understand the triggers and sequence of events that precede plant acclimation. Therefore, we aimed to identify the pressure points of Cd stress using a short-term exposure set-up ranging from 0 h to 24 h. Acute responses related to glutathione (GSH), hydrogen peroxide (H2O2), 1-aminocyclopropane-1-carboxylic acid (ACC), ethylene and the oxidative challenge were studied at metabolite and/or transcript level in roots and leaves of Arabidopsis thaliana either exposed or not to 5 µM Cd. Cadmium rapidly induced root GSH depletion, which might serve as an alert response and modulator of H2O2 signalling. Concomitantly, a stimulation of root ACC levels was observed. Leaf responses were delayed and did not involve GSH depletion. After 24 h, a defined oxidative challenge became apparent, which was most pronounced in the leaves and concerted with a strong induction of leaf ACC synthesis. We suggest that root GSH depletion is required for a proper alert response rather than being a merely adverse effect. Furthermore, we propose that roots serve as command centre via a.o. root-derived ACC/ethylene to engage the leaves in a proper stress response.


Assuntos
Aclimatação , Arabidopsis/fisiologia , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Aminoácidos Cíclicos/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
10.
Nat Commun ; 11(1): 4304, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855412

RESUMO

Ribosome-mediated polymerization of backbone-extended monomers into polypeptides is challenging due to their poor compatibility with the translation apparatus, which evolved to use α-L-amino acids. Moreover, mechanisms to acylate (or charge) these monomers to transfer RNAs (tRNAs) to make aminoacyl-tRNA substrates is a bottleneck. Here, we rationally design non-canonical amino acid analogs with extended carbon chains (γ-, δ-, ε-, and ζ-) or cyclic structures (cyclobutane, cyclopentane, and cyclohexane) to improve tRNA charging. We then demonstrate site-specific incorporation of these non-canonical, backbone-extended monomers at the N- and C- terminus of peptides using wild-type and engineered ribosomes. This work expands the scope of ribosome-mediated polymerization, setting the stage for new medicines and materials.


Assuntos
Aminoácidos Cíclicos/metabolismo , Biossíntese Peptídica , Ribossomos/metabolismo , Aminoacilação de RNA de Transferência , Engenharia Genética , Mutação , Polimerização , RNA de Transferência/metabolismo , Ribossomos/genética
11.
Nat Commun ; 11(1): 4082, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796832

RESUMO

The phytohormone ethylene has numerous effects on plant growth and development. Its immediate precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), is a non-proteinogenic amino acid produced by ACC SYNTHASE (ACS). ACC is often used to induce ethylene responses. Here, we demonstrate that ACC exhibits ethylene-independent signaling in Arabidopsis thaliana reproduction. By analyzing an acs octuple mutant with reduced seed set, we find that ACC signaling in ovular sporophytic tissue is involved in pollen tube attraction, and promotes secretion of the pollen tube chemoattractant LURE1.2. ACC activates Ca2+-containing ion currents via GLUTAMATE RECEPTOR-LIKE (GLR) channels in root protoplasts. In COS-7 cells expressing moss PpGLR1, ACC induces the highest cytosolic Ca2+ elevation compared to all twenty proteinogenic amino acids. In ovules, ACC stimulates transient Ca2+ elevation, and Ca2+ influx in octuple mutant ovules rescues LURE1.2 secretion. These findings uncover a novel ACC function and provide insights for unraveling new physiological implications of ACC in plants.


Assuntos
Arabidopsis/metabolismo , Etilenos/metabolismo , Óvulo Vegetal/metabolismo , Tubo Polínico/metabolismo , Aminoácidos Cíclicos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Liases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
12.
Plant Sci ; 293: 110418, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081267

RESUMO

Nitrogen is one of the main factors that affect plant growth and development. However, high nitrogen concentrations can inhibit both shoot and root growth, even though the processes involved in this inhibition are still unknown. The aim of this work was to identify the metabolic alterations that induce the inhibition of root growth caused by high nitrate supply, when the whole plant growth is also reduced. High nitrate altered nitrogen and carbon metabolism, reducing the content of sugars and inducing the accumulation of Ca2+ and amino acids, such as glutamate, alanine and γ-aminobutyrate (GABA), that could act to replenish the succinate pool in the tricarboxylic acid cycle and maintain its activity. Other metabolic alterations found were the accumulation of the polyamines spermidine and spermine, and the reduction of jasmonic acid (JA) and the ethylene precursor aminocyclopropane-1-carboxylic acid (ACC). These results indicate that the growth root inhibition by high NO3- is a complex metabolic response that involves GABA as a key link between C and N metabolism which, together with plant growth regulators such as auxins, cytokinins, abscisic acid, JA, and the ethylene precursor ACC, is able to regulate the metabolic response of root grown under high nitrate concentrations.


Assuntos
Aminoácidos Cíclicos/metabolismo , Glucose/metabolismo , Nitratos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Zea mays/metabolismo , Ácido Abscísico/metabolismo , Carbono/metabolismo , Ciclopentanos/metabolismo , Citocininas/metabolismo , Etilenos , Ácidos Indolacéticos/metabolismo , Nitratos/antagonistas & inibidores , Nitrogênio/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/antagonistas & inibidores , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Poliaminas/metabolismo , Espermidina/metabolismo , Espermina/metabolismo
13.
Plant Mol Biol ; 102(3): 271-285, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31838617

RESUMO

KEY MESSAGE: H2 prolonged the vase life and improved the vase quality of cut roses through repressing endogenous ethylene production and alleviating ethylene signal transduction during the entire senescing period. Recently, the application of hydrogen gas (H2) was shown to improve postharvest quality and longevity in perishable horticultural products, but the specific regulation mechanism remains obscure. Here, endogenous ethylene production and the expression of genes in ethylene biosynthesis and signalling pathway were investigated to explore the crosstalk between H2 and ethylene during the senescence of cut roses. Our results revealed that addition of exogenous ethylene by ethephon accelerated the senescence of cut roses, in which 100 mg L-1 ethephon displayed the most obvious senescent phenotype. While the applied different concentrations (1%, 10%, 50% and 100%) of hydrogen-rich water (HRW) conducted different affects in alleviating the senescence of cut roses, and 1% HRW displayed the best ornamental quality and the longest vase life by reducing ethylene production, supported by the decrease of 1-aminocyclopropene-1-carboxylate (ACC) accumulation, ACC synthase (ACS) and ACC oxidase (ACO) activities, and Rh-ACS3 and Rh-ACO1 expressions in ethylene biosynthesis. In addition, HRW increased the transcripts of ethylene receptor genes Rh-ETR1 at blooming period from day 4 to day 6 and suppressed Rh-ETR3 at senescence phase at day 8 after harvest. Furthermore, the relevant affection of HRW on Rh-ETR1 and Rh-ETR3 expressions still existed when the ethylene production was compromised by adequate addition of exogenous ethylene in HRW-treated cut rose petals, and HRW directly repressed the protein level of Rh-ETR3 in a transient expression assay. Overall, the results suggested that H2 is involved in neutralizing ethylene-mediated postharvest in cut flowers.


Assuntos
Etilenos/antagonistas & inibidores , Etilenos/biossíntese , Flores/efeitos dos fármacos , Hidrogênio/farmacologia , Rosa/efeitos dos fármacos , Rosa/metabolismo , Aminoácidos Cíclicos/metabolismo , Flores/enzimologia , Flores/genética , Flores/crescimento & desenvolvimento , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hidrogênio/metabolismo , Liases/genética , Liases/metabolismo , Compostos Organofosforados , Fenótipo , Reguladores de Crescimento de Plantas , Proteínas de Plantas/genética , Receptores de Superfície Celular/genética , Rosa/enzimologia , Rosa/genética , Transdução de Sinais
14.
Biomolecules ; 9(12)2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835421

RESUMO

We have recently discovered that brassinosteroids (BRs) can inhibit the growth of etiolated pea seedlings dose-dependently in a similar manner to the 'triple response' induced by ethylene. We demonstrate here that the growth inhibition of etiolated pea shoots strongly correlates with increases in ethylene production, which also responds dose-dependently to applied BRs. We assessed the biological activities of two natural BRs on pea seedlings, which are excellent material as they grow rapidly, and respond both linearly and uni-phasically to applied BRs. We then compared the BRs' inhibitory effects on growth, and induction of ethylene and ACC (1-aminocyclopropane-1-carboxylic acid) production, to those of representatives of other phytohormone classes (cytokinins, auxins, and gibberellins). Auxin induced ca. 50-fold weaker responses in etiolated pea seedlings than brassinolide, and the other phytohormones induced much weaker (or opposite) responses. Following the optimization of conditions for determining ethylene production after BR treatment, we found a positive correlation between BR bioactivity and ethylene production. Finally, we optimized conditions for pea growth responses and developed a new, highly sensitive, and convenient bioassay for BR activity.


Assuntos
Brassinosteroides/farmacologia , Etilenos/metabolismo , Pisum sativum/efeitos dos fármacos , Aminoácidos Cíclicos/metabolismo , Bioensaio/métodos , Inibidores do Crescimento/farmacologia , Ácidos Indolacéticos/farmacologia , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo , Reguladores de Crescimento de Plantas/farmacocinética , Reguladores de Crescimento de Plantas/farmacologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
15.
World J Microbiol Biotechnol ; 35(11): 163, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31637600

RESUMO

To simplify industrial mushroom cultivation, we introduced a bacterial Pseudomonas sp. UW4 acdS gene, encoding 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (AcdS), into fungus Agaricus bisporus. Transformant A. bisporus-acdS14 cased with sterilized-vermiculite generated primordia 5 days sooner than wild-type strain, confirming the specific role of the AcdS enzyme. Being consistent with the AcdS enzyme activity increased by 84%, the mycelium growth rate was increased by 25%; but, the ACC and ethylene concentrations were reduced by 71% and 36%, respectively, in the A. bisporus-acdS14 transformant. And the bacterium P. sp. UW4 attachment on the mycelium of the A. bisporus-acdS14 transformant was drastically reduced. We conclude that the heterogeneously expressed bacterial acdS gene degrades ACC and reduces ethylene-synthesis, eliminating ethylene inhibition on the mycelium growth and primordium formation in A. bisporus. Our results provide new insights into the mechanism underlying casing soil bacterium, and help formulate a casing-less cultivation for the next-generation mushroom industry.


Assuntos
Agaricus/crescimento & desenvolvimento , Agaricus/genética , Carpóforos/crescimento & desenvolvimento , Pseudomonas/enzimologia , Pseudomonas/genética , Aminoácidos Cíclicos/metabolismo , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Clonagem Molecular , Etilenos/metabolismo , Regulação Fúngica da Expressão Gênica , Micélio/crescimento & desenvolvimento , Solo , Transformação Genética
16.
Cells ; 8(9)2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31492030

RESUMO

L-Ascorbate (Asc) plays important roles in cell growth and plant development, and its de novo biosynthesis was catalyzed by the first rate-limiting enzyme VTC1. However, the function and regulatory mechanism of VTC1 involved in cell development is obscure in Gossypium hirsutum. Herein, the Asc content and AsA/DHA ratio were accumulated and closely linked with fiber development. The GhVTC1 encoded a typical VTC1 protein with functional conserved domains and expressed preferentially during fiber fast elongation stages. Functional complementary analysis of GhVTC1 in the loss-of-function Arabidopsis vtc1-1 mutants indicated that GhVTC1 is genetically functional to rescue the defects of mutants to normal or wild type (WT). The significant shortened primary root in vtc1-1 mutants was promoted to the regular length of WT by the ectopic expression of GhVTC1 in the mutants. Additionally, GhVTC1 expression was induced by ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and the GhVTC1 promoter showed high activity and included two ethylene-responsive elements (ERE). Moreover, the 5'-truncted promoters containing the ERE exhibited increased activity by ACC treatment. Our results firstly report the cotton GhVTC1 function in promoting cell elongation at the cellular level, and serve as a foundation for further understanding the regulatory mechanism of Asc-mediated cell growth via the ethylene signaling pathway.


Assuntos
Ácido Ascórbico/biossíntese , Fibra de Algodão , Etilenos/metabolismo , Gossypium/genética , Nucleotidiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Aminoácidos Cíclicos/metabolismo , Gossypium/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Elementos de Resposta
17.
Genes (Basel) ; 10(6)2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234462

RESUMO

The economic value of fruit is reduced by having a short shelf life. Whangkeumbae is a type of sand pear (Pyrus pyrifolia) considered a climacteric fruit. The pear is famous for its smooth surface and good flavor. However, its shelf life is very short because of senescence and disease after harvest and a burst of ethylene (ET) production prompting the onset of fruit ripening. In plants, ETHYLENE INSENSITIVE3 (EIN3) and EIN3like (EIL), located in the nucleus, are important components of the ET signaling pathway and act as transcription factors. EIN3s and EILs belong to a small family involved in regulating the expression of ethylene response factor gene (ERF), whose encoding protein is the final component in the ET signaling pathway. The mutation of these components will cause defects in the ethylene pathway. In this study, one gene encoding an EIN3 was cloned and identified from Whangkeumbae and designated PpEIN3b. The deduced PpEIN3b contained a conserved EIN3 domain, a bipartite nuclear localization signal profile (NLS_BP), and an N-6 adenine-specific DNA methylase signature (N6_MTASE). PpEIN3b belongs to the EIN3 super-family by phylogenetic analysis. Quantitative RT-PCR (qRT-PCR) analysis revealed that PpEIN3b was preferentially expressed in fruit. Additionally, its expression was developmentally regulated during fruit ripening and senescence. Furthermore, PpEIN3b transcripts were obviously repressed by salicylic acid (SA) and glucose treatment in pear fruit and in diseased fruit, while it was significantly induced by 1-aminocyclopropane-1-carboxylic acid (ACC) treatment. Taken together, our results reveal the expression and regulation profiles of PpEIN3b and suggest that PpEIN3b might integrate SA, glucose, and ACC signaling to regulate fruit ripening and senescence in pear, which would provide a candidate gene for this regulation to obtain fruit with a long shelf life and improved economic value.


Assuntos
Envelhecimento/genética , Frutas/genética , Filogenia , Pyrus/genética , Sequência de Aminoácidos/genética , Aminoácidos Cíclicos/genética , Aminoácidos Cíclicos/metabolismo , Etilenos/metabolismo , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Glucose/metabolismo , Pyrus/crescimento & desenvolvimento , Ácido Salicílico/metabolismo , Transdução de Sinais/genética
18.
Mol Biotechnol ; 61(9): 650-662, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31201604

RESUMO

1-Aminocyclopropane carboxylic acid oxidase (ACCO) catalyzes the last step of ethylene biosynthesis in plants. Although some sets of structures have been described, there are remaining questions on the active conformation of ACCO and in particular, on the conformation and potential flexibility of the C-terminal part of the enzyme. Several techniques based on the introduction of a probe through chemical modification of amino acid residues have been developed for determining the conformation and dynamics of proteins. Cysteine residues are recognized as convenient targets for selective chemical modification of proteins, thanks to their relatively low abundance in protein sequences and to their well-mastered chemical reactivity. ACCOs have generally 3 or 4 cysteine residues in their sequences. By a combination of approaches including directed mutagenesis, activity screening on cell extracts, biophysical and biochemical characterization of purified enzymes, we evaluated the effect of native cysteine replacement and that of insertion of cysteines on the C-terminal part in tomato ACCO. Moreover, we have chosen to use paramagnetic labels targeting cysteine residues to monitor potential conformational changes by electron paramagnetic resonance (EPR). Given the level of conservation of the cysteines in ACCO from different plants, this work provides an essential basis for the use of cysteine as probe-anchoring residues.


Assuntos
Aminoácido Oxirredutases/química , Aminoácidos Cíclicos/química , Cisteína/química , Etilenos/química , Óxidos de Nitrogênio/química , Proteínas de Plantas/química , Solanum lycopersicum/enzimologia , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Substituição de Aminoácidos , Aminoácidos Cíclicos/metabolismo , Sítios de Ligação , Clonagem Molecular , Cisteína/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Etilenos/biossíntese , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Solanum lycopersicum/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Óxidos de Nitrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Marcadores de Spin , Especificidade por Substrato
19.
Plant J ; 99(5): 988-1002, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31063661

RESUMO

Cold stress is a major limiting factor in grape (Vitis) productivity. In this study, we characterized a cold-responsive ethylene response factor (ERF) transcription factor, VaERF092, from Amur grape (Vitis amurensis). VaERF092 expression was induced by both low temperatures and the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC), but was suppressed by treatment with the ethylene inhibitor aminoethoxyvinylglycine (AVG) under cold conditions. Ectopic expression of VaERF092 in Arabidopsis thaliana enhanced cold tolerance. Co-expression network analysis of V. vinifera genes indicated that WRKY33 might be a downstream target of VaERF092. This hypothesis was supported by the fact that VaWRKY33 was expressed temporally after VaERF092 expression and could also be induced by cold and ACC, and inhibited by AVG. Yeast one-hybrid, transient ß-glucuronidase (GUS) and dual-luciferase reporter assays provided evidence for an interaction between VaERF092 and a GCC-box element in the VaWRKY33 promoter. In addition, heterologous overexpression of VaWRKY33 in A. thaliana resulted in enhanced cold tolerance. VaERF092- and VaWRKY33 overexpressing grape calli showed lower low-temperature exothermic values than the empty vector (EV) calli, indicating enhanced tolerance to cold. Together, these results indicated that VaERF092 regulates VaWRKY33 through binding to its promoter GCC-box, leading to enhanced cold stress tolerance.


Assuntos
Etilenos/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Vitis/metabolismo , Aclimatação , Aminoácidos Cíclicos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis , Temperatura Baixa , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/metabolismo , Proteínas de Plantas/genética , Análise de Sequência , Estresse Fisiológico , Fatores de Transcrição/genética , Transcriptoma , Vitis/genética
20.
Int J Biol Macromol ; 128: 804-813, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30708017

RESUMO

The purpose of this paper was to investigate the effects and mechanism of polysaccharide (PAOF) from Alpiniae oxyphyllae fructus on urinary incontinence (UI) in old-age hydruric model rats (OHMR). Results suggested that PAOF can significantly reduce the urination volume, Na+, Cl- emission and increase K+ excretion of OHMR. In addition, PAOF can increase the content of aldosterone (ALD) and antidiuretic hormone (ADH) in blood of OHMR. The coefficients of spleen, thymus and adrenal of OHMR were improved by PAOF. Furthermore, PAOF can not only elevate significantly the expression of ß3-adrenoceptor mRNA in bladder detrusor of OHMR, but also increase the content of adenylate cyclase (AC), cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in bladder detrusor of OHMR. Meanwhile, PAOF can elevate significantly the expression of PKA protein in bladder detrusor of rats with polyuria. The data implied that PAOF may offer therapeutic potential against UI.


Assuntos
Alpinia/química , Frutas/química , Polissacarídeos/farmacologia , Incontinência Urinária/tratamento farmacológico , Adenilil Ciclases/metabolismo , Aldosterona/sangue , Aminoácidos Cíclicos/metabolismo , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Polissacarídeos/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta 3/genética , Incontinência Urinária/sangue , Incontinência Urinária/genética , Incontinência Urinária/urina , Vasopressinas/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...