Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 493
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673941

RESUMO

Abdominal aortic aneurysm (AAA) is a serious vascular disease which is associated with vascular remodeling. CD38 is a main NAD+-consuming enzyme in mammals, and our previous results showed that CD38 plays the important roles in many cardiovascular diseases. However, the role of CD38 in AAA has not been explored. Here, we report that smooth-muscle-cell-specific deletion of CD38 (CD38SKO) significantly reduced the morbidity of AngII-induced AAA in CD38SKOApoe-/- mice, which was accompanied with a increases in the aortic diameter, medial thickness, collagen deposition, and elastin degradation of aortas. In addition, CD38SKO significantly suppressed the AngII-induced decreases in α-SMA, SM22α, and MYH11 expression; the increase in Vimentin expression in VSMCs; and the increase in VCAM-1 expression in smooth muscle cells and macrophage infiltration. Furthermore, we demonstrated that the role of CD38SKO in attenuating AAA was associated with the activation of sirtuin signaling pathways. Therefore, we concluded that CD38 plays a pivotal role in AngII-induced AAA through promoting vascular remodeling, suggesting that CD38 may serve as a potential therapeutic target for the prevention of AAA.


Assuntos
ADP-Ribosil Ciclase 1 , Angiotensina II , Aneurisma da Aorta Abdominal , Camundongos Knockout , Miócitos de Músculo Liso , Remodelação Vascular , Animais , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/prevenção & controle , Aneurisma da Aorta Abdominal/etiologia , ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase 1/genética , Camundongos , Remodelação Vascular/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Masculino , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Transdução de Sinais , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética
2.
Cell Mol Life Sci ; 81(1): 175, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597937

RESUMO

Phenotypic transformation of vascular smooth muscle cells (VSMCs) plays a crucial role in abdominal aortic aneurysm (AAA) formation. CARMN, a highly conserved, VSMC-enriched long noncoding RNA (lncRNA), is integral in orchestrating various vascular pathologies by modulating the phenotypic dynamics of VSMCs. The influence of CARMN on AAA formation, particularly its mechanisms, remains enigmatic. Our research, employing single-cell and bulk RNA sequencing, has uncovered a significant suppression of CARMN in AAA specimens, which correlates strongly with the contractile function of VSMCs. This reduced expression of CARMN was consistent in both 7- and 14-day porcine pancreatic elastase (PPE)-induced mouse models of AAA and in human clinical cases. Functional analyses disclosed that the diminution of CARMN exacerbated PPE-precipitated AAA formation, whereas its augmentation conferred protection against such formation. Mechanistically, we found CARMN's capacity to bind with SRF, thereby amplifying its role in driving the transcription of VSMC marker genes. In addition, our findings indicate an enhancement in CAMRN transcription, facilitated by the binding of NRF2 to its promoter region. Our study indicated that CARMN plays a protective role in preventing AAA formation and restrains the phenotypic transformation of VSMC through its interaction with SRF. Additionally, we observed that the expression of CARMN is augmented by NRF2 binding to its promoter region. These findings suggest the potential of CARMN as a viable therapeutic target in the treatment of AAA.


Assuntos
Aneurisma da Aorta Abdominal , RNA Longo não Codificante , Humanos , Camundongos , Animais , Suínos , RNA Longo não Codificante/genética , Músculo Liso Vascular , Fator 2 Relacionado a NF-E2/genética , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Modelos Animais de Doenças
3.
Atherosclerosis ; 391: 117492, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461759

RESUMO

BACKGROUND AND AIMS: Obesity increases the risk for abdominal aortic aneurysms (AAA) in humans and enhances angiotensin II (AngII)-induced AAA formation in C57BL/6 mice. We reported that deficiency of Serum Amyloid A (SAA) significantly reduces AngII-induced inflammation and AAA in both hyperlipidemic apoE-deficient and obese C57BL/6 mice. The aim of this study is to investigate whether SAA plays a role in the progression of early AAA in obese C57BL/6 mice. METHODS: Male C57BL/6J mice were fed a high-fat diet (60% kcal as fat) throughout the study. After 4 months of diet, the mice were infused with AngII until the end of the study. Mice with at least a 25% increase in the luminal diameter of the abdominal aorta after 4 weeks of AngII infusion were stratified into 2 groups. The first group received a control antisense oligonucleotide (Ctr ASO), and the second group received ASO that suppresses SAA (SAA-ASO) until the end of the study. RESULTS: Plasma SAA levels were significantly reduced by the SAA ASO treatment. While mice that received the control ASO had continued aortic dilation throughout the AngII infusion periods, the mice that received SAA-ASO had a significant reduction in the progression of aortic dilation, which was associated with significant reductions in matrix metalloprotease activities, decreased macrophage infiltration and decreased elastin breaks in the abdominal aortas. CONCLUSIONS: We demonstrate for the first time that suppression of SAA protects obese C57BL/6 mice from the progression of AngII-induced AAA. Suppression of SAA may be a therapeutic approach to limit AAA progression.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Humanos , Masculino , Animais , Camundongos , Angiotensina II/farmacologia , Proteína Amiloide A Sérica/genética , Oligonucleotídeos Antissenso/uso terapêutico , Camundongos Endogâmicos C57BL , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/prevenção & controle , Aorta Abdominal , Obesidade , Modelos Animais de Doenças , Camundongos Knockout , Apolipoproteínas E
4.
Adv Sci (Weinh) ; 11(15): e2306232, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353392

RESUMO

Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease but effective drugs for treatment of AAA are still lacking. Recently, erythropoietin (EPO) is reported to induce AAA formation in apolipoprotein-E knock out (ApoE-/-) mice but an effective antagonist is unknown. In this study, formoterol, a ß2 adrenergic receptor (ß2AR) agonist, is found to be a promising agent for inhibiting AAA. To test this hypothesis, ApoE-/- mice are treated with vehicle, EPO, and EPO plus low-, medium-, and high-dose formoterol, respectively. The incidence of AAA is 0, 55%, 35%,10%, and 55% in these 5 groups, respectively. Mechanistically, senescence of vascular smooth muscle cell (VSMC) is increased by EPO while decreased by medium-dose formoterol both in vivo and in vitro, manifested by the altered expression of senescence biomarkers including phosphorylation of H2AXserine139, senescence-associated ß-galactosidase activity, and P21 protein level. In addition, expression of sirtuin 1 (SIRT1) in aorta is decreased in EPO-induced AAA but remarkably elevated by medium-dose formoterol. Knockdown of ß2AR and blockage of cyclic adenosine monophosphate (cAMP) attenuate the inhibitory role of formoterol in EPO-induced VSMC senescence. In summary, medium-dose formoterol attenuates EPO-induced AAA via ß2AR/cAMP/SIRT1 pathways, which provides a promising medication for the treatment of AAA.


Assuntos
Aneurisma da Aorta Abdominal , Eritropoetina , Fumarato de Formoterol , Animais , Camundongos , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Apolipoproteínas E/metabolismo , Eritropoetina/efeitos adversos , Sirtuína 1/metabolismo
5.
Eur J Pharmacol ; 968: 176397, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38331337

RESUMO

Abdominal aortic aneurysm (AAA), a vascular degenerative disease, is a potentially life-threatening condition characterised by the loss of vascular smooth muscle cells (VSMCs), degradation of extracellular matrix (ECM), inflammation, and oxidative stress. Despite the severity of AAA, effective drugs for treatment are scarce. At low doses, terazosin (TZ) exerts antiapoptotic and anti-inflammatory effects in several diseases, but its potential to protect against AAA remains unexplored. Herein, we investigated the effects of TZ in two AAA animal models: Angiotensin II (Ang II) infusion in Apoe-/- mice and calcium chloride application in C57BL/6J mice. Mice were orally administered with TZ (100 or 1000 µg/kg/day). The in vivo results indicated that low-dose TZ alleviated AAA formation in both models. Low-dose TZ significantly reduced aortic pulse wave velocity without exerting an apparent antihypertensive effect in the Ang II-induced AAA model. Paternally expressed gene 3 (Peg3) was identified via RNA sequencing as a novel TZ target. PEG3 expression was significantly elevated in both mouse and human AAA tissues. TZ suppressed PEG3 expression and reduced the abundance of matrix metalloproteinases (MMP2/MMP9) in the tunica media. Functional experiments and molecular analyses revealed that TZ (10 nM) treatment and Peg3 knockdown effectively prevented Ang II-induced VSMC senescence and apoptosis in vitro. Thus, Peg3, a novel target of TZ, mediates inflammation-induced VSMC apoptosis and senescence. Low-dose TZ downregulates Peg3 expression to attenuate AAA formation and ECM degradation, suggesting a promising therapeutic strategy for AAA.


Assuntos
Aneurisma da Aorta Abdominal , Músculo Liso Vascular , Prazosina/análogos & derivados , Camundongos , Humanos , Animais , Análise de Onda de Pulso , Camundongos Knockout , Camundongos Endogâmicos C57BL , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/genética , Apoptose , Inflamação/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Modelos Animais de Doenças , Miócitos de Músculo Liso , Fatores de Transcrição Kruppel-Like/metabolismo
6.
ACS Nano ; 18(8): 6650-6672, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38369729

RESUMO

Abdominal aortic aneurysm (AAA) remains a fatal disease in the elderly. Currently, no drugs can be clinically used for AAA therapy. Considering the pivotal role of neutrophils in the pathogenesis of AAA, herein we propose the targeted therapy of AAA by site-specifically regulating neutrophilic inflammation. Based on a luminol-conjugated α-cyclodextrin material (LaCD), intrinsically anti-inflammatory nanoparticles (NPs) were engineered by simple nanoprecipitation, which were examined as a nanotherapy (defined as LaCD NP). After efficient accumulation in the aneurysmal aorta and localization in pathologically relevant inflammatory cells in rats with CaCl2-induced AAA, LaCD NP significantly alleviated AAA progression, as implicated by the decreased aortic expansion, suppressed elastin degradation, inhibited calcification, and improved structural integrity of the abdominal aorta. By functionalizing LaCD NP with alendronate, a calcification-targeting moiety, the in vivo aneurysmal targeting capability of LaCD NP was considerably enhanced, thereby affording significantly potentiated therapeutic outcomes in AAA rats. Mechanistically, LaCD NP can effectively inhibit neutrophil-mediated inflammatory responses in the aneurysmal aorta. Particularly, LaCD NP potently attenuated the formation of neutrophil extracellular traps (NETs), thereby suppressing NETs-mediated pro-inflammatory events and NETosis-associated negative effects responsible for AAA progression. Consequently, we demonstrated the effectiveness and underlying mechanisms of anti-NETosis nanotherapies for the targeted treatment of AAA. Our findings provide promising insights into discovering precision therapies for AAA and other inflammatory vascular diseases.


Assuntos
Aneurisma da Aorta Abdominal , Nanopartículas , Humanos , Ratos , Animais , Idoso , Camundongos , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Neutrófilos , Inflamação/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
7.
Heart Lung Circ ; 33(3): 304-309, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326133

RESUMO

BACKGROUND: Atrial fibrillation (AF) screening was incorporated into an abdominal aortic aneurysm screening (AAA) program for New Zealand (NZ) Maori. METHODS: AF screening was performed as an adjunct to AAA screening of Maori men aged 60-74 years and women aged 65-74 years registered with primary health care practices in Auckland, NZ. Pre-existing AF was determined through coded diagnoses or medications in the participant's primary care record. Subsequent audit of the record assessed accuracy of pre-screening coding, medication use and clinical follow-up. RESULTS: Among 1,933 people successfully screened, the prevalence of AF was 144 (7.4%), of which 46 (2.4% of the cohort) were patients without AF coded in the medical record. More than half of these were revealed to be known AF but that was not coded. Thus, the true prevalence of newly detected AF was 1.1% (n=21). An additional 48 (2.5%) of the cohort had been coded as AF but were not in AF at the time of screening. Among the 19 at-risk screen-detected people with AF, 10 started appropriate anticoagulation therapy within 6 months. Of the nine patients who did not commence anticoagulation therapy, five had a subsequent adverse clinical outcome in the follow-up period, including one with ischaemic stroke; two had contraindications to anticoagulants. Among those with previously diagnosed AF, the proportion receiving anticoagulation therapy rose from 57% pre-screening to 83% at 6 months post-screening (p<0.0001); among newly diagnosed AF the proportion rose from 0% to 53% (p<0.01). CONCLUSIONS: AF screening is a feasible low-cost adjunct to AAA screening with potential to reduce ethnic inequities in stroke incidence. However, effective measures are needed to ensure that high-risk newly diagnosed AF is managed according to best practice guidelines.


Assuntos
Aneurisma da Aorta Abdominal , Fibrilação Atrial , Isquemia Encefálica , Acidente Vascular Cerebral , Feminino , Humanos , Masculino , Anticoagulantes/uso terapêutico , Aneurisma da Aorta Abdominal/diagnóstico , Aneurisma da Aorta Abdominal/epidemiologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/tratamento farmacológico , Povo Maori , Programas de Rastreamento , Nova Zelândia/epidemiologia , Prevalência , Acidente Vascular Cerebral/etiologia , Pessoa de Meia-Idade , Idoso
8.
J Vasc Res ; 61(2): 51-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38246153

RESUMO

INTRODUCTION: Carbamylation is a nonenzymatic post-translational modification of proteins characterized by the binding of isocyanic acid to amino groups of proteins, which leads to the alteration of their properties. An increase in serum carbamylation-derived products, including homocitrulline (HCit), has been shown to be associated with the development of cardiovascular diseases. METHODS: HCit was quantified by LC-MS/MS within extracts of aneurysmal and control human aortas. A mouse model of aortic aneurysm (ApoE-/- mice perfused with angiotensin II and fed with sodium cyanate) was used to evaluate the role of carbamylation in aneurysm development. RESULTS: HCit quantification showed a greater heterogeneity of values in aneurysmal aortas in comparison with control ones. At the maximum diameter of dilation, HCit values were significantly higher (+94%, p < 0.05) compared with less dilated areas. No differences were observed according to aneurysm size or when comparing ruptured and unruptured aneurysms. No significant effect of carbamylation on aneurysm development was observed using the animal model. CONCLUSIONS: These results evidenced the accumulation of HCit within aneurysmal aortas but do not allow concluding about the exact participation of protein carbamylation in the development of human abdominal aortic aneurysms.


Assuntos
Aneurisma da Aorta Abdominal , Carbamilação de Proteínas , Humanos , Camundongos , Animais , Cromatografia Líquida , Camundongos Knockout para ApoE , Espectrometria de Massas em Tandem , Aorta , Angiotensina II , Aneurisma da Aorta Abdominal/induzido quimicamente , Dilatação Patológica , Aorta Abdominal
9.
Vascul Pharmacol ; 154: 107279, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38272196

RESUMO

The antibiotic doxycycline is known to inhibit inflammation and was therefore considered as a therapeutic to prevent abdominal aortic aneurysm (AAA) growth. Yet mitochondrial dysfunction is a key-characteristic of clinical AAA disease. We hypothesize that doxycycline impairs mitochondrial function in the aorta and aortic smooth muscle cells (SMCs). Doxycycline induced mitonuclear imbalance, reduced proliferation and diminished expression of typical contractile smooth muscle cell (SMC) proteins. To understand the underlying mechanism, we studied krüppel-like factor 4 (KLF4). The expression of this transcription factor was enhanced in SMCs after doxycycline treatment. Knockdown of KLF4, however, did not affect the doxycycline-induced SMC phenotypic changes. Then we used the bioenergetics drug elamipretide (SS-31). Doxycycline-induced loss of SMC contractility markers was not rescued, but mitochondrial genes and mitochondrial connectivity improved upon elamipretide. Thus while doxycycline is anti-inflammatory, it also induces mitochondrial dysfunction in aortic SMCs and causes SMC phenotypic switching, potentially contributing to aortic aneurysm pathology. The drug elamipretide helps mitigate the harmful effects of doxycycline on mitochondrial function in aortic SMC, and may be of interest for treatment of aneurysm diseases with pre-existing mitochondrial dysfunction.


Assuntos
Aneurisma da Aorta Abdominal , Doenças Mitocondriais , Humanos , Doxiciclina/efeitos adversos , Doxiciclina/metabolismo , Aorta/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/prevenção & controle , Aneurisma da Aorta Abdominal/genética , Miócitos de Músculo Liso/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia
10.
FASEB J ; 38(2): e23401, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38236196

RESUMO

Ferroptosis, a type of iron-catalyzed necrosis, is responsible for vascular smooth muscle cell (VSMC) death and serves as a potential therapeutic target for alleviating aortic aneurysm. Here, our study explored the underlying mechanism of ferroptosis affecting VSMC functions and the resultant formation of AAA using its inhibitor Ferrostatin-1 (Fer-1). Microarray-based gene expression profiling was employed to identify differentially expressed genes related to AAA and ferroptosis. An AAA model was established by angiotensin II (Ang II) induction in apolipoprotein E-knockout (ApoE-/- ) mice, followed by injection of Fer-1 and RSL-3 (ferroptosis inducer). Then, the role of Fer-1 and RSL-3 in the ferroptosis of VSMCs and AAA formation was analyzed in Ang II-induced mice. Primary mouse VSMCs were cultured in vitro and treated with Ang II, Fer-1, sh-SLC7A11, or sh-GPX4 to assess the effect of Fer-1 via the SLC7A11/GPX axis. Bioinformatics analysis revealed that GPX4 was involved in the fibrosis formation of AAA, and there was an interaction between SLC7A11 and GPX4. In vitro assays showed that Fer-1 alleviated Ang II-induced ferroptosis of VSMCs and retard the consequent AAA formation. The mechanism was associated with activation of the SLC7A11/GPX4 pathway. Silencing of SLC7A11 or GPX4 could inhibit the ameliorating effect of Fer-1 on the ferroptosis of VSMCs. In vivo animal studies further demonstrated that Fer-1 inhibited Ang II-induced ferroptosis and vessel wall structural abnormalities in AAA mouse through activation of the SLC7A11/GPX4 pathway. Fer-1 may prevent AAA formation through activation of the SLC7A11/GPX4 pathway.


Assuntos
Aneurisma da Aorta Abdominal , Ferroptose , Hormônios Peptídicos , Fenilenodiaminas , Animais , Camundongos , Músculo Liso Vascular , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/prevenção & controle , Cicloexilaminas/farmacologia , Angiotensina II/farmacologia
11.
Int Immunopharmacol ; 128: 111554, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262162

RESUMO

Macrophage is a vital factor in determining the fate of abdominal aortic aneurysm (AAA). The crosstalk between macrophage and other cells plays a crucial role in the development of aneurysm. Gasdermin D (GSDMD) is a vital executive protein of pyroptosis, which is a novel programmed cell death associated with inflammation. In this study, we identified aortic macrophage as the main expressing cell of GSDMD in AAA. Using Gsdmd-/-ApoE-/- mouse and AAV-F4/80-shGSDMD, we demonstrated the potential role of macrophage-derived GSDMD in AAA and aortic pyroptosis induced by Ang II in vivo. In vitro experiments showed that GSDMD promotes the pyroptosis of mouse primary peritoneal macrophages (MPMs), murine aortic vascular smooth muscle cells (MOVAS) and primary smooth muscle cells. Mechanistically, a mouse cytokine antibody array showed that Gsdmd-/- inhibited LPS + nigericin (LN)- induced secretion of multiple cytokines from MPMs. Furthermore, GSDMD is involved in the crosstalk between MPMs and MOVAS via cytokine secretion. This study provides a novel fundamental insight into macrophage-derived GSDMD in AAA and showed that GSDMD could be a promising therapeutic target for AAA.


Assuntos
Aneurisma da Aorta Abdominal , Piroptose , Animais , Camundongos , Angiotensina II/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Macrófagos Peritoneais/metabolismo , Miócitos de Músculo Liso/metabolismo
12.
Mol Cell Biochem ; 479(2): 233-242, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37027096

RESUMO

Abdominal aortic aneurysms (AAA) result from maladaptive remodeling of the vascular wall and reduces structural integrity. Angiotensin II (AngII) infusion has become a standard laboratory model for studying AAA initiation and progression. We determined the different vasoactive responses of various mouse arteries to Ang II. Ex vivo isometric tension analysis was conducted on 18-week-old male C57BL/6 mice (n = 4) brachiocephalic arteries (BC), iliac arteries (IL), and abdominal (AA) and thoracic aorta (TA). Arterial rings were mounted between organ hooks, gently stretched and an AngII dose response was performed. Rings were placed in 4% paraformaldehyde for immunohistochemistry analysis to quantify peptide expression of angiotensin type 1 (AT1R) and 2 receptors (AT2R) in the endothelium, media, and adventitia. Results from this study demonstrated vasoconstriction responses in IL were significantly higher at all AngII doses when compared to BC, and TA and AA responses (maximum constriction-IL: 68.64 ± 5.47% vs. BC: 1.96 ± 1.00%; TA: 3.13 ± 0.16% and AA: 2.75 ± 1.77%, p < 0.0001). Expression of AT1R was highest in the endothelium of IL (p < 0.05) and in the media and (p < 0.05) adventitia (p < 0.05) of AA. In contrast, AT2R expression was highest in endothelium (p < 0.05), media (p < 0.01, p < 0.05) and adventitia of TA. These results suggest that mouse arteries display different vasoactive responses to AngII, and the exaggerated response in IL arteries may play a role during AAA development.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma Aórtico , Hormônios Peptídicos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Artéria Ilíaca , Angiotensina II/farmacologia , Artérias , Aneurisma da Aorta Abdominal/induzido quimicamente , Angiotensina I
13.
J Thorac Cardiovasc Surg ; 167(5): e146-e158, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37951532

RESUMO

OBJECTIVE: Endothelial to mesenchymal transition may represent a key link between inflammatory stress and endothelial dysfunction seen in aortic aneurysm disease. Endothelial to mesenchymal transition is regulated by interleukin-1ß, and previous work has demonstrated an essential role of interleukin-1 signaling in experimental aortic aneurysm models. We hypothesize that endothelial to mesenchymal transition is present in murine aortic aneurysms, and loss of interleukin-1 signaling attenuates this process. METHODS: Murine aortic aneurysms were created in novel CDH5-Cre lineage tracking mice by treating the intact aorta with peri-adventitial elastase. Endothelial to mesenchymal transition transcription factors as well as endothelial and mesenchymal cell markers were analyzed via immunohistochemistry and immunofluorescence (n = 10/group). To determine the role of interleukin-1 signaling, endothelial-specific interleukin-1 receptor 1 knockout and wild-type mice (n = 10/group) were treated with elastase. Additionally, C57/BL6 mice were treated with the interleukin-1 receptor 1 antagonist Anakinra (n = 7) or vehicle (n = 8). RESULTS: Elastase treatment yielded greater aortic dilation compared with controls (elastase 97.0% ± 34.0%; control 5.3% ± 4.8%; P < .001). Genetic deletion of interleukin-1 receptor 1 attenuated aortic dilation (control 126.7% ± 38.7%; interleukin-1 receptor 1 knockout 35.2% ± 14.7%; P < .001), as did pharmacologic inhibition of interleukin-1 receptor 1 with Anakinra (vehicle 146.3% ± 30.1%; Anakinra 63.5% ± 23.3%; P < .001). Elastase treatment resulted in upregulation of endothelial to mesenchymal transition transcription factors (Snail, Slug, Twist, ZNF) and mesenchymal cell markers (S100, alpha smooth muscle actin) and loss of endothelial cell markers (vascular endothelial cadherin, endothelial nitric oxide synthase, von Willebrand factor). These changes were attenuated by interleukin-1 receptor 1 knockout and Anakinra treatment. CONCLUSIONS: Endothelial to mesenchymal transition occurs in aortic aneurysm disease and is attenuated by loss of interleukin-1 signaling. Endothelial dysfunction through endothelial to mesenchymal transition represents a new and novel pathway in understanding aortic aneurysm disease and may be a potential target for future treatment.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma Aórtico , Doenças da Aorta , Camundongos , Animais , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Camundongos Knockout , Receptores de Interleucina-1/genética , Interleucina-1beta , Elastase Pancreática , Fatores de Transcrição , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
14.
Physiol Genomics ; 56(2): 158-166, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047310

RESUMO

PANoptosis is an inflammatory programmed cell death (PCD) regulated by multifaceted PANoptosome complexes with major features of pyroptosis, apoptosis, and/or necroptosis that cannot be accounted for by any of these PCD pathways alone. The aim of this study was to investigate the role of PANoptosis on the occurrence and development of abdominal aortic aneurysm (AAA). Clinical samples of patients with AAA, angiotensin II (ANG II)-induced AAA mouse model, and ANG II-induced vascular smooth muscle cells (VSMCs) in vitro model were used for investigation on PANoptosis features. The expressions of ZBP1, AIM2, and other markers related to pyroptosis, apoptosis, and necroptosis elevated obviously in aortic wall tissues of patients with AAA, mice with AAA, and ANG II-treated VSMCs. ANG II treatment increased inflammatory cytokines levels in VSMCs. The stimulation of tumor necrosis factor-α (TNF-α) or interleukin-1ß (IL-1ß) alone promoted VSMCs death, and the effect of TNF-α combined with IL-1ß is more obvious. The expressions of ZBP1, AIM2, and related markers of pyroptosis, apoptosis, and necroptosis were increased by TNF-α and IL-1ß combined treatment. Inhibition of TNF-α and/or IL-1ß in mice with AAA improved the AAA pathology, reduced the loss of VSMCs, decreased the expression of ZBP1 and AIM2, and markers associated with pyroptosis, apoptosis, and necroptosis. PANoptosis features were observed in aortic wall tissues of patients with AAA, mice with AAA, and ANG II-treated VSMCs. The inhibition of TNF-α and IL-1ß can alleviate PANoptosis in mice with AAA, which provides a new strategy for the prevention and treatment of AAA.NEW & NOTEWORTHY Early detection, diagnosis, and treatment are very important to improve the quality of life and prognosis of patients with abdominal aortic aneurysm (AAA). Based on the findings of apoptosis, necroptosis, and pyroptosis (PANoptosis) in AAA clinical samples, this study further explored the molecular mechanism in vivo and in vitro. Specifically, inhibition of tumor necrosis factor-α and interleukin-1ß can reduce PANoptosis in vascular smooth muscle cell and thus alleviate the process of AAA.


Assuntos
Aneurisma da Aorta Abdominal , Fator de Necrose Tumoral alfa , Humanos , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Músculo Liso Vascular/metabolismo , Qualidade de Vida , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Miócitos de Músculo Liso/metabolismo , Angiotensina II/farmacologia , Modelos Animais de Doenças
15.
Food Funct ; 15(1): 139-157, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38050424

RESUMO

Pterostilbene (PTE), a natural stilbene found in blueberries and several varieties of grapes, has several pharmacological activities, including anti-inflammatory and antioxidative activities. However, its role in abdominal aortic aneurysm (AAA), which is a severe inflammatory vascular disease, remains incompletely understood. In this study, we investigated the protective effects of natural stilbene PTE on AAA formation and the underlying mechanism. Two AAA mouse models (Ang II-induced model and PPE-induced model) were used to examine the effect of PTE on AAA formation. We showed that PTE administration attenuated AAA formation in mice. Furthermore, we found that PTE significantly inhibited inflammatory responses in mouse aortas, as PTE suppressed macrophage pyroptosis and prevented macrophage infiltration in aortas, resulting in reduced expression of pro-inflammatory cytokines in aortas. We also observed similar results in LPS + ATP-treated Raw 264.7 cells (a macrophage cell line) and primary peritoneal macrophages in vitro. We showed that pretreatment with PTE restrained inflammatory responses in macrophages by inhibiting macrophage pyroptosis. Mechanistically, miR-146a-5p and TRAF6 interventions in vivo and in vitro were used to investigate the role of the miR-146a-5p/TRAF6 axis in the beneficial effect of PTE on macrophage pyroptosis and AAA. We found that PTE inhibited macrophage pyroptosis by miR-146a-5p-mediated suppression of downstream TRAF6 expression. Moreover, miR-146a-5p knockout or TRAF6 overexpression abrogated the protective effect of PTE on macrophage pyroptosis and AAA formation. These findings suggest that miR-146a-5p/TRAF6 axis activation by PTE protects against macrophage pyroptosis and AAA formation. PTE might be a promising agent for preventing inflammatory vascular diseases, including AAA.


Assuntos
Aneurisma da Aorta Abdominal , MicroRNAs , Estilbenos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Transdução de Sinais , Piroptose , Macrófagos , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/genética , Estilbenos/farmacologia
16.
Am J Hypertens ; 37(5): 349-357, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37982444

RESUMO

BACKGROUND: Abdominal aortic aneurysm (AAA) is an arterial disease characterized by dilatation of the aortic wall. It has been suggested that neutrophil counts and neutrophil elastase activity are associated with AAA. We investigated whether a neutrophil elastase (NE) inhibitor, sivelestat (Siv), had a protective effect against angiotensin II (AngII)-induced AAAs. METHODS: Male apolipoprotein E-deficient mice were assigned into three groups: Vehicle + saline, AngII + saline, and AngII + Siv. All mice were administered intraperitoneally with either Siv or vehicle twice daily after AngII infusion. RESULTS: In the 4-week AngII infusion study, plasma NE concentration (P = 0.041) and its activity (P = 0.011) were elevated by AngII. These increases were attenuated by Siv (concentration:P = 0.010, activity:P = 0.027). Further, plasma elastase activity was closely correlated with aortic width (R = 0.6976, P < 0.001). In the 1-week AngII infusion study, plasma and tissue elastase activity increased by AngII (plasma:P = 0.034, tissue:P < 0.001), but were reduced by Siv (plasma:P = 0.014, tissue:P = 0.024). AngII increased aortic width (P = 0.011) but was attenuated by co-administration of Siv (P = 0.022). Moreover, Siv decreased the incidence of AAAs (P = 0.009). Elastin fragmentation induced by AngII was reduced by Siv. Many inflammatory cells that were either CD68 or Gr-1 positive were observed in the AngII + saline group, whereas few inflammatory cells were accumulated in the AngII + Siv group. MMP-2 and MMP-9 were enhanced by AngII, but were reduced by Siv. In vitro, MMP-2 activity was induced by human NE (medium:P < 0.001, cells:P = 0.001), which was attenuated by co-incubation of Siv in medium (P < 0.001) and protein of human aortic smooth muscle cells (P = 0.001). CONCLUSIONS: Siv attenuated AngII-induced AAA through the inhibition of NE.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Glicina/análogos & derivados , Sulfonamidas , Humanos , Masculino , Camundongos , Animais , Angiotensina II/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Elastase de Leucócito/efeitos adversos , Elastase de Leucócito/metabolismo , Camundongos Knockout , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/prevenção & controle , Apolipoproteínas/efeitos adversos , Apolipoproteínas/metabolismo , Camundongos Endogâmicos C57BL , Aorta Abdominal/metabolismo , Modelos Animais de Doenças
17.
Ann Vasc Surg ; 101: 41-52, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38154490

RESUMO

BACKGROUND: Few methods can cocurrently mimic the pathological characteristics and nature history of human abdominal aortic aneurysms (AAAs), especially for the exist of the self-healing tendency of rodents. This study tested a novel method for the AAA rat model induced by retroperitoneal implantation of an osmotic pump system with lipopolysaccharide (LPS) based on the hypothesis that chronic inflammation of perivascular adipose tissue directly influenced the development and progression of AAAs. METHODS: 20 male Sprague-Dawley rats (10-month-old) fed with the Paigen diet were randomly divided into 4 groups: the blank group ×2, the sham group ×4, the empty capsule group ×4, and the LPS capsule group ×10. The LPS capsule group received implantations of the ALZET® osmotic pump capsule with LPS (3.6 µg/day) parallel to the abdominal aorta through a retroperitoneal approach. Two weeks later, 6 rats were randomly selected from the LPS capsule group to form the anti-inflammatory group and received implantations of another osmotic pump capsule with interleukin (IL)-10 (75 ng/day) through the same approach. The changes in abdominal aortic diameter were observed by ultrasound every 2 weeks, and samples were harvested for histopathologic and immunohistochemical analysis 6 weeks later. RESULTS: Within the 6 weeks after modeling, the LPS capsule group showed sustained and significant aortic dilatation (P < 0.01), while the anti-inflammatory group showed a rapid and obvious shrinkage 2 weeks after the IL-10 osmotic pump capsule implantation (P < 0.01). The LPS capsule group presented excellent pathological mimicking of human AAAs and showed severe medial degeneration with the least elastic content among the 5 groups at the end of the sixth week (P < 0.05). Notably, the anti-inflammatory group showed perfect medial preservation with the most elastic content (P < 0.05) and the highest elastin/collagen ratio (P < 0.01) at the end of the study. Matrix metalloproteinases (MMP) 2 and 9 and toll-like receptor 2 showed strong expression in the LPS capsule group at the end of the sixth week, which was significantly higher than that in the blank group and sham group. Interestingly, the anti-inflammatory group showed a slightly higher MMP9 expression than the LPS capsule group though there was no statistical difference between them. CONCLUSIONS: This novel method for the rat AAA model induced by retroperitoneal implantation of an osmotic pump capsule with LPS can concurrently mimic the histological characteristics and natural history of human AAAs. Further studies were needed to improve the osmotic pump system.


Assuntos
Aneurisma da Aorta Abdominal , Lipopolissacarídeos , Humanos , Ratos , Masculino , Animais , Lactente , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/metabolismo , Ratos Sprague-Dawley , Resultado do Tratamento , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aorta Abdominal/diagnóstico por imagem , Aorta Abdominal/cirurgia , Aorta Abdominal/metabolismo , Anti-Inflamatórios , Modelos Animais de Doenças
18.
Eur J Pharmacol ; 964: 176297, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38135264

RESUMO

BACKGROUND: Abdominal aortic aneurysms (AAA) are often associated with chronic inflammation and pose a significant risk to affected individuals. Colchicine, known for its anti-inflammatory properties, has shown promise in managing cardiovascular diseases. However, its specific role in the development of AAA remains poorly understood. METHODS AND RESULTS: In this study, we employed a short-term AAA model induced by angiotensin II (Ang II, 1000 ng/kg/min) and calcium chloride (CaCl2, 0.5 mol/l) in male ApoE-/- and C57BL/6 mice (8-12 weeks old) to investigate the effects of colchicine on AAA progression. Colchicine (0.4 mg/kg) was administered orally once daily, starting on the same day as AAA induction. After a 4-week duration, we observed a significant reduction in AAA diameter, degradation of elastic fibers, and expression of components related to the Nucleotide-binding oligomerization domain-like receptor family protein 3 (NLRP3) inflammasome in the vessel wall of colchicine-treated mice compared to the saline group. Mechanistically, colchicine (5 µm/l, for 24h) inhibited the expression of NLRP3 inflammasome components through the P38-ERK/MicroRNA145-toll-like receptor 4 (TLR4) pathway in RAW264.7 cells. CONCLUSIONS: Our study demonstrates the effectiveness of colchicine in suppressing NLRP3 inflammasome components, thereby delaying AAA progression in the Ang II and CaCl2-induced short-term model. These findings suggest the potential of colchicine as a pharmacological treatment option for AAA.


Assuntos
Aneurisma da Aorta Abdominal , Colchicina , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Moduladores de Tubulina , Animais , Masculino , Camundongos , Angiotensina II/farmacologia , Aorta Abdominal , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Apolipoproteínas E , Cloreto de Cálcio/farmacologia , Modelos Animais de Doenças , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Colchicina/farmacologia , Colchicina/uso terapêutico , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico
19.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958938

RESUMO

The rupture of an abdominal aortic aneurysm (AAA) causes about 200,000 deaths worldwide each year. However, there are currently no effective drug therapies to prevent AAA formation or, when present, to decrease progression and rupture, highlighting an urgent need for more research in this field. Increased vascular inflammation and enhanced apoptosis of vascular smooth muscle cells (VSMCs) are implicated in AAA formation. Here, we investigated whether hydralazine, which has anti-inflammatory and anti-apoptotic properties, inhibited AAA formation and pathological hallmarks. In cultured VSMCs, hydralazine (100 µM) inhibited the increase in inflammatory gene expression and apoptosis induced by acrolein and hydrogen peroxide, two oxidants that may play a role in AAA pathogenesis. The anti-apoptotic effect of hydralazine was associated with a decrease in caspase 8 gene expression. In a mouse model of AAA induced by subcutaneous angiotensin II infusion (1 µg/kg body weight/min) for 28 days in apolipoprotein E-deficient mice, hydralazine treatment (24 mg/kg/day) significantly decreased AAA incidence from 80% to 20% and suprarenal aortic diameter by 32% from 2.26 mm to 1.53 mm. Hydralazine treatment also significantly increased the survival rate from 60% to 100%. In conclusion, hydralazine inhibited AAA formation and rupture in a mouse model, which was associated with its anti-inflammatory and anti-apoptotic properties.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Animais , Camundongos , Angiotensina II/farmacologia , Anti-Inflamatórios/farmacologia , Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/metabolismo , Apolipoproteínas/farmacologia , Apolipoproteínas E , Apoptose , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout
20.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958985

RESUMO

Aortic wall inflammation, abnormal oxidative stress and progressive degradation of extracellular matrix proteins are the main characteristics of abdominal aortic aneurysms (AAAs). The nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome dysregulation plays a crucial role in aortic damage and disease progression. The first aim of this study was to examine the effect of baicalein (5,6,7-trihydroxy-2-phenyl-4H-1-benzopyran-4-one) on AAA formation in apolipoprotein E-deficient (ApoE-/-) mice. The second aim was to define whether baicalein attenuates aberrant vascular smooth muscle cell (VSMC) proliferation and inflammation in VSMC culture. For male ApoE-/- mice, a clinically relevant AAA model was randomly divided into four groups: saline infusion, baicalein intraperitoneal injection, Angiotensin II (Ang II) infusion and Ang II + baicalein. Twenty-seven days of treatment with baicalein markedly decreased Ang II-infused AAA incidence and aortic diameter, reduced collagen-fiber formation, preserved elastic structure and density and prevented smooth muscle cell contractile protein degradation. Baicalein inhibited rat VSMC proliferation and migration following the stimulation of VSMC cultures with Ang II while blocking the Ang II-inducible cell cycle progression from G0/G1 to the S phase in the synchronized cells. Cal-520 AM staining showed that baicalein decreased cellular calcium in Ang II-induced VSMCs; furthermore, a Western blot assay indicated that baicalein inhibited the expression of PCNA and significantly lowered levels of phospho-Akt and phospho-ERK, along with an increase in baicalein concentration in Ang II-induced VSMCs. Immunofluorescence staining showed that baicalein pretreatment reduced NF-κB nuclear translocation in Ang II-induced VSMCs and furthered the protein expressions of NLRP3 while ASC and caspase-1 were suppressed in a dose-dependent manner. Baicalein pretreatment upregulated Nrf2/HO-1 signaling in Ang II-induced VSMCs. Thus, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining showed that its reactive oxygen species (ROS) production decreased, along with the baicalein pretreatment. Our overall results indicate that baicalein could have therapeutic potential in preventing aneurysm development.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Masculino , Camundongos , Ratos , Animais , Angiotensina II/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Estresse Oxidativo , Inflamação/tratamento farmacológico , Inflamação/complicações , Apolipoproteínas E/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...