Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 236(4): 2725-2739, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32892384

RESUMO

Ferroptosis is a necrotic form of regulated cell death that was associated with lipid peroxidation and free iron-mediated Fenton reactions. It has been reported that iron deficiency had been implicated in the pathogenesis of intervertebral disc degeneration (IVDD) by activating apoptosis. However, the role of ferroptosis in the process of IVDD has not been illuminated. Here, we demonstrate the involvement of ferroptosis in IVDD pathogenesis. Our in vitro models show the changes in protein levels of ferroptosis marker and enhanced lipid peroxidation level during oxidative stress. Safranin O staining, hematoxylin-eosin staining, and immunohistochemical were used to assess the IVDD after 8 weeks of surgical procedure in vivo. Treatment with ferrostatin-1, deferoxamine, and RSL3 demonstrate the role of ferroptosis in tert-butyl hydroperoxide (TBHP)-treated annulus fibrosus cells (AFCs) and nucleus pulposus cells (NPCs). Ferritinophagy, nuclear receptor coactivator 4 (NCOA4)-mediated ferritin selective autophagy, is originated during the process of ferroptosis in response to TBHP treatment. Knockdown and overexpression NCOA4 further prove TBHP may induce ferroptosis of AFCs and NPCs in an autophagy-dependent way. These findings support a role for oxidative stress-induced ferroptosis in the pathogenesis of IVDD.


Assuntos
Anel Fibroso/metabolismo , Ferroptose , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Estresse Oxidativo , Animais , Anel Fibroso/efeitos dos fármacos , Anel Fibroso/ultraestrutura , Autofagia , Carbolinas/toxicidade , Estudos de Casos e Controles , Células Cultivadas , Desferroxamina/farmacologia , Modelos Animais de Doenças , Ferroptose/efeitos dos fármacos , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/prevenção & controle , Peroxidação de Lipídeos , Masculino , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Sideróforos/farmacologia , Transdução de Sinais , terc-Butil Hidroperóxido/toxicidade
2.
Acta Biomater ; 107: 129-137, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32105832

RESUMO

Current tissue engineering strategies through scaffold-based approaches fail to recapitulate the complex three-dimensional microarchitecture and biochemical composition of the native Annulus Fibrosus tissue. Considering limited access to healthy annulus fibrosus cells from patients, this study explored the potential of bone marrow stromal cells (BMSC) to fabricate a scaffold-free multilamellar annulus fibrosus-like tissue by integrating micropatterning technologies into multi-layered BMSC engineering. BMSC sheet with cells and collagen fibres aligned at ~30° with respect to their longitudinal dimension were developed on a microgroove-patterned PDMS substrate. Two sheets were then stacked together in alternating directions to form an angle-ply bilayer tissue, which was rolled up, sliced to form a multi-lamellar angle-ply tissue and cultured in a customized medium. The development of the annulus fibrosus-like tissue was further characterized by histological, gene expression and microscopic and mechanical analysis. We demonstrated that the engineered annulus fibrosus-like tissue with aligned BMSC sheet showed parallel collagen fibrils, biochemical composition and microstructures that resemble the native disk. Furthermore, aligned cell sheet showed enhanced expression of annulus fibrosus associated extracellular matrix markers and higher mechanical strength than that of the non-aligned cell sheet. The present study provides a new strategy in annulus fibrosus tissue engineering methodology to develop a scaffold-free annulus fibrosus-like tissue that resembles the microarchitecture and biochemical attributes of a native tissue. This can potentially lead to a promising avenue for advancing BMSC-mediated annulus fibrosus regeneration towards future clinical applications.


Assuntos
Anel Fibroso/ultraestrutura , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual/métodos , Anel Fibroso/química , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Citoesqueleto/metabolismo , Dimetilpolisiloxanos/química , Humanos , Células-Tronco Mesenquimais/citologia
3.
Tissue Eng Part A ; 25(23-24): 1605-1613, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30929614

RESUMO

Low back pain caused by degenerative disc disease affects many people worldwide and brings huge economical burden. Thus, attentions have focused on annulus fibrosus (AF) tissue engineering for treatment of intervertebral disc degeneration. To engineer a functional replacement for the AF, it is important to fabricate scaffolds that mimic the structural and mechanical properties of native tissue. AF-derived stem cells are promising seed cells for AF tissue engineering due to their tissue specificity. In the present study, decellularized AF matrix (DAFM)/chitosan hybrid hydrogels were fabricated using genipin as a crosslinker. AF stem cells were cultured on hydrogel scaffolds with or without basic fibroblast growth factor (bFGF), and cell proliferation, morphology, gene expression, and AF tissue synthesis were examined. Overall, more collagen-I, collagen-II, and aggrecan were secreted by AF stem cells grown on hydrogels with bFGF compared to those without. These results support the application of DAFM/chitosan hybrid hydrogels as an appropriate candidate for AF tissue engineering. Furthermore, incorporation of bFGF into hydrogels promoted AF-related tissue synthesis. Impact Statement The investigation of annulus fibrosus (AF)-related tissue secretion and gene expression in extracellular matrix (ECM) of AF-derived stem cells (AFSCs) provided theoretical and practical basis for the choice of scaffold materials and growth factors for AF tissue engineering. The innovations of the present work are obvious. First, AFSCs were used because they are more easily differentiated into AF cells, thereby producing more AF-related ECM. Second, the decellularized AF matrix (DAFM) was derived from native AF tissue, but had reduced immunogenicity after decellularization. Furthermore, the DAFM structure mimicked the fibrous network of actual AF tissue, which was advantageous to AFSC adhesion and growth. Third, basic fibroblast growth factor was successfully incorporated into the DAFM, showed gradual sustained release, and effectively promoted production of AF tissue ECM factors collagen-I, collagen-II, aggrecan, and glycosaminoglycan.


Assuntos
Anel Fibroso/crescimento & desenvolvimento , Quitosana/farmacologia , Matriz Extracelular/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Hidrogéis/química , Engenharia Tecidual , Animais , Anel Fibroso/efeitos dos fármacos , Anel Fibroso/ultraestrutura , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Matriz Extracelular/ultraestrutura , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Cinética , Coelhos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/ultraestrutura , Alicerces Teciduais/química
4.
Spine J ; 19(7): 1242-1253, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30710732

RESUMO

BACKGROUND CONTEXT: Pfirrmann grading can be used to assess intervertebral disc degeneration (IVDD). There is growing evidence that IVDD is not simply a structural disorder but also involves changes to the substructural characteristics of the disc. Whether Pfirrmann grade can accurately represent these micro-nano environmental changes remains unclear. PURPOSE: We aimed to assess the micro-nano structural characteristics of the degenerative disc to provide more specific biomechanical information than the Pfirrmann score. STUDY DESIGN: A micro- and nano-level structural analysis of degenerative discs of rat tails. METHODS: In this study, 12-week-old adult male Sprague-Dawley rats were divided randomly into five groups: control (no intervention to the intervertebral disc of the tail) and four intervention groups that all had caudal vertebrae immobilized using a custom-made external device to fix four caudal vertebrae (Co7-Co10) but with variable subsequent compression of Co8 and Co9 for 2, 4, 6, or 8 weeks. Magnetic resonance imaging detection of rat coccygeal vertebrae was conducted at each time node of the experiment, and the T2 signal intensity and disc space were evaluated. Animals were euthanized and the caudal vertebrae were harvested for further analysis. Histopathology, glycosaminoglycan (GAG) content, histologic score, end plate structure, and elastic modulus of the intervertebral discs were evaluated. RESULTS: IVDD was observed at an earlier Pfirrmann grade (Pfirrmann II) under the microscope. With an increase in Pfirrmann grade to III-V, the pore structure of the bony end plate changed significantly and the number of pores decreased gradually. Furthermore, the total GAG content of the nucleus pulposus decreased from an average of 640.33 µg GAG/ng DNA in Pfirrmann grade I to 271.33 µg GAG/ng DNA in Pfirrmann grade V (p < .0001). At the early stage of clinical degeneration of intervertebral discs (Pfirrmann grades II and III), there were significant changes in mechanical properties of the outer annulus fibrosus compared with the inner layer (p < .05). Further, the fibril diameters exhibited significant changes compared with the control group (p < .05). CONCLUSIONS: Our study found that the Pfirrmann grading system combined with intervertebral disc micro-nano structural changes more comprehensively reflected the extent of disc degeneration. These data may help improve our understanding of the pathogenesis and process of clinical disc degeneration.


Assuntos
Anel Fibroso/ultraestrutura , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/ultraestrutura , Animais , Anel Fibroso/diagnóstico por imagem , Glicosaminoglicanos/metabolismo , Humanos , Degeneração do Disco Intervertebral/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Núcleo Pulposo/diagnóstico por imagem , Núcleo Pulposo/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Acta Biomater ; 68: 67-77, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29269332

RESUMO

The relationship between elastic fibre disorders and disc degeneration, aging and progression of spine deformity have been discussed in a small number of studies. However, the clinical relevance of elastic fibres in the annulus fibrosus (AF) of the disc is poorly understood. Ultrastructural visualization of elastic fibres is an important step towards understanding their structure-function relationship. In our previous studies, a novel technique for visualization of elastic fibres across the AF was presented and their ultrastructural organization in intra- and inter-lamellar regions was compared. Using the same novel technique in the present study, the ultrastructural organization of elastic fibres in the partition boundaries (PBs), which are located between adjacent collagen bundles, is presented for the first time. Visualization of elastic fibres in the PBs in control and partially digested (digested) samples was compared, and their orientation in two different cutting planes (transverse and oblique) were discussed. The ultrastructural analysis revealed that elastic fibres in PBs were a well-organized dense and complex network having different size and shape. Adjacent collagen bundles in a cross section (CS) lamella appear to be connected to each other, where elastic fibres in the PBs were merged in parallel or penetrated into the collagen bundles. There was no significant difference in directional coherency coefficient of elastic fibres between the two different cutting planes (p = .35). The present study revealed that a continuous network of elastic fibres may provide disc integrity by connecting adjacent bundles of CS lamellae together. Compared to our previous studies, the density of the elastic fibre network in PBs was lower, and fibre orientation was similar to the intra-lamellar space and inter-lamellar matrix. STATEMENT OF SIGNIFICANCE: A detailed ultrastructural study in the partition boundaries of the annulus fibrosus within the disc revealed a well-organized elastic fibre network with a complex ultrastructure. The continuous network of elastic fibres may provide disc integrity by connecting adjacent bundles of cross section lamellae together. The density of the elastic fibre network in PBs was lower, and fibre orientation was similar to the intra-lamellar space and the inter-lamellar matrix.


Assuntos
Anel Fibroso/ultraestrutura , Tecido Elástico/ultraestrutura , Animais , Ovinos
6.
Biomech Model Mechanobiol ; 16(4): 1475-1484, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28378119

RESUMO

The complex structure of the annulus fibrosus is strongly related to its mechanical properties. Recent work showed that it is possible to observe the relative movement of fibre bundles in loaded cow tail annulus; the aim of this work was to describe and quantify annulus fibrosus micromechanics in degenerated human disc, and compare it with cow tail annulus, an animal model often used in the literature. Second harmonic generation was used to image the collagen matrix in twenty strips of annulus fibrosus harvested from intervertebral disc of seven patients undergoing surgery. Samples were loaded to 6% tensile strain in 1% steps. Elastic modulus was calculated from loading curves, and micromechanical strains were calculated from the images using custom software. The same protocol was applied to twenty strips of annulus harvested from cow tail discs. Significant morphological differences were found between human and cow tail samples, the most striking being the lack of collagen fibre crimp in the former. Fibres were also observed bending and running from one lamella to the other, forming a strong flexible interface. Interdigitation of fibre bundles was also present at this interface. Quantitative results show complex patterns of inter-bundle and inter-lamellar behaviour, with inter-bundle sliding being the main strain mechanism. Elastic modulus was similar between species, and it was not affected by the degree of degeneration. This work gives an insight into the complex structure and mechanical function of the annulus fibrosus, which should be accounted for in disc numerical modelling.


Assuntos
Anel Fibroso/patologia , Modelos Biológicos , Animais , Anel Fibroso/citologia , Anel Fibroso/ultraestrutura , Bovinos , Colágeno/análise , Módulo de Elasticidade , Humanos , Degeneração do Disco Intervertebral/patologia , Software
7.
Spine (Phila Pa 1976) ; 42(19): E1104-E1111, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28146016

RESUMO

STUDY DESIGN: In vitro study using rat intervertebral discs (IVDs). OBJECTIVE: To explore the alteration of annulus fibrosus collagen fibrils after loading on IVD and to investigate the degeneration pathogenesis at the nanoscale. SUMMARY OF BACKGROUND DATA: Abnormal loading can lead to IVD degeneration, but the precise mechanism has been hitherto elusive, especially at the nanoscale. METHODS: A rat IVD loading model was used, which combined bending of the tail by 40° with compressive loading of 1.8, 4.5, and 7.2 N of the rat tail using an external fixation device. The structure and the elastic modulus of individual collagen fibrils within IVD Co8-Co9 was examined 2 weeks after loading at the nanoscale using atomic force microscopy. RESULTS: Significant fibril disorder and a decrease in cell number within the annulus fibrosus after loading was observed at the microscale as judged by hematoxylin/eosin staining, suggesting initiation of rupture of the structure and degradation of the IVD. The annulus fibrosus collagen fibrils underwent a change in diameter and elastic modulus from 170 ±â€Š18 to 310 ±â€Š24 nm (P < 0.001) and 0.86 ±â€Š0.12 to 1.27 ±â€Š0.30 GPa (P = 0.003), respectively when measured on the concave side after a loading of 7.2 N. Thus the loading process resulted in a thickening and stiffening of collagen fibrils with a difference between the inner and outer layers. CONCLUSION: The results of the present study indicated that abnormal loading was not only associated with disorder at the microscale, but also alteration of the collagen fibrils at the nanoscale, possibly leading to changes in the mechanical and physiological environment around the cells of the annulus fibrosus. LEVEL OF EVIDENCE: N/A.


Assuntos
Anel Fibroso/metabolismo , Anel Fibroso/patologia , Colágeno/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Animais , Anel Fibroso/ultraestrutura , Colágeno/ultraestrutura , Módulo de Elasticidade/fisiologia , Matriz Extracelular/metabolismo , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Disco Intervertebral/ultraestrutura , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...