Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 5221, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251308

RESUMO

Viruses are the most abundant biological entities in marine environments, however, despite its potential ecological implications, little is known about virus removal by ambient non-host organisms. Here, we examined the effects of a variety of non-host organisms on the removal of viruses. The marine algal virus PgV-07T (infective to Phaeocystis globosa) can be discriminated from bacteriophages using flow cytometry, facilitating its use as a representative model system. Of all the non-host organisms tested, anemones, polychaete larvae, sea squirts, crabs, cockles, oysters and sponges significantly reduced viral abundance. The latter four species reduced viral abundance the most, by 90, 43, 12 and 98% over 24 h, respectively. Breadcrumb sponges instantly removed viruses at high rates (176 mL h-1 g tissue dry wt-1) which continued over an extended period of time. The variety of non-host organisms capable of reducing viral abundance highlights that viral loss by ambient organisms is an overlooked avenue of viral ecology. Moreover, our finding that temperate sponges have the huge potential for constant and effective removal of viruses from the water column demonstrates that natural viral loss has, thus far, been underestimated.


Assuntos
Organismos Aquáticos/virologia , Phycodnaviridae/patogenicidade , Microbiologia da Água , Animais , Braquiúros/virologia , Copépodes/virologia , Especificidade de Hospedeiro , Mytilus edulis/virologia , Ostreidae/virologia , Phycodnaviridae/fisiologia , Poríferos/virologia , Anêmonas-do-Mar/virologia
2.
Viruses ; 12(2)2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075325

RESUMO

The role of viruses in forming a stable holobiont has been the subject of extensive research in recent years. However, many emerging model organisms still lack any data on the composition of the associated viral communities. Here, we re-analyzed seven publicly available transcriptome datasets of the starlet sea anemone Nematostella vectensis, the most commonly used anthozoan lab model, and searched for viral sequences. We applied a straightforward, yet powerful approach of de novo assembly followed by homology-based virus identification and a multi-step, thorough taxonomic validation. The comparison of different lab populations of N. vectensis revealed the existence of the core virome composed of 21 viral sequences, present in all adult datasets. Unexpectedly, we observed an almost complete lack of viruses in the samples from the early developmental stages, which together with the identification of the viruses shared with the major source of the food in the lab, the brine shrimp Artemia salina, shed new light on the course of viral species acquisition in N. vectensis. Our study provides an initial, yet comprehensive insight into N. vectensis virome and sets the first foundation for the functional studies of viruses and antiviral systems in this lab model cnidarian.


Assuntos
Anêmonas-do-Mar/virologia , Transcriptoma , Viroma , Vírus/classificação , Animais , Feminino , Estágios do Ciclo de Vida , Filogenia , RNA-Seq , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...