Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Arch Toxicol ; 98(4): 1225-1236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38427119

RESUMO

So far, the majority of in vitro toxicological experiments are conducted after an acute 24 h treatment that does not represent a realistic human chemical exposure. Recently, new in vitro approaches have been proposed to study the chemical toxicological effect over several days in order to be more predictive of a representative exposure scenario. In this study, we investigated the genotoxic potential of chemicals (direct or bioactived clastogen, aneugen and apoptotic inducer) with the γH2AX and pH3 biomarkers, in the human liver-derived HepaRP cell line. We used different treatment durations, with or without a three-day recovery stage (release period), before genotoxicity measurement. Data were analysed with the Benchmark Dose approach. We observed that the detection of clastogenic compounds (notably for DNA damaging agents) was more sensitive after three days of repeated treatment compared to one or three treatments over 24 h. In contrast, aneugenic chemicals were detected as genotoxic in a similar manner whether after a 24 h exposure or a three-day repeated treatment. Globally, the release period decreases the genotoxicity measurement substantially. For DNA damaging agents, after high concentration treatments, γH2AX induction was always observed after a three-day release period. In contrast, for DNA topoisomerase inhibitors, no effect could be observed after the release period. In conclusion, in the HepaRP cell line, there are some important differences between a one-day acute and a three-day repeated treatment protocol, indicating that different cell treatment procedures may differentiate chemical genotoxic mechanisms of action more efficiently.


Assuntos
Histonas , Mutagênicos , Humanos , Histonas/metabolismo , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Aneugênicos/toxicidade , Dano ao DNA , DNA
2.
Environ Mol Mutagen ; 65(1-2): 25-46, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333939

RESUMO

Previously, we introduced an alternative adherent A375 cell line for clastogenicity and aneugenicity testing using a high content imaging platform. To further characterize the performance of A375 cells, we investigated the sensitivity and specificity of A375 and TK6 cells by directly comparing micronucleus (MN) induction, cytotoxicity (relative cell counts, viability, and apoptosis), clastogenicity (γH2AX), and aneuploidy markers (pH 3, MPM-2, and polyploidy) using flow cytometric methods. We evaluated 14 compounds across different mechanisms (non-genotoxic apoptosis inducers, clastogens, and aneugens with either tubulin binding or aurora kinase inhibiting phenotypes) at 4-h and 24-h post treatment. Both aneugens and clastogens tested positive for micronucleus induction in both cell lines. Apoptosis continued to be a confounding factor for flow cytometry-based micronuclei assessment in TK6 cells as evidenced by positive responses by the three cytotoxicants. Conversely, A375 cells were not affected by apoptosis-related false positive signals and did not produce a positive response in the in vitro micronucleus assay. Benchmark dose response (BMD) analysis showed that the induction of micronuclei and biomarkers occurred at similar concentrations in both cell lines for clastogens and aneugens. By showing that A375 cells have similar sensitivity to TK6 cells but a greater specificity, these results provide additional support for A375 cells to be used as an alternative adherent cell line for in vitro genetic toxicology assessment.


Assuntos
Aneugênicos , Mutagênicos , Aneugênicos/toxicidade , Citometria de Fluxo , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Biomarcadores/metabolismo , Dano ao DNA
3.
Environ Mol Mutagen ; 63(5): 230-245, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35703118

RESUMO

Genotoxicity testing guidelines require the assessment of the clastogenic and aneugenic potential of compounds. While in vitro micronucleus assays detect both types of endpoints, it requires labor-intensive microscopic scoring and does not discriminate between the two modes of actions. Here, we present a novel high-content imaging platform in A375 human cells that addresses the need for rapid scoring while providing additional mechanistic information. We evaluated the new platform with 12 compounds, three compounds from each mechanistic class (clastogen, aneugen tubulin binder, aneugen aurora inhibitor, and nongenotoxicant) following 4- and 24-h compound treatments. The approach we developed is first discriminating between genotoxicant and nongenotoxicant using an image analysis algorithm to quantify micronucleus induction below a 60% cytotoxicity cutoff. Then it uses centromere protein A (CENPA) staining for the genotoxic compounds to discriminate between aneugens and clastogens. Lastly, we use phosphorylated histone H2AX Ser139 (γH2AX) staining to confirm clastogenicity and changes in phosphorylated histone 3 Ser10 (pH 3) and increases in polyploidy in mitotic cells to discriminate between aneugens that bind tubulin from those that affect aurora kinases. All compounds were correctly classified, and we showed by using benchmark dose-response analysis that the imaging platform in A375 cells is at least as sensitive as the MicroFlow® assay in TK6 cells for genotoxicant but appears to be more specific for the nongenotoxicants. A detailed comparison of the cell lines and a more comprehensive validation with a much larger compound set, predictive and dose-response modeling will be presented in the future.


Assuntos
Aneugênicos , Histonas , Aneugênicos/toxicidade , Dano ao DNA , Histonas/genética , Humanos , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Tubulina (Proteína)/metabolismo
4.
Arch Toxicol ; 96(7): 2067-2085, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35445829

RESUMO

Risk assessments are increasingly reliant on information from in vitro assays. The in vitro micronucleus test (MNvit) is a genotoxicity test that detects chromosomal abnormalities, including chromosome breakage (clastogenicity) and/or whole chromosome loss (aneugenicity). In this study, MNvit datasets for 292 chemicals, generated by the US EPA's ToxCast program, were evaluated using a decision tree-based pipeline for hazard identification. Chemicals were tested with 19 concentrations (n = 1) up to 200 µM, in the presence and absence of Aroclor 1254-induced rat liver S9. To identify clastogenic chemicals, %MN values at each concentration were compared to a distribution of batch-specific solvent controls; this was followed by cytotoxicity assessment and benchmark concentration (BMC) analyses. The approach classified 157 substances as positives, 25 as negatives, and 110 as inconclusive. Using the approach described in Bryce et al. (Environ Mol Mutagen 52:280-286, 2011), we identified 15 (5%) aneugens. IVIVE (in vitro to in vivo extrapolation) was employed to convert BMCs into administered equivalent doses (AEDs). Where possible, AEDs were compared to points of departure (PODs) for traditional genotoxicity endpoints; AEDs were generally lower than PODs based on in vivo endpoints. To facilitate interpretation of in vitro MN assay concentration-response data for risk assessment, exposure estimates were utilized to calculate bioactivity exposure ratio (BER) values. BERs for 50 clastogens and two aneugens had AEDs that approached exposure estimates (i.e., BER < 100); these chemicals might be considered priorities for additional testing. This work provides a framework for the use of high-throughput in vitro genotoxicity testing for priority setting and chemical risk assessment.


Assuntos
Aneugênicos , Mutagênicos , Aneugênicos/toxicidade , Animais , Testes para Micronúcleos/métodos , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Ratos , Medição de Risco
5.
Environ Mol Mutagen ; 63(3): 151-161, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35426156

RESUMO

This laboratory previously described an in vitro human cell-based assay and data analysis scheme that discriminates common molecular targets responsible for chemical-induced in vitro aneugenicity: tubulin destabilization, tubulin stabilization, and inhibition of Aurora kinases (Bernacki et al., Toxicol. Sci. 170 [2019] 382-393). The current report describes updated procedures that simplify benchtop processing and data analysis methods. For these experiments, human lymphoblastoid TK6 cells were exposed to each of 25 aneugens over a range of concentrations in the presence of fluorescent paclitaxel (488 Taxol). After a 4 h treatment period, cells were lysed and nuclei were stained with a nucleic acid dye and labeled with fluorescent antibodies against phospho-histone H3 (p-H3). Flow cytometric analyses revealed several unique signatures: tubulin stabilizers caused increased frequencies of p-H3-positive events with concentration-dependent increases in 488 Taxol-associated fluorescence; tubulin destabilizers caused increased frequencies of p-H3-positive events with concomitant decreases in 488 Taxol-associated fluorescence; and Aurora kinase B inhibitors caused reduced frequencies of p-H3-positive events and lower median fluorescent intensities of p-H3-positive events. These results demonstrate a simple rubric based on 488 Taxol- and p-H3-associated metrics can reliably discriminate between several commonly encountered aneugenic molecular mechanisms.


Assuntos
Aneugênicos , Tubulina (Proteína) , Aneugênicos/toxicidade , Humanos , Testes para Micronúcleos/métodos , Microtúbulos , Mutagênicos/farmacologia , Paclitaxel/farmacologia
6.
Toxicol Sci ; 186(2): 288-297, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35094094

RESUMO

Aneuploidy is characterized by the presence of an abnormal number of chromosomes and is a common hallmark of cancer. However, exposure to aneugenic compounds does not necessarily lead to cancer. Aneugenic compounds are mainly identified using the in vitro micronucleus assay but this assay cannot standardly discriminate between aneugens and clastogens and cannot be used to identify the exact mode-of-action (MOA) of aneugens; tubulin stabilization, tubulin destabilization, or inhibition of mitotic kinases. To improve the classification of aneugenic substances and determine their MOA, we developed and validated the TubulinTracker assay that uses a green fluorescent protein-tagged tubulin reporter cell line to study microtubule stability using flow cytometry. Combining the assay with a DNA stain also enables cell cycle analysis. Substances whose exposure resulted in an accumulation of cells in G2/M phase, combined with increased or decreased tubulin levels, were classified as tubulin poisons. All known tubulin poisons included were classified correctly. Moreover, we correctly classified compounds, including aneugens that did not affect microtubule levels. However, the MOA of aneugens not affecting tubulin stability, such as Aurora kinase inhibitors, could not be identified. Here, we show that the TubulinTracker assay can be used to classify microtubule stabilizing and destabilizing compounds in living cells. This insight into the MOA of aneugenic agents is important, eg, to support a weight-of-evidence approach for risk assessment, and the classification as an aneugen as opposed to a clastogen or mutagen, has a big impact on the assessment.


Assuntos
Aneugênicos , Venenos , Aneugênicos/toxicidade , Divisão Celular , Testes para Micronúcleos/métodos , Microtúbulos , Mutagênicos/farmacologia , Venenos/farmacologia , Tubulina (Proteína)
7.
Mutagenesis ; 36(2): 129-142, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33769537

RESUMO

In vitro (geno)toxicity assessment of electronic vapour products (EVPs), relative to conventional cigarette, currently uses assays, including the micronucleus and Ames tests. Whilst informative on induction of a finite endpoint and relative risk posed by test articles, such assays could benefit from mechanistic supplementation. The ToxTracker and Aneugen Clastogen Evaluation analysis can indicate the activation of reporters associated with (geno)toxicity, including DNA damage, oxidative stress, the p53-related stress response and protein damage. Here, we tested for the different effects of a selection of neat e-liquids, EVP aerosols and Kentucky reference 1R6F cigarette smoke samples in the ToxTracker assay. The assay was initially validated to assess whether a mixture of e-liquid base components, propylene glycol (PG) and vegetable glycerine (VG) had interfering effects within the system. This was achieved by spiking three positive controls into the system with neat PG/VG or phosphate-buffered saline bubbled (bPBS) PG/VG aerosol (nicotine and flavour free). PG/VG did not greatly affect responses induced by the compounds. Next, when compared to cigarette smoke samples, neat e-liquids and bPBS aerosols (tobacco flavour; 1.6% freebase nicotine, 1.6% nicotine salt or 0% nicotine) exhibited reduced and less complex responses. Tested up to a 10% concentration, EVP aerosol bPBS did not induce any ToxTracker reporters. Neat e-liquids, tested up to 1%, induced oxidative stress reporters, thought to be due to their effects on osmolarity in vitro. E-liquid nicotine content did not affect responses induced. Additionally, spiking nicotine alone only induced an oxidative stress response at a supraphysiological level. In conclusion, the ToxTracker assay is a quick, informative screen for genotoxic potential and mechanisms of a variety of (compositionally complex) samples, derived from cigarettes and EVPs. This assay has the potential for future application in the assessment battery for next-generation (smoking alternative) products, including EVPs.


Assuntos
Aneugênicos/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Glicerol/toxicidade , Testes de Mutagenicidade/métodos , Nicotiana/toxicidade , Nicotina/toxicidade , Propilenoglicol/toxicidade , Aerossóis/efeitos adversos , Aerossóis/análise , Animais , Fumar Cigarros/efeitos adversos , Dano ao DNA , Glicerol/análise , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas , Mutagênicos/toxicidade , Nicotina/análise , Estresse Oxidativo , Propilenoglicol/análise , Medição de Risco , Fumaça/efeitos adversos , Fumar/efeitos adversos
8.
Arch Toxicol ; 95(2): 703-713, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33057863

RESUMO

1-Methylpyrene (1-MP) is a common environmental pollutant and animal carcinogen. After sequential activation by cytochromes P450 and sulfotransferases, it induced gene mutations and micronuclei in mammalian cells. The type of micronuclei formed, entire chromosomes or fragments, was not analysed. In this study, 1-MP and its primary metabolite, 1-hydroxymethylpyrene (1-HMP), were investigated for the induction of centromere-positive and -negative micronuclei in the human hepatoma cell line HepG2 and its derivative C3A, expressing relevant enzymes at higher levels. Under a short-exposure (9 h)/long-recovery regime (2 cell cycles in total), 1-MP and 1-HMP provided negative test results in HepG2 cells. However, they induced micronuclei in C3A cells, the effect being blocked by 1-aminobenzotriazole (inhibitor of cytochromes P450s) and reduced by pentachlorophenol (inhibitor of sulfotransferases). Immunofluorescence staining of centromere protein B in the micronuclei revealed purely clastogenic effects under this regime. Unexpectedly, 1-MP and 1-HMP at concentrations 1/5-1/4 of that required for micronuclei formation led to mitotic arrest and spindle aberrations, as detected by immunofluorescence staining of ß- and γ-tubulin. Following extended exposure (72 h, 2 cell cycles, no recovery), damage to the spindle apparatus and centrosomes was detected at even lower concentrations, with concurrent formation of micronuclei. At low concentrations (1-8 µM 1-MP, 0.25-0.5 µM 1-HMP), the micronuclei induced were unexceptionally centromere-positive. Thus, the chromosome-damaging mechanism of 1-MP was regime and concentration dependent: potently aneugenic under persistent exposure, while clastogenic at higher concentrations following a short-exposure/long-recovery regime. This is a convincing evidence for the existence of metabolic activation-dependent aneugens.


Assuntos
Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Mitose/efeitos dos fármacos , Pirenos/toxicidade , Ativação Metabólica/efeitos dos fármacos , Aneugênicos/metabolismo , Aneugênicos/toxicidade , Linhagem Celular Tumoral , Proteína B de Centrômero/metabolismo , Centrossomo/efeitos dos fármacos , Células Hep G2 , Humanos , Testes para Micronúcleos , Microscopia de Fluorescência , Mutagênicos , Pirenos/metabolismo , Fuso Acromático/efeitos dos fármacos
9.
Toxicol Sci ; 177(1): 202-213, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32617558

RESUMO

Understanding the mode-of-action (MOA) of genotoxic compounds and differentiating between direct DNA interaction and indirect genotoxicity is crucial for their reliable safety assessment. ToxTracker is a stem cell-based reporter assay that detects activation of various cellular responses that are associated with genotoxicity and cancer. ToxTracker consists of 6 different GFP reporter cell lines that can detect the induction of DNA damage, oxidative stress, and protein damage in a single test. The assay can thereby provide insight into the MOA of compounds. Genotoxicity is detected in ToxTracker by activation of 2 independent GFP reporters. Activation of the Bscl2-GFP reporter is associated with induction of DNA adducts and subsequent inhibition of DNA replication and the Rtkn-GFP reporter is activated following the formation of DNA double-strand breaks. Here, we show that the differential activation of these 2 genotoxicity reporters could be used to further differentiate between a DNA reactive and clastogenic or a non-DNA-reactive aneugenic MOA of genotoxic compounds. For further classification of aneugenic and clastogenic compounds, the ToxTracker assay was extended with cell cycle analysis and aneuploidy assessment. The extension was validated using a selection of 16 (genotoxic) compounds with a well-established MOA. Furthermore, indirect genotoxicity related to the production of reactive oxygen species was investigated using the DNA damage and oxidative stress ToxTracker reporters in combination with different reactive oxygen species scavengers. With these new extensions, ToxTracker was able to accurately classify compounds as genotoxic or nongenotoxic and could discriminate between DNA-reactive compounds, aneugens, and indirect genotoxicity caused by oxidative stress.


Assuntos
Aneugênicos , Mutagênicos , Aneugênicos/toxicidade , Biomarcadores/metabolismo , Dano ao DNA , Testes de Mutagenicidade , Mutagênicos/toxicidade , Estresse Oxidativo
10.
Environ Mol Mutagen ; 61(5): 534-550, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32297368

RESUMO

The early detection of genotoxicity contributes to cutting-edge drug discovery and development, requiring effective identification of genotoxic hazards posed by drugs while providing mode of action (MoA) information in a high throughput manner. In other words, there is a need to complement standard genotoxicity testing according to the test battery given in ICH S2(R1) with new in vitro tools, thereby contributing to a more in-depth analysis of genotoxic effects. Here, we report on a proof-of-concept MoA approach based on post-translational modifications of proteins (PTMs) indicative of clastogenic and aneugenic effects in TK6 cells using imaging technology (with automated analysis). Cells were exposed in a 96-well plate format with a panel of reference (geno)toxic compounds and subsequently analyzed at 4 and 24 hr to detect dose-dependent changes in PTMs, relevant for mechanistic analysis. All tested compounds that interfere with the spindle apparatus yielded a BubR1 (S640) (3/3) and phospho-histone H3 (S28) (7/9) positive dose-response reflecting aneugenicity, whereas compounds inducing DNA double-strand-breaks were associated with positive FANCD2 (S1404) and 53BP1 (S1778) responses pointing to clastogenicity (2/3). The biomarker p53 (K373) was able to distinguish genotoxicants from non-genotoxicants (2/4), while the induction of reactive oxygen species (ROS), potentially causing DNA damage, was associated with a positive Nrf2 (S40) response (2/2). This work demonstrates that genotoxicants and non-genotoxicants induce different biomarker responses in TK6 cells which can be used for reliable classification into MoA groups (aneugens/clastogens/non-genotoxicants/ROS inducers), supporting a more in-depth safety assessment of drug candidates.


Assuntos
Aneugênicos/toxicidade , Biomarcadores/metabolismo , Processamento de Imagem Assistida por Computador , Mutagênicos/toxicidade , Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Humanos , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
11.
Environ Sci Pollut Res Int ; 27(5): 5503-5510, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31853848

RESUMO

Diethyl phthalate (DEP) is a compound which is used in many industrial fields, especially in cosmetic sector and causes contamination in air, water, and soil due to its widespread usage. In this study, the potential toxic effects of DEP were investigated by using physiological, anatomical, biochemical, and cytogenetic parameters in Allium cepa. The micronucleus (MN) test specifically aimed to elucidate the aneugenic and clastogenic effects of DEP. Physiological effects were determined by germination percentage, root length, weight gain parameters, and cytogenetic effects were investigated by mitotic index (MI) and chromosomal abnormality (CA) test. Malondialdehyde (MDA) level, catalase (CAT), and superoxide dismutase (SOD) activities were investigated as oxidative damage indicators and structural changes were investigated with anatomical cross sections. For this purpose, Allium cepa bulbs were divided into four groups as control and application groups and the application groups were germinated with 1.0, 2.2, and 4.4 µM DEP for 72 h. As a result, it was determined that germination percentage, weight gain and root length decreased, CA frequency, MDA level, SOD, and CAT activities were increased in DEP-treated groups when compared with the control group. DEP has been found to induce CA in root tip cells such as fragment, chromosome bridge, c-mitosis, sticky chromosome, and unequal chromatin distribution. When MN formations induced by DEP application were examined, both large-scale and small-scale MNs were determined. MN formation in both sizes indicates that DEP has both clastogenic and aneugenic effects. And also, it was found that DEP application caused structural changes and especially anatomic damages such as necrosis in 4.4 µM DEP application. As a result, it was found that DEP caused various toxic effects depending on the dose and that A. cepa test material was a useful indicator in determining these effects.


Assuntos
Aneugênicos/toxicidade , Ácidos Ftálicos/toxicidade , Malondialdeído , Cebolas , Raízes de Plantas , Testes de Toxicidade
12.
Artigo em Inglês | MEDLINE | ID: mdl-31708072

RESUMO

As part of the 7th International Workshops on Genotoxicity Testing held in Tokyo, Japan in November 2017, a workgroup of experts reviewed and assessed the risk of aneugens for human health. The present manuscript is one of three manuscripts from the workgroup and reports on the unanimous consensus reached on the evidence for aneugens affecting germ cells, their mechanisms of action and role in hereditary diseases. There are 24 chemicals with strong or sufficient evidence for germ cell aneugenicity providing robust support for the ability of chemicals to induce germ cell aneuploidy. Interference with microtubule dynamics or inhibition of topoisomerase II function are clear characteristics of germ cell aneugens. Although there are mechanisms of chromosome segregation that are unique to germ cells, there is currently no evidence for germ cell-specific aneugens. However, the available data are heavily skewed toward chemicals that are aneugenic in somatic cells. Development of high-throughput screening assays in suitable animal models for exploring additional targets for aneuploidy induction, such as meiosis-specific proteins, and to prioritize chemicals for the potential to be germ cell aneugens is encouraged. Evidence in animal models support that: oocytes are more sensitive than spermatocytes and somatic cells to aneugens; exposure to aneugens leads to aneuploid conceptuses; and, the frequencies of aneuploidy are similar in germ cells and zygotes. Although aneuploidy in germ cells is a significant cause of infertility and pregnancy loss in humans, there is currently limited evidence that aneugens induce hereditary diseases in human populations because the great majority of aneuploid conceptuses die in utero. Overall, the present work underscores the importance of protecting the human population from exposure to chemicals that can induce aneuploidy in germ cells that, in contrast to carcinogenicity, is directly linked to an adverse outcome.


Assuntos
Aneugênicos/toxicidade , Aneuploidia , Carcinogênese , Doenças Genéticas Inatas/patologia , Células Germinativas/efeitos dos fármacos , Animais , Células Germinativas/patologia , Humanos , Fatores de Risco
13.
Environ Mol Mutagen ; 60(9): 778-791, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31294873

RESUMO

Nicotine's genotoxic potential has been extensively studied in vitro. While the results of mammalian cell-based studies have inferred that it can potentially damage chromosomes, in general and with few exceptions, adverse DNA effects have been observed primarily at supraphysiological concentrations in nonregulatory assays that provide little information on its mode-of-action (MoA). In this study, a modern-day regulatory genotoxicity assessment was conducted using a flow cytometry-based in vitro micronucleus (MN) assay, Good Laboratory Practice study conditions, Chinese hamster ovary cells of known provenance, and acceptance/evaluation criteria from the current OECD Test Guideline 487. Nicotine concentrations up to 3.95 mM had no effect on background levels of DNA damage; however, concentrations above the point-of-departure range of 3.94-4.54 mM induced increases in MN and hypodiploid nuclei, indicating a possible aneugenicity hazard. Follow-up experiments designed to elucidate nicotine's MoA revealed cellular vacuolization, accompanying distortions in microtubules, inhibition of tubulin polymerization, centromere-positive DNA, and multinucleate cells at MN-inducing concentrations. Vacuoles likely originated from acidic cellular compartments (e.g., lysosomes). Remarkably, genotoxicity was suppressed by chemicals that raised the luminal pH of these organelles. Other endpoints (e.g., changes in phosphorylated histones) measured in the study cast doubt on the biological relevance of this apparent genotoxicity. In addition, three major nicotine metabolites, including cotinine, had no MN effects but nornicotine induced a nicotine-like profile. It is possible that nicotine's lysosomotropic properties drive the genotoxicity observed in vitro; however, the potency and mechanistic insights revealed here indicate that it is likely of minimal physiological relevance for nicotine consumers. Environ. Mol. Mutagen. 2019. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Assuntos
Núcleo Celular/efeitos dos fármacos , Nicotina/toxicidade , Aneugênicos/toxicidade , Animais , Células CHO , Linhagem Celular , Núcleo Celular/metabolismo , Cricetulus , DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Testes para Micronúcleos/métodos , Microtúbulos/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Nicotina/análogos & derivados , Fosforilação/efeitos dos fármacos , Tubulina (Proteína)/metabolismo
14.
Environ Mol Mutagen ; 60(6): 513-533, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30702769

RESUMO

The in vitro MultiFlow® DNA Damage Assay multiplexes γH2AX, p53, phospho-histone H3, and polyploidization biomarkers into a single flow cytometric analysis. The current report describes a tiered sequential data analysis strategy based on data generated from exposure of human TK6 cells to a previously described 85 chemical training set and a new pharmaceutical-centric test set (n = 40). In each case, exposure was continuous over a range of closely spaced concentrations, and cell aliquots were removed for analysis following 4 and 24 hr of treatment. The first data analysis step focused on chemicals' genotoxic potential, and for this purpose, we evaluated the performance of a machine learning (ML) ensemble, a rubric that considered fold increases in biomarkers against global evaluation factors (GEFs), and a hybrid strategy that considered ML and GEFs. This first tier further used ML output and/or GEFs to classify genotoxic activity as clastogenic and/or aneugenic. Test set results demonstrated the generalizability of the first tier, with particularly good performance from the ML ensemble: 35/40 (88%) concordance with a priori genotoxicity expectations and 21/24 (88%) agreement with expected mode of action (MoA). A second tier applied unsupervised hierarchical clustering to the biomarker response data, and these analyses were found to group certain chemicals, especially aneugens, according to their molecular targets. Finally, a third tier utilized benchmark dose analyses and MultiFlow biomarker responses to rank genotoxic potency. The relevance of these rankings is supported by the strong agreement found between benchmark dose values derived from MultiFlow biomarkers compared to those generated from parallel in vitro micronucleus analyses. Collectively, the results suggest that a tiered MultiFlow data analysis pipeline is capable of rapidly and effectively identifying genotoxic hazards while providing additional information that is useful for modern risk assessments-MoA, molecular targets, and potency. Environ. Mol. Mutagen. 60:513-533, 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Mutagênicos/toxicidade , Aneugênicos/toxicidade , Bioensaio/métodos , Biomarcadores/metabolismo , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Análise de Dados , Citometria de Fluxo/métodos , Histonas/metabolismo , Humanos , Aprendizado de Máquina , Testes para Micronúcleos/métodos , Testes de Mutagenicidade/métodos , Fosforilação/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
15.
PLoS Genet ; 15(2): e1007975, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30763314

RESUMO

Chemicals that are highly prevalent in our environment, such as phthalates and pesticides, have been linked to problems associated with reproductive health. However, rapid assessment of their impact on reproductive health and understanding how they cause such deleterious effects, remain challenging due to their fast-growing numbers and the limitations of various current toxicity assessment model systems. Here, we performed a high-throughput screen in C. elegans to identify chemicals inducing aneuploidy as a result of impaired germline function. We screened 46 chemicals that are widely present in our environment, but for which effects in the germline remain poorly understood. These included pesticides, phthalates, and chemicals used in hydraulic fracturing and crude oil processing. Of the 46 chemicals tested, 41% exhibited levels of aneuploidy higher than those detected for bisphenol A (BPA), an endocrine disruptor shown to affect meiosis, at concentrations correlating well with mammalian reproductive endpoints. We further examined three candidates eliciting aneuploidy: dibutyl phthalate (DBP), a likely endocrine disruptor and frequently used plasticizer, and the pesticides 2-(thiocyanomethylthio) benzothiazole (TCMTB) and permethrin. Exposure to these chemicals resulted in increased embryonic lethality, elevated DNA double-strand break (DSB) formation, activation of p53/CEP-1-dependent germ cell apoptosis, chromosomal abnormalities in oocytes at diakinesis, impaired chromosome segregation during early embryogenesis, and germline-specific alterations in gene expression. This study indicates that this high-throughput screening system is highly reliable for the identification of environmental chemicals inducing aneuploidy, and provides new insights into the impact of exposure to three widely used chemicals on meiosis and germline function.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Poluentes Ambientais/toxicidade , Células Germinativas/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Aneugênicos/toxicidade , Aneuploidia , Animais , Animais Geneticamente Modificados , Benzotiazóis/toxicidade , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Quebras de DNA de Cadeia Dupla , Dibutilftalato/toxicidade , Exposição Ambiental , Inseticidas/toxicidade , Meiose/efeitos dos fármacos , Permetrina/toxicidade , Plastificantes/toxicidade , Tiocianatos/toxicidade
16.
Environ Mol Mutagen ; 59(6): 516-528, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29668064

RESUMO

One major challenge for in vitro genotoxicology is the determination of the genotoxic mode of action of tested compounds. The quantification of the phosphorylation of the histones H3 (pH3) and H2AX (γH2AX) allows an efficient discrimination between aneugenic and clastogenic compounds. However, these two biomarkers do not permit to deduct the specific mechanisms involved in the action of clastogenic compounds. The aim of this study was to investigate other possible cellular biomarkers allowing differentiating clastogenic properties. For this purpose, we analyzed γH2AX and pH3 plus six other biomarkers involved in the DNA damage signaling pathway in HepG2 cells treated with nine clastogens exhibiting different mechanisms of action, as well as one aneugen. All compounds were tested at various concentrations and with kinetics of 2, 6, 24 and 48 hr. Our results demonstrate the activation of the investigated biomarkers by the tested compounds in a time and concentration dependent manner. Notably, we observed for some nondirect genotoxic clastogens, notably dNTPs pool imbalance inducers, a different kinetic of DNA damage induction compared with direct genotoxins (oxidative stress). However, no specific biomarker signature of mechanisms of clastogenic action could be specified. Multiparametric analysis demonstrates a strong correlation between γH2AX and p-p53(S15) for clastogen compounds. Environ. Mol. Mutagen. 59:516-528, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Dano ao DNA/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Aneugênicos/toxicidade , Biomarcadores/análise , Células Hep G2 , Hepatócitos/metabolismo , Histonas/análise , Histonas/genética , Humanos , Cinética , Estresse Oxidativo/efeitos dos fármacos , Fosforilação
17.
FASEB J ; 32(1): 342-352, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28904021

RESUMO

Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant and carcinogen that is frequently found in particulate matter, with a diameter of ≤2.5 µm (PM2.5). It has been reported to interrupt the normal reproductive system, but the exact molecular basis has not been clearly defined. To understand the underlying mechanisms regarding how BaP exposure disrupts female fertility, we evaluated oocyte quality by assessing the critical regulators and events during oocyte meiotic maturation and fertilization. We found that BaP exposure compromised the mouse oocyte meiotic progression by disrupting normal spindle assembly, chromosome alignment, and kinetochore-microtubule attachment, consequently leading to the generation of aneuploid eggs. In addition, BaP administration significantly decreased the fertilization rate of mouse eggs by reducing the number of sperm binding to the zona pellucida, which was consistent with the premature cleavage of N terminus of zona pellucida sperm-binding protein 2 and precocious exocytosis of ovastacin. Furthermore, BaP exposure interfered with the gamete fusion process by perturbing the localization and protein level of Juno. Notably, we found that BaP exposure induced oxidative stress with an increased level of reactive oxygen species and apoptosis in oocytes and thereby led to the deterioration of critical regulators and events during oocyte meiotic progression and fertilization. Our data document that BaP exposure reduces female fertility via impairing oocyte maturation and fertilization ability induced by oxidative stress and early apoptosis in murine models.-Zhang, M., Miao, Y., Chen, Q., Cai, M., Dong, W., Dai, X., Lu, Y., Zhou, C., Cui, Z., Xiong, B. BaP exposure causes oocyte meiotic arrest and fertilization failure to weaken female fertility.


Assuntos
Benzo(a)pireno/toxicidade , Fertilização/efeitos dos fármacos , Infertilidade Feminina/induzido quimicamente , Oócitos/efeitos dos fármacos , Oócitos/patologia , Aneugênicos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Feminino , Infertilidade Feminina/patologia , Cinetocoros/efeitos dos fármacos , Masculino , Meiose/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Microtúbulos/efeitos dos fármacos , Oócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Interações Espermatozoide-Óvulo/efeitos dos fármacos
18.
Hum Exp Toxicol ; 37(3): 285-294, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29233020

RESUMO

Genotoxicants can be identified as aneugens and clastogens through a micronucleus (MN) assay. The current high-content screening-based MN assays usually discriminate an aneugen from a clastogen based on only one parameter, such as the MN size, intensity, or morphology, which yields low accuracies (70-84%) because each of these parameters may contribute to the results. Therefore, the development of an algorithm that can synthesize high-dimensionality data to attain comparative results is important. To improve the automation and accuracy of detection using the current parameter-based mode of action (MoA), the MN MoA signatures of 20 chemicals were systematically recruited in this study to develop an algorithm. The results of the algorithm showed very good agreement (93.58%) between the prediction and reality, indicating that the proposed algorithm is a validated analytical platform for the rapid and objective acquisition of genotoxic MoA messages.


Assuntos
Algoritmos , Aneugênicos/toxicidade , Ensaios de Triagem em Larga Escala , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Automação Laboratorial , Teorema de Bayes , Linhagem Celular Tumoral , Análise por Conglomerados , Humanos , Reprodutibilidade dos Testes
19.
Environ Mol Mutagen ; 58(3): 146-161, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28370322

RESUMO

We previously described a multiplexed in vitro genotoxicity assay based on flow cytometric analysis of detergent-liberated nuclei that are simultaneously stained with propidium iodide and labeled with fluorescent antibodies against p53, γH2AX, and phospho-histone H3. Inclusion of a known number of microspheres provides absolute nuclei counts. The work described herein was undertaken to evaluate the interlaboratory transferability of this assay, commercially known as MultiFlow® DNA Damage Kit-p53, γH2AX, Phospho-Histone H3. For these experiments, seven laboratories studied reference chemicals from a group of 84 representing clastogens, aneugens, and nongenotoxicants. TK6 cells were exposed to chemicals in 96-well plates over a range of concentrations for 24 hr. At 4 and 24 hr, cell aliquots were added to the MultiFlow reagent mix and following a brief incubation period flow cytometric analysis occurred, in most cases directly from a 96-well plate via a robotic walk-away data acquisition system. Multiplexed response data were evaluated using two analysis approaches, one based on global evaluation factors (i.e., cutoff values derived from all interlaboratory data), and a second based on multinomial logistic regression that considers multiple biomarkers simultaneously. Both data analysis strategies were devised to categorize chemicals as predominately exhibiting a clastogenic, aneugenic, or nongenotoxic mode of action (MoA). Based on the aggregate 231 experiments that were performed, assay sensitivity, specificity, and concordance in relation to a priori MoA grouping were ≥ 92%. These results are encouraging as they suggest that two distinct data analysis strategies can rapidly and reliably predict new chemicals' predominant genotoxic MoA based on data from an efficient and transferable multiplexed in vitro assay. Environ. Mol. Mutagen. 58:146-161, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Dano ao DNA , Citometria de Fluxo/métodos , Laboratórios , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Aneugênicos/toxicidade , Animais , Técnicas de Cultura de Células , Histonas/genética , Humanos , Laboratórios/normas , Modelos Logísticos , Fosforilação , Projetos Piloto , Reprodutibilidade dos Testes , Robótica , Sensibilidade e Especificidade , Proteína Supressora de Tumor p53/genética
20.
Toxicol Sci ; 157(1): 20-29, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087838

RESUMO

The detection of aneugenic chemicals is important due to the implications of aneuploidy for human health. Aneuploidy can result from chromosome loss or nondisjunction due to chromosome mis-segregation at anaphase. Frequently, aneugens are detected using the in vitro micronucleus assay (IVM), with either centromere or kinetochore labeling. However, this method does not consider nondisjunction, the suggested predominant mechanism of spindle poison induced aneugenicity in primary human lymphocytes. Therefore, the IVM may be relatively insensitive in detecting aneuploidy. To investigate whether chromosome distribution analysis, specifically of nondisjunction, using chromosome-specific centromeric probes provides a more sensitive assay for aneugen detection, six reference aneugens with differing modes of action were tested on human lymphoblastoid TK6 cells. The results show that chromosome loss is a substantial part of the process leading to aneuploidy in TK6 cells. This differs from previous studies on human lymphocytes where nondisjunction has been described as the major mechanism of aneugenicity. However, in the current study more cells and types of aneugenic damage were analyzed. Although compound specific effects on nondisjunction were identified, chromosome distribution analysis did not provide increased sensitivity for the detection of aneugens: For the six reference aneugens examined, chromosome loss was shown at the same concentrations or lower than nondisjunction, even when nondisjunction levels were comparatively high. Therefore, in TK6 cells methods that detect chromosome loss, eg, the IVM, provide a more sensitive technique for the detection of aneugens than the measurement of nondisjunction.


Assuntos
Aneugênicos/toxicidade , Aneuploidia , Não Disjunção Genética/efeitos dos fármacos , Linhagem Celular Transformada , Cromossomos Humanos , Citocinese/efeitos dos fármacos , Humanos , Hibridização in Situ Fluorescente , Testes para Micronúcleos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...