Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 10(12): 5623-5640, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373236

RESUMO

Rationale: Myocardial vulnerability to ischemia/reperfusion (I/R) injury is strictly regulated by energy substrate metabolism. Branched chain amino acids (BCAA), consisting of valine, leucine and isoleucine, are a group of essential amino acids that are highly oxidized in the heart. Elevated levels of BCAA have been implicated in the development of cardiovascular diseases; however, the role of BCAA in I/R process is not fully understood. The present study aims to determine how BCAA influence myocardial energy substrate metabolism and to further clarify the pathophysiological significance during cardiac I/R injury. Methods: Parameters of glucose and fatty acid metabolism were measured by seahorse metabolic flux analyzer in adult mouse cardiac myocytes with or without BCAA incubation. Chronic accumulation of BCAA was induced in mice receiving oral BCAA administration. A genetic mouse model with defective BCAA catabolism was also utilized. Mice were subjected to MI/R and the injury was assessed extensively at the whole-heart, cardiomyocyte, and molecular levels. Results: We confirmed that chronic accumulation of BCAA enhanced glycolysis and fatty acid oxidation (FAO) but suppressed glucose oxidation in adult mouse ventricular cardiomyocytes. Oral gavage of BCAA enhanced FAO in cardiac tissues, exacerbated lipid peroxidation toxicity and worsened myocardial vulnerability to I/R injury. Etomoxir, a specific inhibitor of FAO, rescued the deleterious effects of BCAA on I/R injury. Mechanistically, valine, leucine and their corresponding branched chain α-keto acid (BCKA) derivatives, but not isoleucine and its BCKA derivative, transcriptionally upregulated peroxisome proliferation-activated receptor alpha (PPAR-α). BCAA/BCKA induced PPAR-α upregulation through the general control nonderepresible-2 (GCN2)/ activating transcription factor-6 (ATF6) pathway. Finally, in a genetic mouse model with BCAA catabolic defects, chronic accumulation of BCAA increased FAO in myocardial tissues and sensitized the heart to I/R injury, which could be reversed by adenovirus-mediated PPAR-α silencing. Conclusions: We identify BCAA as an important nutrition regulator of myocardial fatty acid metabolism through transcriptional upregulation of PPAR-α. Chronic accumulation of BCAA, caused by either dietary or genetic factors, renders the heart vulnerable to I/R injury via exacerbating lipid peroxidation toxicity. These data support the notion that BCAA lowering methods might be potentially effective cardioprotective strategies, especially among patients with diseases characterized by elevated levels of BCAA, such as obesity and diabetes.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Aminoácidos de Cadeia Ramificada/toxicidade , Ácidos Graxos/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , PPAR alfa/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Metabolismo Energético , Glucose/metabolismo , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/induzido quimicamente , Traumatismo por Reperfusão Miocárdica/metabolismo , Oxirredução
2.
Metab Brain Dis ; 35(6): 905-914, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32297169

RESUMO

Maple Syrup Urine Disease (MSUD) is an inborn error of metabolism caused by a deficiency of branched α-ketoacid dehydrogenase complex (BCKDC) activity. Branched-chain amino acids (BCAA) accumulation is, at least in part, responsible for neurological disturbances characteristic of this metabolic disorder. Experimental studies demonstrated that high levels of BCAA induce brain oxidative stress. Considering that many antioxidants are obtained from the diet, the dietary restriction in MSUD patients probably produce deficiency of vitamins and micronutrients involved in antioxidant defenses. Supplementation with synthetic melatonin has been used to prevention and treatment of pathological conditions, including brain diseases. In this study, we aimed at investigating the potential neuroprotective effect of melatonin treatment in a MSUD experimental model. Infant rats (7 day old) received twice daily subcutaneous injections of a BCAA pool (0.21472 g/kg, 190 mmol/L leucine, 59 mmol/L isoleucine and 69 mmol/L valine in saline solution (15.8 µL/g per weight/injection) or saline alone, and supplemented with melatonin (10 mg/kg, intraperitoneal) for 21 days. Oxidative stress parameters, i.e. antioxidant enzyme activity, reactive species production and damage to lipids and proteins, were assessed in the cerebral cortex, hippocampus and striatum at twenty-eight days of age. In addition, the damage to blood cell DNA was evaluated. The chronic administration of BCAA pool in infant rats induced significant oxidative stress (p < 0.05) - such as oxidation of lipids and proteins, imbalance in antioxidant enzymes activities - damages in DNA (p < 0.05) and in brain structures (cerebral cortex, hippocampus and striatum). Notably, melatonin supplementation was able to ameliorate the oxidative (p < 0.05) and antioxidant (p < 0.05) parameters in the brain and blood of the rat model of MSUD. Our results show that melatonin could be a promising therapeutic agent for MSUD.


Assuntos
Aminoácidos de Cadeia Ramificada/toxicidade , Antioxidantes/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Doença da Urina de Xarope de Bordo/tratamento farmacológico , Melatonina/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Dano ao DNA/fisiologia , Masculino , Doença da Urina de Xarope de Bordo/induzido quimicamente , Doença da Urina de Xarope de Bordo/metabolismo , Melatonina/farmacologia , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar
3.
J Neurosurg Anesthesiol ; 31(2): 247-256, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29620688

RESUMO

BACKGROUND: The essential branched-chain amino acids (BCAAs) leucine, isoleucine, and valine have recently emerged as a potential novel treatment for medically refractory epilepsy. Blood-derived BCAAs can readily enter the brain, where they contribute to glutamate biosynthesis and may either suppress or trigger acute seizures. However, the effects of BCAAs on chronic (ie, spontaneous recurrent) seizures and epilepsy-associated neuron loss are incompletely understood. MATERIALS AND METHODS: Sixteen rats with mesial temporal lobe epilepsy were randomized into 2 groups that could drink, ad libitum, either a 4% solution of BCAAs in water (n=8) or pure water (n=8). The frequency and relative percent of convulsive and nonconvulsive spontaneous seizures were monitored for a period of 21 days, and the brains were then harvested for immunohistochemical analysis. RESULTS: Although the frequency of convulsive and nonconvulsive spontaneous recurrent seizures over a 3-week drinking/monitoring period were not different between the groups, there were differences in the relative percent of convulsive seizures in the first and third week of treatment. Moreover, the BCAA-treated rats had over 25% fewer neurons in the dentate hilus of the hippocampus compared with water-treated controls. CONCLUSIONS: Acute BCAA supplementation reduces seizure propagation, whereas chronic oral supplementation with BCAAs worsens seizure propagation and causes neuron loss in rodents with mesial temporal lobe epilepsy. These findings raise the question of whether such supplementation has a similar effect in humans.


Assuntos
Aminoácidos de Cadeia Ramificada/toxicidade , Aminoácidos de Cadeia Ramificada/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Epilepsia do Lobo Temporal/tratamento farmacológico , Neurônios/efeitos dos fármacos , Convulsões/prevenção & controle , Aminoácidos de Cadeia Ramificada/sangue , Animais , Giro Denteado/patologia , Eletroencefalografia , Epilepsia do Lobo Temporal/patologia , Ratos
4.
Kidney Int ; 92(2): 377-387, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28341273

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the progressive development of kidney and liver cysts. The mammalian target of rapamycin (mTOR) cascade is one of the important pathways regulating cyst growth in ADPKD. Branched-chain amino acids (BCAAs), including leucine, play a crucial role to activate mTOR pathway. Therefore, we administered BCAA dissolved in the drinking water to Pkd1flox/flox:Mx1-Cre (cystic) mice from four to 22 weeks of age after polyinosinic-polycytidylic acid-induced conditional Pkd1 knockout at two weeks of age. The BCAA group showed significantly greater kidney/body weight ratio and higher cystic index in both the kidney and liver compared to the placebo-treated mice. We found that the L-type amino acid transporter 1 that facilitates BCAA entry into cells is strongly expressed in cells lining the cysts. We also found increased cyst-lining cell proliferation and upregulation of mTOR and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways in the BCAA group. In vitro, we cultured renal epithelial cell lines from Pkd1 null mice with or without leucine. Leucine was found to stimulate cell proliferation, as well as activate mTOR and MAPK/ERK pathways in these cells. Thus, BCAA accelerated disease progression by mTOR and MAPK/ERK pathways. Hence, BCAA may be harmful to patients with ADPKD.


Assuntos
Aminoácidos de Cadeia Ramificada/toxicidade , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases , Rim Policístico Autossômico Dominante/induzido quimicamente , Serina-Treonina Quinases TOR/metabolismo , Animais , Camundongos , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo
5.
Amino Acids ; 47(6): 1167-82, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25721400

RESUMO

The mitochondrial branched chain aminotransferase-deficient mouse model (BCATm KO), which exhibits elevated plasma and tissue branched chain amino acids (BCAAs), was used to study the effect of BCAAs on mammalian target of rapamycin complex 1 (mTORC1) regulation of organ size. BCATm is the first enzyme in the BCAA catabolic pathway. BCATm KO mouse exhibited hypertrophy of heart, kidneys, and spleen. On the other hand, the mass of the gastrocnemius was reduced relative to body mass. Feeding the mice with a diet supplemented with rapamycin prevented the enlargement of the heart and spleen, suggesting that mTORC1 is the mediator of these effects. Consistently, enlargement of these organs was accompanied by the activation of mTORC1 complex as evidenced by enhanced levels of S6 and 4E-BP1 phosphorylation. HSP20, HSP27 and GAPDH were also increased in the heart but not gastrocnemius, consistent with mTORC1 activation. Liver, however, displayed no weight difference between the KO and the wild-type mice despite the highest activation level of mTORC1 complex. These observations suggest that the anabolic effect of mTORC1 activation at the organ level by BCAAs and inhibition by rapamycin are complex phenomenon and tissue-specific. In addition, it suggests that rapamycin can be used to counter hypertrophy of the organs when activation of mTORC1 is the underlying cause.


Assuntos
Aminoácidos de Cadeia Ramificada/toxicidade , Cardiomegalia , Nefropatias , Complexos Multiproteicos/metabolismo , Esplenomegalia , Serina-Treonina Quinases TOR/metabolismo , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Knockout , Complexos Multiproteicos/genética , Ratos , Sirolimo/farmacologia , Esplenomegalia/induzido quimicamente , Esplenomegalia/metabolismo , Esplenomegalia/patologia , Serina-Treonina Quinases TOR/genética , Transaminases/genética , Transaminases/metabolismo
6.
J Inherit Metab Dis ; 36(5): 721-30, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23109061

RESUMO

Maple syrup urine disease (MSUD) is a neurometabolic disorder that leads to the accumulation of branched-chain amino acids (BCAAs) and their α-keto branched-chain by-products. Because the neurotoxic mechanisms of MSUD are poorly understood, this study aimed to evaluate the effects of chronic administration of a BCAA pool (leucine, isoleucine and valine). This study examined the effects of BCAA administration on spatial memory and the levels of brain-derived neurotrophic factor (BNDF). We examined both pro-BDNF and bdnf mRNA expression levels after administration of BCAAs. Furthermore, this study examined whether antioxidant treatment prevented the alterations induced by BCAA administration. Our results demonstrated an increase in BDNF in the hippocampus and cerebral cortex, accompanied by memory impairment in spatial memory tasks. Additionally, chronic administration of BCAAs did not induce a detectable change in pro-BDNF levels. Treatment with N-acetylcysteine and deferoxamine prevented both the memory deficit and the increase in the BDNF levels induced by BCAA administration. In conclusion, these results suggest that when the brain is chronically exposed to high concentrations of BCAA (at millimolar concentrations) an increase in BDNF levels occurs. This increase in BDNF may be related to the impairment of spatial memory. In addition, we demonstrated that antioxidant treatment prevented the negative consequences related to BCAA administration, suggesting that oxidative stress might be involved in the pathophysiological mechanism(s) underlying the brain damage observed in MSUD.


Assuntos
Aminoácidos de Cadeia Ramificada/administração & dosagem , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtornos da Memória/induzido quimicamente , Memória/efeitos dos fármacos , Acetilcisteína/farmacologia , Aminoácidos de Cadeia Ramificada/metabolismo , Aminoácidos de Cadeia Ramificada/toxicidade , Animais , Antioxidantes/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Desferroxamina/farmacologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Doença da Urina de Xarope de Bordo/genética , Doença da Urina de Xarope de Bordo/metabolismo , Doença da Urina de Xarope de Bordo/fisiopatologia , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , RNA Mensageiro/genética , Ratos , Ratos Wistar
7.
Mol Neurobiol ; 45(2): 279-86, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22328136

RESUMO

Maple syrup urine disease is an inherited metabolic disease predominantly characterized by neurological dysfunction. However, the mechanisms underlying the neuropathology of this disease are still not defined. Therefore, the aim of this study was to investigate the effect of acute and chronic administration of a branched-chain amino acids (BCAA) pool (leucine, isoleucine, and valine) on acetylcholinesterase (AChE) activity and gene expression in the brain and serum of rats and to assess if antioxidant treatment prevented the alterations induced by BCAA administration. Our results show that the acute administration of a BCAA pool in 10- and 30-day-old rats increases AChE activity in the cerebral cortex, striatum, hippocampus, and serum. Moreover, chronic administration of the BCAA pool also increases AChE activity in the structures studied, and antioxidant treatment prevents this increase. In addition, we show a significant decrease in the mRNA expression of AChE in the hippocampus following acute administration in 10- and 30-day-old rats. On the other hand, AChE expression increased significantly after chronic administration of the BCAA pool. Interestingly, the antioxidant treatment was able to prevent the increased AChE activity without altering AChE expression. In conclusion, the results from the present study demonstrate a marked increase in AChE activity in all brain structures following the administration of a BCAA pool. Moreover, the increased AChE activity is prevented by the coadministration of N-acetylcysteine and deferoxamine as antioxidants.


Assuntos
Acetilcolinesterase/sangue , Aminoácidos de Cadeia Ramificada/metabolismo , Antioxidantes/farmacologia , Química Encefálica/fisiologia , Doença da Urina de Xarope de Bordo/tratamento farmacológico , Doença da Urina de Xarope de Bordo/enzimologia , Acetilcolinesterase/genética , Aminoácidos de Cadeia Ramificada/toxicidade , Animais , Antioxidantes/uso terapêutico , Química Encefálica/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Doença da Urina de Xarope de Bordo/induzido quimicamente , Ratos , Ratos Wistar
8.
Neurotox Res ; 17(4): 392-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19763733

RESUMO

The higher risk for amyotrophic lateral sclerosis (ALS) among professional soccer players, recently reported in Italy, has stimulated investigations in the search for environmental factors that may be at the origin of the increased susceptibility to the disease. Here we studied if high concentrations of branched-chain amino acids (BCAAs), widely used among athletes as dietary integrators to improve physical performance, may be related to an excitotoxic neuronal cell damage. Our results show that (i) high concentrations of BCAAs are neurotoxic and increase excitotoxicity in cortical neurons; (ii) neurotoxicity is brain area specific, being detected in cortical, but not in hippocampal neurons; (iii) it is related to NMDA receptor overstimulation, since it is abolished in the presence of MK-801, a specific NMDA channel blocker; (iv) it depends on the presence of astrocytes. We describe here a possible biological link between an environmental factor (high dietary intake of BCAAs) and the increased risk of ALS among soccer players.


Assuntos
Aminoácidos de Cadeia Ramificada/toxicidade , Neurônios/efeitos dos fármacos , Neurotoxinas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Encéfalo/citologia , Células Cultivadas , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Transportador 2 de Aminoácido Excitatório/metabolismo , Citometria de Fluxo/métodos , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Wistar , Fatores de Tempo
9.
Int J Toxicol ; 23(2): 119-26, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15204732

RESUMO

Branched-chain amino acids (L-isoleucine, L-valine, and L-leucine) are being increasingly used in sport supplements. This study evaluated toxicological and behavioral effects of L-isoleucine (Ile), L-valine (Val), and L-leucine (Leu) during a dosing study with male and female Sprague-Dawley rats. The amino acids were incorporated into a standard diet at doses equal to 1.25%, 2.5%, and 5.0% (w/w). A control group of rats received a standard diet. All diets were administered ad libitum for 13 consecutive weeks. To examine stability of any potential effects, the administration period was followed by a 5-week recovery period, during which only the standard diet was provided to all animals. No significant, dose-related effects on body weight were found in rats fed a Leu- and Ile-supplemented diet. Val mixed into a diet at 5.0% (w/w) decreased slightly, but significantly body weight gain in females, but not males. Ile (5.0% w/w) affected the urine electrolytes, protein, ketone bodies, urine glucose, and urobilinogen in both genders, yet the observed changes remained mostly within the range observed in controls. The random findings in hepatology and ophthalmology at the 13-week sacrifice were not considered toxicologically relevant to effects of the tested amino acids. No significant changes in organ weights were recorded. We estimate the no-observed-adverse-effect level (NOAEL) for Ile at 2.5% for both genders (male, 1.565 +/- 0.060 g/kg/day; females, 1.646 +/- 0.095 g/kg/day), Val at 5.0% for males (3.225 +/- 0.135 g/kg/day) and 2.5% for females (1.853 +/- 0.060 g/kg/day), and Leu at 5.0% for both genders (males, 3.333 +/- 0.101 g/kg/day: females, 3.835 +/- 0.257 g/kg/day).


Assuntos
Aminoácidos de Cadeia Ramificada/toxicidade , Suplementos Nutricionais/toxicidade , Administração Oral , Animais , Análise Química do Sangue , Peso Corporal/efeitos dos fármacos , Feminino , Testes Hematológicos , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Testes de Toxicidade Crônica , Urinálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA