Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 667
Filtrar
1.
Sci Rep ; 14(1): 9922, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688950

RESUMO

Fanconi Anemia (FA) pathway resolves DNA interstrand cross links (ICL). The FA pathway was initially recognized in vertebrates, but was later confirmed in other animals and speculated in fungi. FA proteins FANCM, FANCL and FANCJ are present in Saccharomyces cerevisiae but, their mechanism of interaction to resolve ICL is still unclear. Unlike Dikarya, early diverging fungi (EDF) possess more traits shared with animals. We traced the evolutionary history of the FA pathway across Opisthokonta. We scanned complete proteomes for FA-related homologs to establish their taxonomic distribution and analyzed their phylogenetic trees. We checked transcription profiles of FA genes to test if they respond to environmental conditions and their genomic localizations for potential co-localization. We identified fungal homologs of the activation and ID complexes, 5 out of 8 core proteins, all of the endonucleases, and deubiquitination proteins. All fungi lack FANCC, FANCF and FANCG proteins responsible for post-replication repair and chromosome stability in animals. The observed taxonomic distribution can be attributed to a gradual degradation of the FA pathway from EDF to Dikarya. One of the key differences is that EDF have the ID complex recruiting endonucleases to the site of ICL. Moreover, 21 out of 32 identified FA genes are upregulated in response to different growth conditions. Several FA genes are co-localized in fungal genomes which also could facilitate co-expression. Our results indicate that a minimal FA pathway might still be functional in Mucoromycota with a gradual loss of components in Dikarya ancestors.


Assuntos
Filogenia , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Fungos/genética , Fungos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Evolução Molecular , Reparo do DNA
2.
Nat Commun ; 15(1): 1852, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424108

RESUMO

Demand-adjusted and cell type specific rates of protein synthesis represent an important safeguard for fate and function of long-term hematopoietic stem cells. Here, we identify increased protein synthesis rates in the fetal hematopoietic stem cell pool at the onset of hematopoietic failure in Fanconi Anemia, a prototypical DNA repair disorder that manifests with bone marrow failure. Mechanistically, the accumulation of misfolded proteins in Fancd2-/- fetal liver hematopoietic stem cells converges on endoplasmic reticulum stress, which in turn constrains midgestational expansion. Restoration of protein folding by the chemical chaperone tauroursodeoxycholic acid, a hydrophilic bile salt, prevents accumulation of unfolded proteins and rescues Fancd2-/- fetal liver long-term hematopoietic stem cell numbers. We find that proteostasis deregulation itself is driven by excess sterile inflammatory activity in hematopoietic and stromal cells within the fetal liver, and dampened Type I interferon signaling similarly restores fetal Fancd2-/- long-term hematopoietic stem cells to wild type-equivalent numbers. Our study reveals the origin and pathophysiological trigger that gives rise to Fanconi anemia hematopoietic stem cell pool deficits. More broadly, we show that fetal protein homeostasis serves as a physiological rheostat for hematopoietic stem cell fate and function.


Assuntos
Anemia de Fanconi , Humanos , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteostase , Células-Tronco Hematopoéticas/metabolismo , Ciclo Celular , Feto/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo
3.
Cell Rep ; 43(1): 113610, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38165804

RESUMO

Fanconi anemia (FA) is characterized by congenital abnormalities, bone marrow failure, and cancer susceptibility. The central FA protein complex FANCI/FANCD2 (ID2) is activated by monoubiquitination and recruits DNA repair proteins for interstrand crosslink (ICL) repair and replication fork protection. Defects in the FA pathway lead to R-loop accumulation, which contributes to genomic instability. Here, we report that the splicing factor SRSF1 and FANCD2 interact physically and act together to suppress R-loop formation via mRNA export regulation. We show that SRSF1 stimulates FANCD2 monoubiquitination in an RNA-dependent fashion. In turn, FANCD2 monoubiquitination proves crucial for the assembly of the SRSF1-NXF1 nuclear export complex and mRNA export. Importantly, several SRSF1 cancer-associated mutants fail to interact with FANCD2, leading to inefficient FANCD2 monoubiquitination, decreased mRNA export, and R-loop accumulation. We propose a model wherein SRSF1 and FANCD2 interaction links DNA damage response to the avoidance of pathogenic R-loops via regulation of mRNA export.


Assuntos
Anemia de Fanconi , Neoplasias , Humanos , Estruturas R-Loop , Transporte Ativo do Núcleo Celular , Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Ubiquitinação , Reparo do DNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Dano ao DNA , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo
4.
Genomics ; 116(1): 110762, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38104669

RESUMO

Monoubiquitination of FANCD2 is a central step in the activation of the Fanconi anemia (FA) pathway after DNA damage. Defects in the FA pathway centered around FANCD2 not only lead to genomic instability but also induce tumorigenesis. At present, few studies have investigated FANCD2 in tumors, and no pan-cancer research on FANCD2 has been conducted. We conducted a comprehensive analysis of the role of FANCD2 in cancer using public databases and other published studies. Moreover, we evaluated the role of FANCD2 in the proliferation, migration and invasion of lung adenocarcinoma cells through in vitro and in vivo experiments, and explored the role of FANCD2 in cisplatin chemoresistance. We investigated the regulatory effect of FANCD2 on the cell cycle of lung adenocarcinoma cells by flow cytometry, and verified this effect by western blotting. FANCD2 expression is elevated in most TCGA tumors and shows a strong positive correlation with poor prognosis in tumor patients. In addition, FANCD2 expression shows strong correlations with immune infiltration, immune checkpoints, the tumor mutation burden (TMB), and microsatellite instability (MSI), which are immune-related features, suggesting that it may be a potential target of tumor immunotherapy. We further found that FANCD2 significantly promotes the proliferation, invasion, and migration abilities of lung adenocarcinoma cells and that its ability to promote cancer cell proliferation may be achieved by modulating the cell cycle. The findings indicate that FANCD2 is a potential biomarker and therapeutic target in cancer treatment by analyzing the oncogenic role of FANCD2 in different tumors.


Assuntos
Carcinogênese , Proteína do Grupo de Complementação D2 da Anemia de Fanconi , Neoplasias , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Carcinogênese/genética , Dano ao DNA , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Neoplasias/genética , Neoplasias/patologia
5.
J Transl Med ; 21(1): 874, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041093

RESUMO

BACKGROUND: ATM and ATR are two critical factors to regulate DNA damage response (DDR), and their mutations were frequently observed in different types of cancer, including non-small cell lung cancer (NSCLC). Given that the majority of identified ATM/ATR mutations were variants of uncertain significance, the clinical/molecular features of pathogenic ATM/ATR aberrations have not been comprehensively investigated in NSCLC. METHODS: Next-generation sequencing (NGS) analyses were conducted to investigate the molecular features in 191 NSCLC patients who harbored pathogenic/likely pathogenic ATM/ATR mutations and 308 NSCLC patients who did not have any types of ATM/ATR variants. The results were validated using an external cohort of 2727 NSCLC patients (including 48 with ATM/ATR pathogenic mutations). RESULTS: Most pathogenic ATM/ATR genetic alterations were frameshift and nonsense mutations that disrupt critical domains of the two proteins. ATM/ATR-mutated patients had significantly higher tumor mutational burdens (TMB; P < 0.001) and microsatellite instabilities (MSI; P = 0.023), but not chromosomal instabilities, than those without any ATM/ATR variations. In particular, KRAS mutations were significantly enriched in ATM-mutated patients (P = 0.014), whereas BRCA2 mutations (P = 0.014), TP53 mutations (P = 0.014), and ZNF703 amplification (P = 0.008) were enriched in ATR-mutated patients. Notably, patients with ATM/ATR pathogenic genetic alterations were likely to be accompanied by mutations in Fanconi anemia (FA) and homologous recombination (HR) pathways, which were confirmed using both the study (P < 0.001) and validation (P < 0.001) cohorts. Furthermore, the co-occurrence of FA/HR aberrations could contribute to increased TMB and MSI, and patients with both ATM/ATR and FA/HR mutations tended to have worse overall survival. CONCLUSIONS: Our results demonstrated the unique clinical and molecular features of pathogenic ATM/ATR mutations in NSCLC, which helps better understand the cancerous involvement of these DDR regulators, as well as directing targeted therapies and/or immunotherapies to treat ATM/ATR-mutated NSCLC, especially those with co-existing FA/HR aberrations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Anemia de Fanconi , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Neoplasias Pulmonares/genética , Mutação/genética , Prognóstico , Recombinação Homóloga/genética , Proteínas de Transporte/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
6.
BMC Med Genomics ; 16(1): 290, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974167

RESUMO

BACKGROUND: Individuals diagnosed with Fanconi anemia (FA), an uncommon disorder characterized by chromosomal instability affecting the FA signaling pathway, exhibit heightened vulnerability to the onset of myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML). METHODS: Herein, we employed diverse bioinformatics and statistical analyses to investigate the potential associations between the expression/mutation patterns of FA pathway genes and MDS/AML. RESULTS: The study included 4295 samples, comprising 3235 AML and 1024 MDS from our and nine other online cohorts. We investigated the distinct proportion of race, age, French-American-British, and gender factors. Compared to the FA wild-type group, we observed a decrease in the expression of FNACD2, FANCI, and RAD51C in the FA mutation group. The FA mutation group exhibited a more favorable clinical overall survival prognosis. We developed a random forest classifier and a decision tree based on FA gene expression for cytogenetic risk assessment. Furthermore, we created an FA-related Nomogram to predict survival rates in AML patients. CONCLUSIONS: This investigation facilitates a deeper understanding of the functional links between FA and MDS/AML.


Assuntos
Anemia de Fanconi , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Síndromes Mielodisplásicas/genética , Leucemia Mieloide Aguda/genética , Mutação , Prognóstico , Transdução de Sinais/genética
7.
J Biol Chem ; 299(12): 105424, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924868

RESUMO

Fanconi anemia (FA) is a rare genetic disease caused by a defect in DNA repair pathway for DNA interstrand crosslinks. These crosslinks can potentially impede the progression of the DNA replication fork, consequently leading to DNA double-strand breaks. Heterozygous RAD51-Q242R mutation has been reported to cause FA-like symptoms. However, the molecular defect of RAD51 underlying the disease is largely unknown. In this study, we conducted a biochemical analysis of RAD51-Q242R protein, revealing notable deficiencies in its DNA-dependent ATPase activity and its ATP-dependent regulation of DNA-binding activity. Interestingly, although RAD51-Q242R exhibited the filament instability and lacked the ability to form displacement loop, it efficiently stimulated the formation of displacement loops mediated by wild-type RAD51. These findings facilitate understanding of the biochemical properties of the mutant protein and how RAD51 works in the FA patient cells.


Assuntos
Adenosina Trifosfatases , Reparo do DNA , Anemia de Fanconi , Rad51 Recombinase , Humanos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , DNA/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Mutação , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
8.
In Vivo ; 37(6): 2421-2432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37905617

RESUMO

BACKGROUND/AIM: Patients with radiation sensitive Fanconi anemia (FA) are presenting with cancers of the oral cavity, oropharynx, and other anatomic locations. MATERIALS AND METHODS: Animal models for cancer in FA mice used orthotopic tumors from wild type mice. We derived a cancer cell line from Fanca-/- mice by topical application of the chemical carcinogen dimethyl benzanthracene (DMBA). RESULTS: A Fanca-/- mouse rhabdomyosarcoma was derived from a Fanca-/- (129/Sv) mouse. The in vitro clonogenic survival of the Fanca-/- clone 6 cancer cell line was consistent with the FA genotype. Transplanted tumors demonstrated hypoxic centers surrounded by senescent cells. CONCLUSION: This Fanca-/- mouse syngeneic cancer should provide a valuable resource for discovery and development of new normal tissue radioprotectors for patients with FA and cancer.


Assuntos
Anemia de Fanconi , Neoplasias , Humanos , Camundongos , Animais , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Linhagem Celular , Carcinógenos/toxicidade , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética
9.
Am J Hum Genet ; 110(11): 1938-1949, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37865086

RESUMO

Fanconi anemia (FA) is a clinically variable and genetically heterogeneous cancer-predisposing disorder representing the most common bone marrow failure syndrome. It is caused by inactivating predominantly biallelic mutations involving >20 genes encoding proteins with roles in the FA/BRCA DNA repair pathway. Molecular diagnosis of FA is challenging due to the wide spectrum of the contributing gene mutations and structural rearrangements. The assessment of chromosomal fragility after exposure to DNA cross-linking agents is generally required to definitively confirm diagnosis. We assessed peripheral blood genome-wide DNA methylation (DNAm) profiles in 25 subjects with molecularly confirmed clinical diagnosis of FA (FANCA complementation group) using Illumina's Infinium EPIC array. We identified 82 differentially methylated CpG sites that allow to distinguish subjects with FA from healthy individuals and subjects with other genetic disorders, defining an FA-specific DNAm signature. The episignature was validated using a second cohort of subjects with FA involving different complementation groups, documenting broader genetic sensitivity and demonstrating its specificity using the EpiSign Knowledge Database. The episignature properly classified DNA samples obtained from bone marrow aspirates, demonstrating robustness. Using the selected probes, we trained a machine-learning model able to classify EPIC DNAm profiles in molecularly unsolved cases. Finally, we show that the generated episignature includes CpG sites that do not undergo functional selective pressure, allowing diagnosis of FA in individuals with reverted phenotype due to gene conversion. These findings provide a tool to accelerate diagnostic testing in FA and broaden the clinical utility of DNAm profiling in the diagnostic setting.


Assuntos
Anemia de Fanconi , Humanos , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Metilação de DNA/genética , Proteínas/genética , DNA/metabolismo
10.
Cell Cycle ; 22(18): 2088-2096, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37749911

RESUMO

Alcohol contributes to cellular accumulation of acetaldehyde, a primary metabolite of alcohol and a major human carcinogen. Acetaldehyde can form DNA adducts and induce interstrand crosslinks (ICLs) that are repaired by the Fanconi anemia DNA repair pathway (FA pathway). Individuals with deficiency in acetaldehyde detoxification or in the FA pathway have an increased risk of squamous-cell carcinomas (SCCs) including those of the esophagus. In a recent report, we described the molecular basis of acetaldehyde-induced DNA damage in esophageal keratinocytes [1]. We demonstrated that, at physiologically relevant concentrations, acetaldehyde induces DNA damage at the DNA replication fork. This resulted in replication stress, leading to activation of the ATR-Chk1-dependent cell cycle checkpoints. We also reported that the p53 DNA damage response is elevated in response to acetaldehyde and that the FA pathway limits acetaldehyde-induced genomic instability. Here, we highlight these findings and present additional results to discuss the role of the FA pathway and p53 DNA damage response in the protection against genomic instability and esophageal carcinogenesis.


Assuntos
Acetaldeído , Anemia de Fanconi , Humanos , Acetaldeído/toxicidade , Acetaldeído/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Dano ao DNA , Etanol , Instabilidade Genômica , Reparo do DNA , Esôfago/metabolismo , Queratinócitos/metabolismo , Replicação do DNA
11.
Biol Reprod ; 109(5): 570-585, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37669135

RESUMO

The Fanconi anemia pathway is a key pathway involved in the repair of deoxyribonucleic acidinterstrand crosslinking damage, which chiefly includes the following four modules: lesion recognition, Fanconi anemia core complex recruitment, FANCD2-FANCI complex monoubiquitination, and downstream events (nucleolytic incision, translesion synthesis, and homologous recombination). Mutations or deletions of multiple Fanconi anemia genes in this pathway can damage the interstrand crosslinking repair pathway and disrupt primordial germ cell development and oocyte meiosis, thereby leading to abnormal follicular development. Premature ovarian insufficiency is a gynecological clinical syndrome characterized by amenorrhea and decreased fertility due to decreased oocyte pool, accelerated follicle atresia, and loss of ovarian function in women <40 years old. Furthermore, in recent years, several studies have detected mutations in the Fanconi anemia gene in patients with premature ovarian insufficiency. In addition, some patients with Fanconi anemia exhibit symptoms of premature ovarian insufficiency and infertility. The Fanconi anemia pathway and premature ovarian insufficiency are closely associated.


Assuntos
Anemia de Fanconi , Humanos , Feminino , Adulto , Anemia de Fanconi/complicações , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Reparo do DNA/genética , Replicação do DNA , Ubiquitinação , Mutação , Dano ao DNA
12.
J Ovarian Res ; 16(1): 160, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563658

RESUMO

Fanconi anemia (FA) gene mutations are critical components in the genetic etiology of premature ovarian insufficiency (POI). Fance-/- mice detected meiotic arrest of primordial germ cells (PGCs) as early as embryonic day (E) 13.5 and exhibited decreased ovarian reserve after birth. However, the mechanism of Fance defect leading to dysgenesis of PGCs is unclear. We aimed to explore the effect of Fance defects on mitotic proliferation of PGCs. Combined with transcriptomic sequencing and validation, we examined the effect of Fance defects on cell cycle, transcription-replication conflicts (TRCs), and multiple DNA repair pathways in PGCs during active DNA replication at E11.5 and E12.5. Results showed Fance defects cause decreased numbers of PGCs during rapid mitosis at E11.5 and E12.5. Mitotic cell cycle progression of Fance-/- PGCs was blocked at E11.5 and E12.5, shown by decreased cell proportions in S and G2 phases and increased cell proportions in M phase. RNA-seq suggested the mechanisms involved in DNA replication and repair. We found Fance-/- PGCs accumulate TRCs during active DNA replication at E11.5 and E12.5. Fance-/- PGCs down-regulate multiple DNA repair pathways at E11.5 and E12.5 including the FA pathway, homologous recombination (HR) pathway, and base excision repair (BER) pathway. In conclusion, Fance defect impaired the mitotic proliferation of PGCs leading to rapidly decreased numbers and abnormal cell cycle distribution. Proliferation inhibition of Fance-/- PGCs was associated with accumulated TRCs and down-regulation of FA, HR, BER pathways. These provided a theoretical basis for identifying the inherited etiology and guiding potential fertility management for POI.


Assuntos
Proteína do Grupo de Complementação E da Anemia de Fanconi , Anemia de Fanconi , Animais , Camundongos , Ciclo Celular/genética , Divisão Celular , Reparo do DNA , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Células Germinativas , Camundongos Knockout , Proteína do Grupo de Complementação E da Anemia de Fanconi/genética
13.
J Med Chem ; 66(16): 11271-11281, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37555818

RESUMO

Mannich base PIP-199 is the only reported small-molecule inhibitor of the Fanconi anemia complementation group M-RecQ-mediated genome instability protein (FANCM-RMI), a protein-protein interaction that governs genome instability in the genetic disorders Fanconi anemia and Bloom's syndrome. PIP-199 and analogues with the same indole-derived Mannich base scaffold have been used as tool compounds in diverse biological studies. We report the first published synthesis of PIP-199 and its analogues, demonstrating that PIP-199 immediately decomposes in common aqueous buffers and some organic solvents. Neither PIP-199 nor its more hydrolytically stable analogues show any observable activity in binding and competitive biophysical assays for FANCM-RMI. We conclude that PIP-199 is not an effective tool compound for biological studies and that apparent cellular activity likely arises from the nonspecific toxicity of breakdown products. More generally, apparent inhibitors that share this Mannich scaffold potentially represent a new family of pan-assay interference compounds (PAINS) that should be thoroughly assessed for aqueous stability prior to use in biological studies.


Assuntos
Reparo do DNA , Anemia de Fanconi , Humanos , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Bases de Mannich , RecQ Helicases/genética , Instabilidade Genômica , DNA Helicases/genética
14.
Mol Cell ; 83(20): 3720-3739.e8, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37591242

RESUMO

Fanconi anemia (FA) signaling, a key genomic maintenance pathway, is activated in response to replication stress. Here, we report that phosphorylation of the pivotal pathway protein FANCD2 by CHK1 triggers its FBXL12-dependent proteasomal degradation, facilitating FANCD2 clearance at stalled replication forks. This promotes efficient DNA replication under conditions of CYCLIN E- and drug-induced replication stress. Reconstituting FANCD2-deficient fibroblasts with phosphodegron mutants failed to re-establish fork progression. In the absence of FBXL12, FANCD2 becomes trapped on chromatin, leading to replication stress and excessive DNA damage. In human cancers, FBXL12, CYCLIN E, and FA signaling are positively correlated, and FBXL12 upregulation is linked to reduced survival in patients with high CYCLIN E-expressing breast tumors. Finally, depletion of FBXL12 exacerbated oncogene-induced replication stress and sensitized cancer cells to drug-induced replication stress by WEE1 inhibition. Collectively, our results indicate that FBXL12 constitutes a vulnerability and a potential therapeutic target in CYCLIN E-overexpressing cancers.


Assuntos
Anemia de Fanconi , Neoplasias , Humanos , Sobrevivência Celular/genética , Cromatina/genética , Ciclina E/genética , Ciclina E/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Neoplasias/genética
15.
DNA Repair (Amst) ; 130: 103546, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572579

RESUMO

We have identified a set of Japanese children with hypoplastic anemia caused by combined defects in aldehyde degrading enzymes ADH5 and ALDH2. Their clinical characteristics overlap with a hereditary DNA repair disorder, Fanconi anemia. Our discovery of this disorder, termed Aldehyde Degradation Deficiency Syndrome (ADDS), reinforces the notion that endogenously generated aldehydes exert genotoxic effects; thus, the coupled actions of metabolism and DNA repair are required to maintain proper hematopoiesis and health.


Assuntos
Anemia de Fanconi , Criança , Humanos , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Reparo do DNA , Dano ao DNA , Aldeídos/metabolismo , Hematopoese , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo
16.
Cell Rep ; 42(7): 112721, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37392383

RESUMO

The Fanconi anemia (FA) pathway repairs DNA interstrand crosslinks (ICLs) in humans. Activation of the pathway relies on loading of the FANCD2/FANCI complex onto chromosomes, where it is fully activated by subsequent monoubiquitination. However, the mechanism for loading the complex onto chromosomes remains unclear. Here, we identify 10 SQ/TQ phosphorylation sites on FANCD2, which are phosphorylated by ATR in response to ICLs. Using a range of biochemical assays complemented with live-cell imaging including super-resolution single-molecule tracking, we show that these phosphorylation events are critical for loading of the complex onto chromosomes and for its subsequent monoubiquitination. We uncover how the phosphorylation events are tightly regulated in cells and that mimicking their constant phosphorylation leads to an uncontrolled active state of FANCD2, which is loaded onto chromosomes in an unrestrained fashion. Taken together, we describe a mechanism where ATR triggers FANCD2/FANCI loading onto chromosomes.


Assuntos
Cromatina , Anemia de Fanconi , Humanos , Fosforilação , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Dano ao DNA , Ubiquitinação , Reparo do DNA , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
17.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446306

RESUMO

Fanconi anemia (FA) develops due to a mutation in one of the FANC genes that are involved in the repair of interstrand crosslinks (ICLs). FANCG, a member of the FA core complex, is essential for ICL repair. Previous FANCG-deficient mouse models were generated with drug-based selection cassettes in mixed mice backgrounds, leading to a disparity in the interpretation of genotype-related phenotype. We created a Fancg-KO (KO) mouse model using CRISPR/Cas9 to exclude these confounders. The entire Fancg locus was targeted and maintained on the immunological well-characterized C57BL/6J background. The intercrossing of heterozygous mice resulted in sub-Mendelian numbers of homozygous mice, suggesting the loss of FANCG can be embryonically lethal. KO mice displayed infertility and hypogonadism, but no other developmental problems. Bone marrow analysis revealed a defect in various hematopoietic stem and progenitor subsets with a bias towards myelopoiesis. Cell lines derived from Fancg-KO mice were hypersensitive to the crosslinking agents cisplatin and Mitomycin C, and Fancg-KO mouse embryonic fibroblasts (MEFs) displayed increased γ-H2AX upon cisplatin treatment. The reconstitution of these MEFs with Fancg cDNA corrected for the ICL hypersensitivity. This project provides a new, genetically, and immunologically well-defined Fancg-KO mouse model for further in vivo and in vitro studies on FANCG and ICL repair.


Assuntos
Cisplatino , Anemia de Fanconi , Humanos , Animais , Camundongos , Cisplatino/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Camundongos Endogâmicos C57BL , Sistemas CRISPR-Cas , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Mitomicina , Fenótipo , Proteína do Grupo de Complementação G da Anemia de Fanconi/genética
18.
Reproduction ; 166(1): 65-75, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37184052

RESUMO

In brief: Fanconi anemia results in subfertility and germ cell deficiency in women. We present histological and RNA-seq analysis of Fance-deficient primordial germ cells to explore the possible mechanisms of their progressive depletion. Abstract: Primordial germ cells (PGCs) development is a subtle and complex regulatory process. Fance is an important substrate molecule necessary for the activation of the Fanconi anemia pathway, and its homozygous mutant causes massive oogonia loss as early as embryonic day 13.5 (E13.5). Here, we present histological and RNA-seq analysis of Fance-deficient PGCs to explore the possible mechanisms responsible for its progressive depletion of germ cells. In Fance-/- embryos, the reduction of PGCs was already evident at E9.5 and the progressive loss of PGCs led to the PGCs being almost exhausted at E12.5. An increase of apoptotic cells was detected among Fance-/- PGCs, which may intuitively explain their reduced number in embryos. Moreover, abnormal cell proliferation and accumulating DNA damage were detected in E12.5 Fance-/- PGCs. We identified 3026 differentially expressed genes in E12.5 Fance-/- PGCs compared to Fance+/+. KEGG pathway analysis revealed that the upregulated genes were highly associated with 'lysosome', and various metabolism pathways, whereas the downregulated genes were mainly enriched in 'cell cycle', 'oocyte meiosis', 'ribosome', and various DNA repair pathways. In addition, multiple genes of various cell death pathways were found to be differentially expressed in E12.5 Fance-/- PGCs, indicating that PGCs death in Fance-/- embryos might diverge from canonical apoptosis. These findings indicate that Fance is essential for PGCs survival and the potential mechanisms involve cell cycle regulation, DNA damage repair, cell death prevention, and by regulating lysosome and ribosome function. Our results provide an important reference for further studies.


Assuntos
Anemia de Fanconi , Feminino , Humanos , Diferenciação Celular , Reparo do DNA , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Células Germinativas , Transcriptoma
19.
Clin Exp Med ; 23(8): 4511-4524, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37179284

RESUMO

Secondary acute myeloid leukemia (sAML) may develop following a prior therapy or may evolve from an antecedent hematological disorder such as Fanconi Anemia (FA). Pathophysiology of leukemic evolution is not clear. Etoposide (Eto) is a chemotherapeutic agent implicated in development of sAML. FA is an inherited bone marrow (BM) failure disease characterized by genomic instability and xenobiotic susceptibility. Here, we hypothesized that alterations in the BM niche may play a critical/driver role in development of sAML in both conditions. Expression of selected genes involved in xenobiotic metabolism, DNA double-strand break response, endoplasmic reticulum (ER) stress, heat shock response and cell cycle regulation were determined in BM mesenchymal stem cells (MSCs) of healthy controls and FA patients at steady state and upon exposure to Eto at different concentrations and in recurrent doses. Expression of CYPA1, p53, CCNB1, Dicer1, CXCL12, FLT3L and TGF-Beta genes were significantly downregulated in FA-MSCs compared with healthy controls. Eto exposure induced significant alterations in healthy BM-MSCs with increased expression of CYP1A1, GAD34, ATF4, NUPR1, CXCL12, KLF4, CCNB1 and nuclear localization of Dicer1. Interestingly, FA-MSCs did not show significant alterations in these genes upon Eto exposure. As opposed to healthy MSCs DICER1 gene expression and intracellular localization was not altered on FA BM-MSCs after Eto treatment. These results showed that Eto is a highly potent molecule and has pleiotropic effects on BM-MSCs, FA cells show altered expression profile compared to healthy controls and Eto exposure on FA cells shows differential profile than healthy controls.


Assuntos
Anemia de Fanconi , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Humanos , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Etoposídeo/farmacologia , Etoposídeo/metabolismo , Xenobióticos/metabolismo , Proliferação de Células , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Células-Tronco Mesenquimais/metabolismo , Ribonuclease III/metabolismo , RNA Helicases DEAD-box/metabolismo
20.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047537

RESUMO

Fanconi anemia (FA) is a rare genetic disorder characterized by bone marrow failure and aplastic anemia. So far, 23 genes are involved in this pathology, and their mutations lead to a defect in DNA repair. In recent years, it has been observed that FA cells also display mitochondrial metabolism defects, causing an accumulation of intracellular lipids and oxidative damage. However, the molecular mechanisms involved in the metabolic alterations have not yet been elucidated. In this work, by using lymphoblasts and fibroblasts mutated for the FANC-A gene, oxidative phosphorylation (OxPhos) and mitochondria dynamics markers expression was analyzed. Results show that the metabolic defect does not depend on an altered expression of the proteins involved in OxPhos. However, FA cells are characterized by increased uncoupling protein UCP2 expression. FANC-A mutation is also associated with DRP1 overexpression that causes an imbalance in the mitochondrial dynamic toward fission and lower expression of Parkin and Beclin1. Treatment with P110, a specific inhibitor of DRP1, shows a partial mitochondrial function recovery and the decrement of DRP1 and UCP2 expression, suggesting a pivotal role of the mitochondrial dynamics in the etiopathology of Fanconi anemia.


Assuntos
Anemia de Fanconi , Dinâmica Mitocondrial , Humanos , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas/metabolismo , Dinaminas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...