Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.918
Filtrar
1.
Biotechnol J ; 19(5): e2400023, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719589

RESUMO

The discovery of antibiotics has noticeably promoted the development of human civilization; however, antibiotic resistance in bacteria caused by abusing and overusing greatly challenges human health and food safety. Considering the worsening situation, it is an urgent demand to develop emerging nontraditional technologies or methods to address this issue. With the expanding of synthetic biology, optogenetics exhibits a tempting prospect for precisely regulating gene expression in many fields. Consequently, it is attractive to employ optogenetics to reduce the risk of antibiotic resistance. Here, a blue light-controllable gene expression system was established in Escherichia coli based on a photosensitive DNA-binding protein (EL222). Further, this strategy was successfully applied to repress the expression of ß-lactamase gene (bla) using blue light illumination, resulting a dramatic reduction of ampicillin resistance in engineered E. coli. Moreover, blue light was utilized to induce the expression of the mechanosensitive channel of large conductance (MscL), triumphantly leading to the increase of streptomycin susceptibility in engineered E. coli. Finally, the increased susceptibility of ampicillin and streptomycin was simultaneously induced by blue light in the same E. coli cell, revealing the excellent potential of this strategy in controlling multidrug-resistant (MDR) bacteria. As a proof of concept, our work demonstrates that light can be used as an alternative tool to prolong the use period of common antibiotics without developing new antibiotics. And this novel strategy based on optogenetics shows a promising foreground to combat antibiotic resistance in the future.


Assuntos
Antibacterianos , Escherichia coli , Luz , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Antibacterianos/farmacologia , Optogenética/métodos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ampicilina/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Farmacorresistência Bacteriana/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Estreptomicina/farmacologia , Luz Azul
2.
mBio ; 15(5): e0017024, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38564699

RESUMO

Penicillin-binding protein 5 (PBP5) of Enterococcus faecium (Efm) is vital for ampicillin resistance (AMP-R). We previously designated three forms of PBP5, namely, PBP5-S in Efm clade B strains [ampicillin susceptible (AMP-S)], PBP5-S/R (AMP-S or R), and PBP5-R (AMP-R) in clade A strains. Here, pbp5 deletion resulted in a marked reduction in AMP minimum inhibitory concentrations (MICs) to 0.01-0.09 µg/mL for clade B and 0.12-0.19 µg/mL for clade A strains; in situ complementation restored parental AMP MICs. Using D344SRF (lacking ftsW/psr/pbp5), constructs with ftsWA/psrA (from a clade A1 strain) cloned upstream of pbp5-S and pbp5-S/R alleles resulted in modest increases in MICs to 3-8 µg/mL, while high MICs (>64 µg/mL) were seen using pbp5 from A1 strains. Next, using ftsW ± psr from clade B and clade A/B and B/A hybrid constructs, the presence of psrB, even alone or in trans, resulted in much lower AMP MICs (3-8 µg/mL) than when psrA was present (MICs >64 µg/mL). qRT PCR showed relatively greater pbp5 expression (P = 0.007) with pbp5 cloned downstream of clade A1 ftsW/psr (MIC >128 µg/mL) vs when cloned downstream of clade B ftsW/psr (MIC 4-16 µg/mL), consistent with results in western blots. In conclusion, we report the effect of clade A vs B psr on AMP MICs as well as the impact of pbp5 alleles from different clades. While previously, Psr was not thought to contribute to AMP MICs in Efm, our results showed that the presence of psrB resulted in a major decrease in Efm AMP MICs. IMPORTANCE: The findings of this study shed light on ampicillin resistance in Enterococcus faecium clade A strains. They underscore the significance of alterations in the amino acid sequence of penicillin-binding protein 5 (PBP5) and the pivotal role of the psr region in PBP5 expression and ampicillin resistance. Notably, the presence of a full-length psrB leads to reduced PBP5 expression and lower minimum inhibitory concentrations (MICs) of ampicillin compared to the presence of a shorter psrA, regardless of the pbp5 allele involved. Additionally, clade B E. faecium strains exhibit lower AMP MICs when both psr alleles from clades A and B are present, although it is important to consider other distinctions between clade A and B strains that may contribute to this effect. It is intriguing to note that the divergence between clade A and clade B E. faecium and the subsequent evolution of heightened AMP MICs in hospital-associated strains appear to coincide with changes in Pbp5 and psr. These changes in psr may have resulted in an inactive Psr, facilitating increased PBP5 expression and greater ampicillin resistance. These results raise the possibility that a mimicker of PsrB, if one could be designed, might be able to lower MICs of ampicillin-resistant E. faecium, thus potentially resorting ampicillin to our therapeutic armamentarium for this species.


Assuntos
Antibacterianos , Proteínas de Bactérias , Enterococcus faecium , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas , Resistência beta-Lactâmica , Enterococcus faecium/genética , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/metabolismo , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Resistência beta-Lactâmica/genética , Ampicilina/farmacologia , Genoma Bacteriano
3.
Nat Commun ; 15(1): 3327, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637501

RESUMO

Many organismal traits are genetically determined and covary in evolving populations. The resulting trait correlations can either help or hinder evolvability - the ability to bring forth new and adaptive phenotypes. The evolution of evolvability requires that trait correlations themselves must be able to evolve, but we know little about this ability. To learn more about it, we here study two evolvable systems, a yellow fluorescent protein and the antibiotic resistance protein VIM-2 metallo beta-lactamase. We consider two traits in the fluorescent protein, namely the ability to emit yellow and green light, and three traits in our enzyme, namely the resistance against ampicillin, cefotaxime, and meropenem. We show that correlations between these traits can evolve rapidly through both mutation and selection on short evolutionary time scales. In addition, we show that these correlations are driven by a protein's ability to fold, because single mutations that alter foldability can dramatically change trait correlations. Since foldability is important for most proteins and their traits, mutations affecting protein folding may alter trait correlations mediated by many other proteins. Thus, mutations that affect protein foldability may also help shape the correlations of complex traits that are affected by hundreds of proteins.


Assuntos
Ampicilina , Proteínas , Mutação , Fenótipo , Ampicilina/farmacologia , Cefotaxima , Evolução Biológica
4.
BMC Microbiol ; 24(1): 127, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627609

RESUMO

BACKGROUND: In Ethiopia, milk production and handling practices often lack proper hygiene measures, leading to the potential contamination of milk and milk products with Staphylococcus aureus (S. aureus), including methicillin-resistant strains, posing significant public health concerns. This study aimed to investigate the occurrence, antimicrobial susceptibility profiles and presence of resistance genes in S. aureus strains isolated from milk and milk products. METHODS: A cross-sectional study was conducted in the Arsi highlands, Oromia, Ethiopia from March 2022 to February 2023. A total of 503 milk and milk product samples were collected, comprising 259 raw milk, 219 cottage cheese, and 25 traditional yogurt samples. S. aureus isolation and coagulase-positive staphylococci enumeration were performed using Baird-Parker agar supplemented with tellurite and egg yolk. S. aureus was further characterized based on colony morphology, Gram stain, mannitol fermentation, catalase test, and coagulase test. Phenotypic antimicrobial resistance was assessed using the Kirby-Bauer disc diffusion method, while the polymerase chain reaction (PCR) was employed for confirming the presence of S. aureus and detecting antimicrobial resistance genes. RESULTS: S. aureus was detected in 24.9% of the milk and milk products, with the highest occurrence in raw milk (40.9%), followed by yogurt (20%), and cottage cheese (6.4%). The geometric mean for coagulase-positive staphylococci counts in raw milk, yogurt, and cottage cheese was 4.6, 3.8, and 3.2 log10 CFU/mL, respectively. Antimicrobial resistance analysis revealed high levels of resistance to ampicillin (89.7%) and penicillin G (87.2%), with 71.8% of the isolates demonstrating multidrug resistance. Of the 16 S. aureus isolates analyzed using PCR, all were found to carry the nuc gene, with the mecA and blaZ genes detected in 50% of these isolates each. CONCLUSION: This study revealed the widespread distribution of S. aureus in milk and milk products in the Arsi highlands of Ethiopia. The isolates displayed high resistance to ampicillin and penicillin, with a concerning level of multidrug resistance. The detection of the mecA and blaZ genes in selected isolates is of particular concern, highlighting a potential public health hazard and posing a challenge to effective antimicrobial treatment. These findings highlight the urgent need to enhance hygiene standards in milk and milk product handling and promote the rational use of antimicrobial drugs. Provision of adequate training for all individuals involved in the dairy sector can help minimize contamination. These measures are crucial in addressing the threats posed by S. aureus, including methicillin-resistant strains, and ensuring the safety of milk and its products for consumers.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Animais , Staphylococcus aureus , Leite , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/genética , Coagulase/genética , Etiópia , Estudos Transversais , Infecções Estafilocócicas/epidemiologia , Staphylococcus , Anti-Infecciosos/farmacologia , Ampicilina/farmacologia , Testes de Sensibilidade Microbiana
5.
Biochem Biophys Res Commun ; 710: 149859, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581948

RESUMO

Penicillin-binding protein 2 (PBP2) plays a key role in the formation of peptidoglycans in bacterial cell walls by crosslinking glycan chains through transpeptidase activity. PBP2 is also found in Campylobacter jejuni, a pathogenic bacterium that causes food-borne enteritis in humans. To elucidate the essential structural features of C. jejuni PBP2 (cjPBP2) that mediate its biological function, we determined the crystal structure of cjPBP2 and assessed its protein stability under various conditions. cjPBP2 adopts an elongated two-domain structure, consisting of a transpeptidase domain and a pedestal domain, and contains typical active site residues necessary for transpeptidase activity, as observed in other PBP2 proteins. Moreover, cjPBP2 responds to ß-lactam antibiotics, including ampicillin, cefaclor, and cefmetazole, suggesting that ß-lactam antibiotics inactivate cjPBP2. In contrast to typical PBP2 proteins, cjPBP2 is a rare example of a Zn2+-binding PBP2 protein, as the terminal structure of its transpeptidase domain accommodates a Zn2+ ion via three cysteine residues and one histidine residue. Zn2+ binding helps improve the protein stability of cjPBP2, providing opportunities to develop new C. jejuni-specific antibacterial drugs that counteract the Zn2+-binding ability of cjPBP2.


Assuntos
Campylobacter jejuni , Peptidil Transferases , Humanos , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Antibacterianos/farmacologia , Ampicilina/farmacologia , Proteínas de Bactérias
6.
NPJ Biofilms Microbiomes ; 10(1): 37, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565843

RESUMO

Prolonged exposure to antibiotics at low concentration can promote processes associated with bacterial biofilm formation, virulence and antibiotic resistance. This can be of high relevance in microbial communities like the oral microbiome, where commensals and pathogens share a common habitat and where the total abundance of antibiotic resistance genes surpasses the abundance in the gut. Here, we used an ex vivo model of human oral biofilms to investigate the impact of ampicillin on biofilm viability. The ecological impact on the microbiome and resistome was investigated using shotgun metagenomics. The results showed that low concentrations promoted significant shifts in microbial taxonomic profile and could enhance biofilm viability by up to 1 to 2-log. For the resistome, low concentrations had no significant impact on antibiotic resistance gene (ARG) diversity, while ARG abundance decreased by up to 84%. A positive correlation was observed between reduced microbial diversity and reduced ARG abundance. The WHO priority pathogens Streptococcus pneumoniae and Staphylococcus aureus were identified in some of the samples, but their abundance was not significantly altered by ampicillin. Most of the antibiotic resistance genes that increased in abundance in the ampicillin group were associated with streptococci, including Streptococcus mitis, a well-known potential donor of ARGs to S. pneumoniae. Overall, the results highlight the potential of using the model to further our understanding of ecological and evolutionary forces driving antimicrobial resistance in oral microbiomes.


Assuntos
Antibacterianos , Microbiota , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ampicilina/farmacologia , Bactérias/genética , Biofilmes
7.
Biochem Biophys Res Commun ; 714: 149974, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663094

RESUMO

Due to the rapid emergence of antibiotic resistant new bacterial strains and new infections, there is an urgent need for novel or newly modified and efficient alternatives of treatment. However, conventional antibiotics are still used in therapeutic settings but their efficacy is uncertain due to the rapid evolution of drug resistance. In the present study, we have synthesized a new derivative of conventional antibiotic ampicillin using SN2-type substitution reaction. NMR and mass analysis of the newly synthesized derivative of ampicillin confirmed it as ampicillin-bromo-methoxy-tetralone (ABMT). Importantly, ABMT is revealed to have efficient activity against Staphylococcus aureus (S. aureus) with a MIC value of 32 µg ml-1 while ampicillin was not effective, even at 64 µg ml-1 of concentration. Electron microscopy results confirmed the membrane-specific killing of S. aureus at 1 h of treatment. Additionally, molecular docking analysis revealed a strong binding affinity of ABMT with ß-lactamase via the formation of a closed compact bridge. Our findings, avail a new derivative of ampicillin that could be a potential alternative to fight ampicillin-resistant bacteria possibly by neutralizing the ß-lactamase action.


Assuntos
Ampicilina , Antibacterianos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Staphylococcus aureus , Ampicilina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Tetralonas/farmacologia , Tetralonas/química , Tetralonas/síntese química , Resistência a Ampicilina , beta-Lactamases/metabolismo
8.
Sci Total Environ ; 930: 172668, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38663625

RESUMO

In environmental biofilms, antibiotic-resistant bacteria facilitate the persistence of susceptible counterparts under antibiotic stresses, contributing to increased community-level resistance. However, there is a lack of quantitative understanding of this protective effect and its influential factors, hindering accurate risk assessment of biofilm resistance in diverse environment. This study isolated an opportunistic Escherichia coli pathogen from soil, and engineered it with plasmids conferring antibiotic resistance. Protective effects of the ampicillin resistant strain (AmpR) on their susceptible counterparts (AmpS) were observed in ampicillin-stress colony biofilms. The concentration of ampicillin delineated protective effects into 3 zones: continuous protection (<1 MIC of AmpS), initial AmpS/R dependent (1-8 MIC of AmpS), and ineffective (>8 MIC of AmpS). Intriguingly, Zone 2 exhibited a surprising "less is more" phenomenon tuned by the initial AmpS/R ratio, where biofilm with an initially lower AmpR (1:50 vs 50:1) harbored 30-90 % more AmpR after 24 h growth under antibiotic stress. Compared to AmpS, AmpR displayed superiority in adhesion, antibiotic degradation, motility, and quorum sensing, allowing them to preferentially colonize biofilm edge and areas with higher ampicillin. An agent-based model incorporating protective effects successfully simulated tempo-spatial dynamics of AmpR and AmpS influenced by antibiotic stress and initial AmpS/R. This study provides a holistic view on the pervasive but poorly understood protective effects in biofilm, enabling development of better risk assessment and precisely targeted control strategies of biofilm resistance in diverse environment.


Assuntos
Antibacterianos , Biofilmes , Escherichia coli , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Farmacorresistência Bacteriana , Ampicilina/farmacologia , Testes de Sensibilidade Microbiana , Microbiologia do Solo
9.
Sci Total Environ ; 925: 171675, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485022

RESUMO

Globally rising antibiotic-resistant (AR) and multi-drug resistant (MDR) bacterial infections are of public health concern due to treatment failure with current antibiotics. Enterobacteria, particularly Escherichia coli, cause infections of surgical wound, bloodstream, and urinary tract, including pneumonia and sepsis. Herein, we tested in vitro antibacterial efficacy, mode of action (MoA), and safety of novel amino-functionalized silver nanoparticles (NH2-AgNP) against the AR bacteria. Two AR E. coli strains (i.e., ampicillin- and kanamycin-resistant E. coli), including a susceptible strain of E. coli DH5α, were tested for susceptibility to NH2-AgNP using Kirby-Bauer disk diffusion and standard growth assays. Dynamic light scattering (DLS) was used to determine cell debris and relative conductance was used as a measure of cell leakage, and results were confirmed with transmission electron microscopy (TEM). Multiple oxidative stress assays were used for in vitro safety evaluation of NH2-AgNP in human lung epithelial cells. Results showed that ampicillin and kanamycin did not inhibit growth in either AR bacterial strain with doses up to 160 µg/mL tested. NH2-AgNP exhibited broad-spectrum bactericidal activity, inhibiting the growth of all three bacterial strains at doses ≥1 µg/mL. DLS and TEM revealed cell debris formation and cell leakage upon NH2-AgNP treatment, suggesting two possible MoAs: electrostatic interactions followed by cell wall damage. Safety evaluation revealed NH2-AgNP as noncytotoxic and antioxidative to human lung epithelial cells. Taken together, these results suggest that NH2-AgNP may serve as an effective and safer bactericidal therapy against AR bacterial infections compared to common antibiotics.


Assuntos
Infecções Bacterianas , Nanopartículas Metálicas , Humanos , Antibacterianos/toxicidade , Escherichia coli , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Bactérias , Ampicilina/farmacologia , Canamicina/farmacologia , Testes de Sensibilidade Microbiana
10.
Protein Sci ; 33(4): e4919, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501433

RESUMO

Protein-protein interactions (PPIs) are central to many cellular processes, and the identification of novel PPIs is a critical step in the discovery of protein therapeutics. Simple methods to identify naturally existing or laboratory evolved PPIs are therefore valuable research tools. We have developed a facile selection that links PPI-dependent ß-lactamase recruitment on the surface of Escherichia coli with resistance to ampicillin. Bacteria displaying a protein that forms a complex with a specific protein-ß-lactamase fusion are protected from ampicillin-dependent cell death. In contrast, bacteria that do not recruit ß-lactamase to the cell surface are killed by ampicillin. Given its simplicity and tunability, we anticipate this selection will be a valuable addition to the palette of methods for illuminating and interrogating PPIs.


Assuntos
Ampicilina , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/metabolismo , Ampicilina/farmacologia , Ampicilina/metabolismo , Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Membrana Celular/metabolismo , Antibacterianos/metabolismo
11.
Eur J Med Chem ; 268: 116235, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377828

RESUMO

With the aim to identify new antiviral agents with antibacterial properties, a series of 2-quinolone-1,2,3-triazole derivatives bearing α-aminophosphonates was synthesized and characterized by 1H NMR, 13C NMR, 31P NMR, single crystal XRD and HRMS analyses. These compounds were examined against five RNA viruses (YFV, ZIKV, CHIKV, EV71 and HRV) from three distinct families (Picornaviridae, Togaviridae and Flaviviridae) and four bacterial strains (S. aureus, E. feacalis, E. coli and P. aeruginosa). The α-aminophosphonates 4f, 4i, 4j, 4k, 4p and 4q recorded low IC50 values of 6.8-10.91 µM, along with elevated selectivity indices ranging from 2 to more than 3, particularly against YFV, CHIKV and HRV-B14. Besides, the synthesized compounds were generally more sensitive toward Gram-positive bacteria, with the majority of them displaying significant potency against E. feacalis. Specifically, an excellent anti-enterococcus activity was obtained by compound 4q with MIC and MBC values of 0.03 µmol/mL, which were 8.7 and 10 times greater than those of the reference drugs ampicillin and rifampicin, respectively. Also, compounds 4f, 4p and 4q showed potent anti-staphylococcal activity with MIC values varying between 0.11 and 0.13 µmol/mL, compared to 0.27 µmol/mL for ampicillin. The results from DFT and molecular docking simulations were in agreement with the biological assays, proving the binding capability of hybrids 4f, 4i, 4j, 4k, 4p and 4q with viral and bacterial target enzymes through hydrogen bonds and other non-covalent interactions. The in silico ADME/Tox prediction revealed that these molecules possess moderate to good drug-likeness and pharmacokinetic properties, with a minimal chance of causing liver toxicity or carcinogenic effects.


Assuntos
Hidroxiquinolinas , Quinolonas , Infecção por Zika virus , Zika virus , Humanos , Antibacterianos/química , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/farmacologia , Staphylococcus aureus , Simulação de Acoplamento Molecular , Escherichia coli , Ampicilina/farmacologia , Antivirais/farmacologia , Testes de Sensibilidade Microbiana
12.
ACS Appl Bio Mater ; 7(3): 1990-1999, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38363728

RESUMO

The increasing severity of problems posed by drug-resistant pathogens has compelled researchers to explore innovative approaches for infection prevention. Among these strategies, conjugation methods stand out for their convenience and high efficacy. In this study, multiple covalent conjugates were synthesized, incorporating the natural antimicrobial peptide epsilon-poly-l-lysine (EPL) and two commonly used ß-lactam antibiotics: penicillin G or ampicillin. Enhanced antimicrobial efficacy against typical Gram-negative pathogens, along with faster kill kinetics compared to combination approaches, was demonstrated by the EPL-Ampicillin covalent conjugates. Their antimicrobial mechanism was also substantiated through SEM and fluorescence tests in this work, confirming the inheritance of membrane-disrupting properties from EPL. Furthermore, the excellent biocompatibility of the raw materials was reserved in the covalent conjugates. This simplified conjugation method holds promise for the development of infection therapeutic drugs and potentially restores the sensitivity of conventional antibiotics to drug-resistant pathogens by introducing membrane-disrupting mechanisms.


Assuntos
Polilisina , Antibióticos beta Lactam , Polilisina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Ampicilina/farmacologia , Penicilina G , Monobactamas
13.
J Antimicrob Chemother ; 79(4): 801-809, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334390

RESUMO

OBJECTIVES: To investigate the genomic diversity and ß-lactam susceptibilities of Enterococcus faecalis collected from patients with infective endocarditis (IE). METHODS: We collected 60 contemporary E. faecalis isolates from definite or probable IE cases identified between 2018 and 2021 at the University of Pittsburgh Medical Center. We used whole-genome sequencing to study bacterial genomic diversity and employed antibiotic checkerboard assays and a one-compartment pharmacokinetic-pharmacodynamic (PK/PD) model to investigate bacterial susceptibility to ampicillin and ceftriaxone both alone and in combination. RESULTS: Genetically diverse E. faecalis were collected, however, isolates belonging to two STs, ST6 and ST179, were collected from 21/60 (35%) IE patients. All ST6 isolates encoded a previously described mutation upstream of penicillin-binding protein 4 (pbp4) that is associated with pbp4 overexpression. ST6 isolates had higher ceftriaxone MICs and higher fractional inhibitory concentration index values for ampicillin and ceftriaxone (AC) compared to other isolates, suggesting diminished in vitro AC synergy against this lineage. Introduction of the pbp4 upstream mutation found among ST6 isolates caused increased ceftriaxone resistance in a laboratory E. faecalis isolate. PK/PD testing showed that a representative ST6 isolate exhibited attenuated efficacy of AC combination therapy at humanized antibiotic exposures. CONCLUSIONS: We find evidence for diminished in vitro AC activity among a subset of E. faecalis IE isolates with increased pbp4 expression. These findings suggest that alternate antibiotic combinations against diverse contemporary E. faecalis IE isolates should be evaluated.


Assuntos
Endocardite Bacteriana , Endocardite , Infecções por Bactérias Gram-Positivas , Humanos , Ceftriaxona/farmacologia , Ceftriaxona/uso terapêutico , Enterococcus faecalis , Ampicilina/farmacologia , Ampicilina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Endocardite Bacteriana/tratamento farmacológico , Endocardite Bacteriana/microbiologia , Endocardite/tratamento farmacológico , Testes de Sensibilidade Microbiana , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Quimioterapia Combinada
14.
J Microbiol Biotechnol ; 34(4): 854-862, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38326923

RESUMO

Lactobacillus is a commonly used probiotic, and many researchers have focused on its stress response to improve its functionality and survival. However, studies on persister cells, dormant cells that aid bacteria in surviving general stress, have focused on pathogenic bacteria that cause infection, not Lactobacillus. Thus, understanding Lactobacillus persister cells will provide essential clues for understanding how Lactobacillus survives and maintains its function under various environmental conditions. We treated Lactobacillus strains with various antibiotics to determine the conditions required for persister formation using kill curves and transmission electron microscopy. In addition, we observed the resuscitation patterns of persister cells using single-cell analysis. Our results show that Lactobacillus creates a small population of persister cells (0.0001-1% of the bacterial population) in response to beta-lactam antibiotics such as ampicillin and amoxicillin. Moreover, only around 0.5-1% of persister cells are heterogeneously resuscitated by adding fresh media; the characteristics are typical of persister cells. This study provides a method for forming and verifying the persistence of Lactobacillus and demonstrates that antibiotic-induced Lactobacillus persister cells show characteristics of dormancy, sensitivity of antibiotics, same as exponential cells, multi-drug tolerance, and resuscitation, which are characteristics of general persister cells. This study suggests that the mechanisms of formation and resuscitation may vary depending on the characteristics, such as the membrane structure of the bacterial species.


Assuntos
Ampicilina , Antibacterianos , Lactobacillus , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Antibacterianos/farmacologia , Lactobacillus/fisiologia , Ampicilina/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Probióticos , Amoxicilina/farmacologia
15.
Lancet Microbe ; 5(2): e151-e163, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38219758

RESUMO

BACKGROUND: DNA sequencing could become an alternative to in vitro antibiotic susceptibility testing (AST) methods for determining antibiotic resistance by detecting genetic determinants associated with decreased antibiotic susceptibility. Here, we aimed to assess and improve the accuracy of antibiotic resistance determination from Enterococcus faecium genomes for diagnosis and surveillance purposes. METHODS: In this retrospective diagnostic accuracy study, we first conducted a literature search in PubMed on Jan 14, 2021, to compile a catalogue of genes and mutations predictive of antibiotic resistance in E faecium. We then evaluated the diagnostic accuracy of this database to determine susceptibility to 12 different, clinically relevant antibiotics using a diverse population of 4382 E faecium isolates with available whole-genome sequences and in vitro culture-based AST phenotypes. Isolates were obtained from various sources in 11 countries worldwide between 2000 and 2018. We included isolates tested with broth microdilution, Vitek 2, and disc diffusion, and antibiotics with at least 50 susceptible and 50 resistant isolates. Phenotypic resistance was derived from raw minimum inhibitory concentrations and measured inhibition diameters, and harmonised primarily using the breakpoints set by the European Committee on Antimicrobial Susceptibility Testing. A bioinformatics pipeline was developed to process raw sequencing reads, identify antibiotic resistance genetic determinants, and report genotypic resistance. We used our curated database, as well as ResFinder, AMRFinderPlus, and LRE-Finder, to assess the accuracy of genotypic predictions against phenotypic resistance. FINDINGS: We curated a catalogue of 228 genetic markers involved in resistance to 12 antibiotics in E faecium. Very accurate genotypic predictions were obtained for ampicillin (sensitivity 99·7% [95% CI 99·5-99·9] and specificity 97·9% [95·8-99·0]), ciprofloxacin (98·0% [96·4-98·9] and 98·8% [95·9-99·7]), vancomycin (98·8% [98·3-99·2] and 98·8% [98·0-99·3]), and linezolid resistance (after re-testing false negatives: 100·0% [90·8-100·0] and 98·3% [97·8-98·7]). High sensitivity was obtained for tetracycline (99·5% [99·1-99·7]), teicoplanin (98·9% [98·4-99·3]), and high-level resistance to aminoglycosides (97·7% [96·6-98·4] for streptomycin and 96·8% [95·8-97·5] for gentamicin), although at lower specificity (60-90%). Sensitivity was expectedly low for daptomycin (73·6% [65·1-80·6]) and tigecycline (38·3% [27·1-51·0]), for which the genetic basis of resistance is not fully characterised. Compared with other antibiotic resistance databases and bioinformatic tools, our curated database was similarly accurate at detecting resistance to ciprofloxacin and linezolid and high-level resistance to streptomycin and gentamicin, but had better sensitivity for detecting resistance to ampicillin, tigecycline, daptomycin, and quinupristin-dalfopristin, and better specificity for ampicillin, vancomycin, teicoplanin, and tetracycline resistance. In a validation dataset of 382 isolates, similar or improved diagnostic accuracies were also achieved. INTERPRETATION: To our knowledge, this work represents the largest published evaluation to date of the accuracy of antibiotic susceptibility predictions from E faecium genomes. The results and resources will facilitate the adoption of whole-genome sequencing as a tool for the diagnosis and surveillance of antimicrobial resistance in E faecium. A complete characterisation of the genetic basis of resistance to last-line antibiotics, and the mechanisms mediating antibiotic resistance silencing, are needed to close the remaining sensitivity and specificity gaps in genotypic predictions. FUNDING: Wellcome Trust, UK Department of Health, British Society for Antimicrobial Chemotherapy, Academy of Medical Sciences and the Health Foundation, Medical Research Council Newton Fund, Vietnamese Ministry of Science and Technology, and European Society of Clinical Microbiology and Infectious Disease.


Assuntos
Daptomicina , Enterococcus faecium , Enterococcus faecium/genética , Vancomicina/farmacologia , Linezolida , Tigeciclina , Teicoplanina , Estudos Retrospectivos , Antibacterianos/farmacologia , Ampicilina/farmacologia , Resistência Microbiana a Medicamentos , Ciprofloxacina , Fenótipo , Gentamicinas , Estreptomicina
16.
Appl Microbiol Biotechnol ; 108(1): 5, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38165477

RESUMO

Antibiotic resistance is an important problem that threatens medical treatment. Differences in the resistance levels of microorganisms cause great difficulties in understanding the mechanisms of antibiotic resistance. Therefore, the molecular reasons underlying the differences in the level of antibiotic resistance need to be clarified. For this purpose, genomic and transcriptomic analyses were performed on three Escherichia coli strains with varying degrees of adaptive resistance to ampicillin. Whole-genome sequencing of strains with different levels of resistance detected five mutations in strains with 10-fold resistance and two additional mutations in strains with 95-fold resistance. Overall, three of the seven mutations occurred as a single base change, while the other four occurred as insertions or deletions. While it was thought that 10-fold resistance was achieved by the effect of mutations in the ftsI, marAR, and rpoC genes, it was found that 95-fold resistance was achieved by the synergistic effect of five mutations and the ampC mutation. In addition, when the general transcriptomic profiles were examined, it was found that similar transcriptomic responses were elicited in strains with different levels of resistance. This study will improve our view of resistance mechanisms in bacteria with different levels of resistance and provide the basis for our understanding of the molecular mechanism of antibiotic resistance in ampicillin-resistant E. coli strains. KEY POINTS: •The mutation of the ampC promoter may act synergistically with other mutations and lead to higher resistance. •Similar transcriptomic responses to ampicillin are induced in strains with different levels of resistance. •Low antibiotic concentrations are the steps that allow rapid achievement of high antibiotic resistance.


Assuntos
Resistência a Ampicilina , Escherichia coli , Resistência a Ampicilina/genética , Escherichia coli/genética , Ampicilina/farmacologia , Antibacterianos/farmacologia , Perfilação da Expressão Gênica
17.
Braz J Microbiol ; 55(1): 343-355, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38066229

RESUMO

Sulfonamide derivatives have numerous pharmaceutical applications having antiviral, antibacterial, antifungal, antimalarial, anticancer, and antidepressant activities. The structural flexibility of sulfonamide derivatives makes them an excellent candidate for the development of new multi-target agents, although long-time exposure to sulfonamide drugs results in many toxic impacts on human health. However, sulfonamides may be functionalized for developing less toxic and more competent drugs. In this work, sulfonamides including Sulfapyridine (a), Sulfathiazole (b), Sulfamethoxazole (c), and Sulfamerazine (d) are used to synthesize Schiff bases of 7-hydroxy-4-methyl-2-oxo-2H-chromene-8-carbalde-hyde (1a-1d). The synthesized compounds were spectroscopically characterized and tested against hospital isolates of three Gram-positive (Methicillin-resistant Staphylococcus aureus PH217, Ampicillin-resistant Coagulase-negative Staphylococcus aureus, multidrug-resistant (MDR) Enterococcus faecalis PH007R) and two Gram-negative bacteria (multidrug-resistant Escherichia coli, and Salmonella enterica serovar Typhi), compared to the quality control strains from ATCC (S. aureus 29213, E. faecalis 25922, E. coli 29212) and MTCC (S. Typhi 734). Two of the four Schiff bases 1a and 1b are found to be more active than their counterpart 1c and 1d; while 1a have showed significant activity by inhibiting MRSA PH217 and MDR isolates of E. coli at the minimum inhibitory concentration (MIC) of 150 µg/mL and 128 µg/mL with MBC of 1024 µg/mL, respectively. On the other hand, the MIC of 1b was 150 µg/mL against both S. aureus ATCC 29213 and Salmonella Typhi MTCC 734, compared to the control antibiotics Ampicillin and Gentamycin. Scanning electron microscopy demonstrated the altered surface structure of bacterial cells as a possible mechanism of action, supported by the in-silico molecular docking analysis.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Humanos , Simulação de Acoplamento Molecular , Cromonas/farmacologia , Escherichia coli , Bases de Schiff/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Sulfanilamida , Ampicilina/farmacologia , Sulfonamidas/farmacologia , Testes de Sensibilidade Microbiana
18.
J Food Prot ; 87(1): 100192, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37949412

RESUMO

Antimicrobial resistance (AMR) trends in 114 generic Escherichia coli isolated from channel catfish and related fish species were investigated in this study. Of these, 45 isolates were from commercial-sized channel catfish harvested from fishponds in Alabama, while 69 isolates were from Siluriformes products, accessed from the U.S. Department of Agriculture Food Safety and Inspection Service' (FSIS) National Antimicrobial Resistance Monitoring System (NARMS) program. Antibiotic susceptibility testing and whole genome sequencing were performed using the GenomeTrakr protocol. Upon analysis, the fishpond isolates showed resistance to ampicillin (44%), meropenem (7%) and azithromycin (4%). The FSIS NARMS isolates showed resistance to tetracycline (31.9%), chloramphenicol (20.3%), sulfisoxazole (17.4%), ampicillin (5.8%) and trimethoprim-sulfamethoxazole, nalidixic acid, amoxicillin-clavulanic acid, azithromycin and cefoxitin below 5% each. There was no correlation between genotypic and phenotypic resistance in the fishpond isolates, however, there was in NARMS isolates for folate pathway antagonists: Sulfisoxazole vs. sul1 and sul2 (p = 0.0042 and p < 0.0001, respectively) and trimethoprim-sulfamethoxazole vs. dfrA16 and sul1 (p = 0.0290 and p = 0.013, respectively). Furthermore, correlations were found for tetracyclines: Tetracycline vs. tet(A) and tet(B) (p < 0.0001 each), macrolides: Azithromycin vs. mph(E) and msr(E) (p = 0.0145 each), phenicols: Chloramphenicol vs. mdtM (p < 0.0001), quinolones: Nalidixic acid vs. gyrA_S83L=POINT (p = 0.0004), and ß-lactams: Ampicillin vs. blaTEM-1 (p < 0.0001). Overall, we recorded differences in antimicrobial susceptibility testing profiles, phenotypic-genotypic concordance, and resistance to critically important antimicrobials, which may be a public health concern.


Assuntos
Escherichia coli , Ictaluridae , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Azitromicina/farmacologia , Tetraciclina/farmacologia , Ácido Nalidíxico/farmacologia , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Sulfisoxazol/farmacologia , Testes de Sensibilidade Microbiana , Ampicilina/farmacologia , Cloranfenicol
19.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 857-871, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37522914

RESUMO

Phyllanthus emblica L. (syn. Emblica officinalis), popularly known as amla, Indian gooseberry, or the King of Rasyana, is a member of Phyllanthaceae family and is traditionally used in Ayurveda as an immunity booster. The present study aimed to investigate the synergistic interaction of Phyllanthus emblica (FPE) fruits and its selected phytocompounds with ampicillin against selected bacteria. Further, an in silico technique was used to find if major phytocompounds of FPE could bind to proteins responsible for antibiotic resistance in bacterial pathogens and enhance the bioactivity of ampicillin. FPE and all the selected phytocompounds were found to have synergistic antibacterial activity with ampicillin against tested bacteria in different combinations. However, ellagic acid and quercetin interactions with ampicillin resulted in maximum bioactivity enhancement of 32-128 folds and 16-277 folds, respectively. In silico analysis revealed strong ellagic acid, quercetin, and rutin binding with penicillin-binding protein (PBP-) 3, further supported by MD simulations. Ellagic acid and quercetin also fulfill Lipinski's rule, showing similar toxicity characteristics to ampicillin. FPE showed synergistic interaction with ampicillin, possibly due to the presence of phytocompounds such as gallic acid, ellagic acid, quercetin, and rutin. Molecular docking and MD simulations showed the strong interaction of ellagic acid and quercetin with PBP-3 protein. Therefore, these compounds can be explored as potential non-toxic drug candidates to combat bacterial antimicrobial resistance.


Assuntos
Phyllanthus emblica , Phyllanthus emblica/química , Frutas/química , Quercetina , Simulação de Acoplamento Molecular , Ácido Elágico/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Ampicilina/farmacologia , Ampicilina/análise , Rutina
20.
Chemosphere ; 349: 140831, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040251

RESUMO

Effective water treatment to remove antibiotics and its activity from contaminated water is urgently needed to prevent antibiotic-resistant bacteria (ARB) emergence. In this study, we investigated degradation of Ampicillin (AMP), an extensively used ß-lactam antibiotic, using submersible Ultraviolet C Light Emitting Diode (λmax = 276 nm) irradiation source, and Persulfate (UVC LED/PS system). Pseudo first order rate constant (kobs) for degradation of AMP (1 ppm) by UVC LED/PS system was determined to be 0.5133 min-1 (PS = 0.2 mM). kobs value at pH 2.5 (0.7259 min-1) was found to be higher than pH 6.5 (0.5133 min-1) and pH 12 (0.1745 min-1). kobs value for degradation of AMP in deionized water spiked with inorganic anions (Cl-=0.5369 min-1,SO42-=0.4545 min-1, NO3-=0.1526 min-1, HCO3-=0.0226 min-1), in real tap water (0.1182 min-1) and simulated ground water (0.0372 min-1) were presented. Radical scavenging experiment reveal involvement of sulfate radical anion and hydroxyl radical in UVC LED/PS system. EPR analysis confirms the generation of sulfate radical anion and hydroxyl radical. Importantly, 74% reduction of total organic carbon (TOC) occurred within 60 min of AMP treatment by UVC LED/PS system. Seven degradation by-products were identified by high resolution mass spectrometry, and degradation pathways were proposed. Antibacterial activity of AMP towards Bacillus subtilis and Staphylococcus aureus was completely removed after UVC LED/PS treatment. ECOSAR model predicted no very toxic degradation by-products generation by UVC LED/PS system. Electrical Energy per order (EEo) and cost of UVC LED/PS system were determined to be 0.9351 kW/m3/order and ₹ 7.91/m3 ($ 0.095/m3 or € 0.087/m3), respectively. Overall, this study highlights, UVC LED/PS system as energy efficient, low-cost, and its potential to emerge as sulfate radical anion based advanced oxidation process (AOP) to treat water with antibiotics.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Antibacterianos/farmacologia , Radical Hidroxila , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Sulfatos/química , Cinética , Oxirredução , Custos e Análise de Custo , Ampicilina/farmacologia , Poluentes Químicos da Água/análise , Raios Ultravioleta , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...