Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.595
Filtrar
1.
An Acad Bras Cienc ; 96(2): e20230671, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747789

RESUMO

Temperature affects the rate of biochemical and physiological processes in amphibians, influencing metamorphic traits. Temperature patterns, as those observed in latitudinal and altitudinal clines, may impose different challenges on amphibians depending on how species are geographically distributed. Moreover, species' response to environmental temperatures may also be phylogenetically constrained. Here, we explore the effects of acclimation to higher temperatures on tadpole survival, development, and growth, using a meta-analytical approach. We also evaluate whether the latitude and climatic variables at each collection site can explain differences in species' response to increasing temperature and whether these responses are phylogenetically conserved. Our results show that species that develop at relatively higher temperatures reach metamorphosis faster. Furthermore, absolute latitude at each collection site may partially explain heterogeneity in larval growth rate. Phylogenetic signal of traits in response to temperature indicates a non-random process in which related species resemble each other less than expected under Brownian motion evolution (BM) in all traits, except survival. The integration of studies in a meta-analytic framework allowed us to explore macroecological and macroevolutionary patterns and provided a better understanding of the effects of climate change on amphibians.


Assuntos
Anfíbios , Evolução Biológica , Larva , Temperatura , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Anfíbios/crescimento & desenvolvimento , Anfíbios/fisiologia , Anfíbios/classificação , Mudança Climática , Filogenia , Metamorfose Biológica/fisiologia , Aclimatação/fisiologia
2.
Ecol Lett ; 27(5): e14431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712705

RESUMO

There is a rich literature highlighting that pathogens are generally better adapted to infect local than novel hosts, and a separate seemingly contradictory literature indicating that novel pathogens pose the greatest threat to biodiversity and public health. Here, using Batrachochytrium dendrobatidis, the fungus associated with worldwide amphibian declines, we test the hypothesis that there is enough variance in "novel" (quantified by geographic and phylogenetic distance) host-pathogen outcomes to pose substantial risk of pathogen introductions despite local adaptation being common. Our continental-scale common garden experiment and global-scale meta-analysis demonstrate that local amphibian-fungal interactions result in higher pathogen prevalence, pathogen growth, and host mortality, but novel interactions led to variable consequences with especially virulent host-pathogen combinations still occurring. Thus, while most pathogen introductions are benign, enough variance exists in novel host-pathogen outcomes that moving organisms around the planet greatly increases the chance of pathogen introductions causing profound harm.


Assuntos
Batrachochytrium , Interações Hospedeiro-Patógeno , Animais , Batrachochytrium/genética , Batrachochytrium/fisiologia , Anuros/microbiologia , Anfíbios/microbiologia , Micoses/veterinária , Micoses/microbiologia , Adaptação Fisiológica , Filogenia
3.
Sci Rep ; 14(1): 10193, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702361

RESUMO

Amphibians are often recognized as bioindicators of healthy ecosystems. The persistence of amphibian populations in heavily contaminated environments provides an excellent opportunity to investigate rapid vertebrate adaptations to harmful contaminants. Using a combination of culture-based challenge assays and a skin permeability assay, we tested whether the skin-associated microbiota may confer adaptive tolerance to tropical amphibians in regions heavily contaminated with arsenic, thus supporting the adaptive microbiome principle and immune interactions of the amphibian mucus. At lower arsenic concentrations (1 and 5 mM As3+), we found a significantly higher number of bacterial isolates tolerant to arsenic from amphibians sampled at an arsenic contaminated region (TES) than from amphibians sampled at an arsenic free region (JN). Strikingly, none of the bacterial isolates from our arsenic free region tolerated high concentrations of arsenic. In our skin permeability experiment, where we tested whether a subset of arsenic-tolerant bacterial isolates could reduce skin permeability to arsenic, we found that isolates known to tolerate high concentrations of arsenic significantly reduced amphibian skin permeability to this metalloid. This pattern did not hold true for bacterial isolates with low arsenic tolerance. Our results describe a pattern of environmental selection of arsenic-tolerant skin bacteria capable of protecting amphibians from intoxication, which helps explain the persistence of amphibian populations in water bodies heavily contaminated with arsenic.


Assuntos
Anfíbios , Arsênio , Microbiota , Pele , Animais , Arsênio/metabolismo , Arsênio/toxicidade , Microbiota/efeitos dos fármacos , Pele/microbiologia , Pele/efeitos dos fármacos , Pele/metabolismo , Anfíbios/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Permeabilidade/efeitos dos fármacos
4.
Anat Histol Embryol ; 53(3): e13052, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38735035

RESUMO

One crucial component of the optical system is the ciliary body (CB). This body secretes the aqueous humour, which is essential to maintain the internal eye pressure as well as the clearness of the lens and cornea. The histological study was designed to provide the morphological differences of CB and iris in the anterior eye chambers of the following vertebrate classes: fish (grass carp), amphibians (Arabian toad), reptiles (semiaquatic turtle, fan-footed gecko, ocellated skink, Egyptian spiny-tailed lizard, Arabian horned viper), birds (common pigeon, common quail, common kestrel), and mammals (BALB/c mouse, rabbit, golden hamster, desert hedgehog, lesser Egyptian jerboa, Egyptian fruit bat). The results showed distinct morphological appearances of the CB and iris in each species, ranging from fish to mammals. The present comparative study concluded that the morphological structure of the CB and iris is the adaptation of species to either their lifestyle or survival in specific habitats.


Assuntos
Corpo Ciliar , Iris , Animais , Corpo Ciliar/anatomia & histologia , Iris/anatomia & histologia , Coelhos/anatomia & histologia , Camundongos/anatomia & histologia , Lagartos/anatomia & histologia , Vertebrados/anatomia & histologia , Répteis/anatomia & histologia , Peixes/anatomia & histologia , Aves/anatomia & histologia , Câmara Anterior/anatomia & histologia , Tartarugas/anatomia & histologia , Carpas/anatomia & histologia , Camundongos Endogâmicos BALB C , Anfíbios/anatomia & histologia , Cricetinae , Codorniz/anatomia & histologia , Ouriços/anatomia & histologia , Columbidae/anatomia & histologia , Mesocricetus/anatomia & histologia
5.
Plant Mol Biol ; 114(3): 39, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615069

RESUMO

Plants and microorganisms establish beneficial associations that can improve their development and growth. Recently, it has been demonstrated that bacteria isolated from the skin of amphibians can contribute to plant growth and defense. However, the molecular mechanisms involved in the beneficial effect for the host are still unclear. In this work, we explored whether bacteria isolated from three tropical frogs species can contribute to plant growth. After a wide screening, we identified three bacterial strains with high biostimulant potential, capable of modifying the root structure of Arabidopsis thaliana plants. In addition, applying individual bacterial cultures to Solanum lycopersicum plants induced an increase in their growth. To understand the effect that these microorganisms have over the host plant, we analysed the transcriptomic profile of A. thaliana during the interaction with the C32I bacterium, demonstrating that the presence of the bacteria elicits a transcriptional response associated to plant hormone biosynthesis. Our results show that amphibian skin bacteria can function as biostimulants to improve agricultural crops growth and development by modifying the plant transcriptomic responses.


Assuntos
Arabidopsis , Solanum lycopersicum , Animais , Transcriptoma , Arabidopsis/genética , Solanum lycopersicum/genética , Anfíbios , Bactérias , Hormônios
6.
Sci Total Environ ; 927: 172356, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614338

RESUMO

Roads represent one of the main sources of wildlife mortality, population decline, and isolation, especially for low-vagility animal groups. It is still not clearly understood how wildlife populations respond to these negative effects over space and time. Most studies on wildlife road mortality do not consider the spatial and temporal components simultaneously, or the imperfect roadkill detection, both of which could lead to inaccurate assumptions and unreliable mitigation actions. In this study, we applied a multi-season occupancy model to a 14-year amphibian mortality dataset collected along 120 km of roads, combined with freely available landscape and remote sensing metrics, to identify the spatiotemporal patterns of amphibian roadkill in a Mediterranean landscape in Southern Portugal. Our models showed an explicit general decrease in amphibian roadkill. The Iberian painted frog (Discoglossus galganoi) experienced roadkill declines over time of ∼70 %, while the spiny common toad (Bufo spinosus) and the fire salamander (Salamandra salamandra) had a loss of nearly 50 %, and the Southern marbled newt (Triturus pygmaeus) had 40 %. Despite the decreasing trend in roadkill, spatial patterns seem to be rather stable from year to year. Multi-season occupancy models, when combined with relevant landscape and remote sensing predictors, as well as long-term monitoring data, can describe dynamic changes in roadkill over space and time. These patterns are valuable tools for understanding roadkill patterns and drivers in Mediterranean landscapes, enabling the differentiation of road sections with varying roadkill over time. Ultimately, this information may contribute to the development of effective conservation measures.


Assuntos
Dinâmica Populacional , Animais , Portugal , Anfíbios/fisiologia , Monitoramento Ambiental/métodos , Análise Espaço-Temporal , Conservação dos Recursos Naturais , Meios de Transporte
7.
Proc Biol Sci ; 291(2021): 20232658, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628130

RESUMO

North American salamanders are threatened by intercontinental spread of chytridiomycosis, a deadly disease caused by the fungal pathogen Batrachochytrium salamandrivorans (Bsal). To predict potential dispersal of Bsal spores to salamander habitats, we evaluated the capacity of soil microbial communities to resist invasion. We determined the degree of habitat invasibility using soils from five locations throughout the Great Smoky Mountains National Park, a region with a high abundance of susceptible hosts. Our experimental design consisted of replicate soil microcosms exposed to different propagule pressures of the non-native pathogen, Bsal, and an introduced but endemic pathogen, B. dendrobatidis (Bd). To compare growth and competitive interactions, we used quantitative PCR, live/dead cell viability assays, and full-length 16S rRNA sequencing. We found that soil microcosms with intact bacterial communities inhibited both Bsal and Bd growth, but inhibitory capacity diminished with increased propagule pressure. Bsal showed greater persistence than Bd. Linear discriminant analysis (LDA) identified the family Burkolderiaceae as increasing in relative abundance with the decline of both pathogens. Although our findings provide evidence of environmental filtering in soils, such barriers weakened in response to pathogen type and propagule pressure, showing that habitats vary their invasibility based on properties of their local microbial communities.


Assuntos
Quitridiomicetos , Ecossistema , Animais , RNA Ribossômico 16S , Quitridiomicetos/fisiologia , Anfíbios/microbiologia , Urodelos , Solo , América do Norte
8.
Am Nat ; 203(5): 535-550, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38635360

RESUMO

AbstractRecoveries of populations that have suffered severe disease-induced declines are being observed across disparate taxa. Yet we lack theoretical understanding of the drivers and dynamics of recovery in host populations and communities impacted by infectious disease. Motivated by disease-induced declines and nascent recoveries in amphibians, we developed a model to ask the following question: How does the rapid evolution of different host defense strategies affect the transient recovery trajectories of hosts following pathogen invasion and disease-induced declines? We found that while host life history is predictably a major driver of variability in population recovery trajectories (including declines and recoveries), populations that use different host defense strategies (i.e., tolerance, avoidance resistance, and intensity-reduction resistance) experience notably different recoveries. In single-species host populations, populations evolving tolerance recovered on average four times slower than populations evolving resistance. Moreover, while populations using avoidance resistance strategies had the fastest potential recovery rates, these populations could get trapped in long transient states at low abundance prior to recovery. In contrast, the recovery of populations evolving intensity-reduction resistance strategies were more consistent across ecological contexts. Overall, host defense strategies strongly affect the transient dynamics of population recovery and may affect the ultimate fate of real populations recovering from disease-induced declines.


Assuntos
Quitridiomicetos , Micoses , Animais , Anfíbios
9.
Aquat Toxicol ; 270: 106907, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564994

RESUMO

Poly- and perfluoroalkyl substances (PFASs) are commonly used in various industries and everyday products, including clothing, electronics, furniture, paints, and many others. PFASs are primarily found in aquatic environments, but also present in soil, air and plants, making them one of the most important and dangerous pollutants of the natural environment. PFASs bioaccumulate in living organisms and are especially dangerous to aquatic and semi-aquatic animals. As endocrine disruptors, PFASs affect many internal organs and systems, including reproductive, endocrine, nervous, cardiovascular, and immune systems. This manuscript represents the first comprehensive review exclusively focusing on PFASs in amphibians and reptiles. Both groups of animals are highly vulnerable to PFASs in the natural habitats. Amphibians and reptiles, renowned for their sensitivity to environmental changes, are often used as crucial bioindicators to monitor ecosystem health and environmental pollution levels. Furthermore, the decline in amphibian and reptile populations worldwide may be related to increasing environmental pollution. Therefore, studies investigating the exposure of amphibians and reptiles to PFASs, as well as their impacts on these organisms are essential in modern toxicology. Summarizing the current knowledge on PFASs in amphibians and reptiles in a single manuscript will facilitate the exploration of new research topics in this field. Such a comprehensive review will aid researchers in understanding the implications of PFASs exposure on amphibians and reptiles, guiding future investigations to mitigate their adverse effects of these vital components of ecosystems.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Animais , Ecossistema , Poluentes Químicos da Água/toxicidade , Anfíbios/fisiologia , Répteis/fisiologia , Fluorocarbonos/análise
10.
Proc Natl Acad Sci U S A ; 121(20): e2320674121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38684007

RESUMO

Identifying and protecting hotspots of endemism and species richness is crucial for mitigating the global biodiversity crisis. However, our understanding of spatial diversity patterns is far from complete, which severely limits our ability to conserve biodiversity hotspots. Here, we report a comprehensive analysis of amphibian species diversity in China, one of the most species-rich countries on Earth. Our study combines 20 y of field surveys with new molecular analyses of 521 described species and also identifies 100 potential cryptic species. We identify 10 hotspots of amphibian diversity in China, each with exceptional species richness and endemism and with exceptional phylogenetic diversity and phylogenetic endemism (based on a new time-calibrated, species-level phylogeny for Chinese amphibians). These 10 hotspots encompass 59.6% of China's described amphibian species, 49.0% of cryptic species, and 55.6% of species endemic to China. Only four of these 10 hotspots correspond to previously recognized biodiversity hotspots. The six new hotspots include the Nanling Mountains and other mountain ranges in South China. Among the 186 species in the six new hotspots, only 9.7% are well covered by protected areas and most (88.2%) are exposed to high human impacts. Five of the six new hotspots are under very high human pressure and are in urgent need of protection. We also find that patterns of richness in cryptic species are significantly related to those in described species but are not identical.


Assuntos
Anfíbios , Biodiversidade , Filogenia , Animais , Anfíbios/classificação , China , Conservação dos Recursos Naturais
11.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230323, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583467

RESUMO

Monitoring the extent to which invasive alien species (IAS) negatively impact the environment is crucial for understanding and mitigating biological invasions. Indeed, such information is vital for achieving Target 6 of the Kunming-Montreal Global Biodiversity Framework. However, to-date indicators for tracking the environmental impacts of IAS have been either lacking or insufficient. Capitalizing on advances in data availability and impact assessment protocols, we developed environmental impact indicators to track realized and potential impacts of IAS. We also developed an information status indicator to assess the adequacy of the data underlying the impact indicators. We used data on 75 naturalized amphibians from 82 countries to demonstrate the indicators at a global scale. The information status indicator shows variation in the reliability of the data and highlights areas where absence of impact should be interpreted with caution. Impact indicators show that growth in potential impacts are dominated by predatory species, while potential impacts from both predation and disease transmission are distributed worldwide. Using open access data, the indicators are reproducible and adaptable across scales and taxa and can be used to assess global trends and distributions of IAS, assisting authorities in prioritizing control efforts and identifying areas at risk of future invasions. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Biodiversidade , Espécies Introduzidas , Animais , Reprodutibilidade dos Testes , Anfíbios , Ecossistema
12.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230012, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583476

RESUMO

The Atlantic meridional overturning circulation (AMOC) has caused significant climate changes over the past 90 000 years. Prior work has hypothesized that these millennial-scale climate variations effected past and contemporary biodiversity, but the effects are understudied. Moreover, few biogeographic models have accounted for uncertainties in palaeoclimatic simulations of millennial-scale variability. We examine whether refuges from millennial-scale climate oscillations have left detectable legacies in the patterns of contemporary species richness in eastern North America. We analyse 13 palaeoclimate estimates from climate simulations and proxy-based reconstructions as predictors for the contemporary richness of amphibians, passerine birds, mammals, reptiles and trees. Results suggest that past climate changes owing to AMOC variations have left weak but detectable imprints on the contemporary richness of mammals and trees. High temperature stability, precipitation increase, and an apparent climate fulcrum in the southeastern United States across millennial-scale climate oscillations aligns with high biodiversity in the region. These findings support the hypothesis that the southeastern United States may have acted as a biodiversity refuge. However, for some taxa, the strength and direction of palaeoclimate-richness relationships varies among different palaeoclimate estimates, pointing to the importance of palaeoclimatic ensembles and the need for caution when basing biogeographic interpretations on individual palaeoclimate simulations. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Biodiversidade , Mamíferos , Animais , Árvores , Anfíbios , América do Norte , Mudança Climática
13.
Zoolog Sci ; 41(2): 177-184, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587912

RESUMO

Knowledge of the phylogeographic history of organisms is valuable for understanding their evolutionary processes. To the best of our knowledge, the phylogeographic structure of Hokuriku salamander, Hynobius takedai, an endangered species, remains unclear. This study aimed to elucidate the phylogeographic history of H. takedai, which is expected to be strongly influenced by paleogeographic events. Phylogenetic analysis based on partial sequences of the mitochondrial DNA cytochrome b gene confirmed the genetic independence of H. takedai, and the divergence time with closely related species was estimated to be from the Late Pliocene to the Early Pleistocene. In the phylogenetic tree, two clades were identified within H. takedai, and their haplotypes were found in samples collected from the west and east of the distribution range. These intraspecific divergences were strongly influenced by geohistorical subdivisions of the current major distribution areas in the Middle Pleistocene. One clade was further subdivided and its formation may have been influenced by sea level changes in the Late Pleistocene.


Assuntos
Anfíbios , Urodelos , Animais , Urodelos/genética , Filogenia , Filogeografia , DNA Mitocondrial/genética , Variação Genética , Análise de Sequência de DNA
14.
Sci Rep ; 14(1): 9950, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688941

RESUMO

The degree to which burrowing, soil-dwelling caecilian amphibians spend time on the surface is little studied, and circadian rhythm has not been investigated in multiple species of this order or by manipulating light-dark cycles. We studied surface-activity rhythm of the Indian caecilians Ichthyophis cf. longicephalus and Uraeotyphlus cf. oxyurus (Ichthyophiidae) and Gegeneophis tejaswini (Grandisoniidae), under LD, DD and DL cycles. We examined daily surface activity and the role of light-dark cycles as a zeitgeber. All three species were strictly nocturnal and G. tejaswini displayed the least surface activity. Four out of thirteen individuals, two I. cf. longicephalus, one G. tejaswini and one U. cf. oxyurus, displayed a more or less distinct surface-activity rhythm in all three cycles, and for the nine other animals the activity patterns were not evident. An approximately 24 h free-run period was observed in the three species. When the light-dark cycle was inverted, surface activity in the three species shifted to the dark phase. The findings of this study suggest that caecilians have a weak circadian surface-activity rhythm, and that the absence of light can act as a prominent zeitgeber in these burrowing, limbless amphibians.


Assuntos
Anfíbios , Ritmo Circadiano , Solo , Animais , Ritmo Circadiano/fisiologia , Anfíbios/fisiologia , Solo/química , Fotoperíodo , Comportamento Animal/fisiologia
15.
Biochem Biophys Res Commun ; 712-713: 149913, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640738

RESUMO

Innate immunity of invertebrates offers potent antimicrobial peptides (AMPs) against drug-resistant infections. To identify new worm ß-hairpin AMPs, we explored the sequence diversity of proteins with a BRICHOS domain, which comprises worm AMP precursors. Strikingly, we discovered new BRICHOS AMPs not in worms, but in caecilians, the least studied clade of vertebrates. Two precursor proteins from Microcaecilia unicolor and Rhinatrema bivittatum resemble SP-C lung surfactants and bear worm AMP-like peptides at C-termini. The analysis of M. unicolor tissue transcriptomes shows that the AMP precursor is highly expressed in the lung along with regular SP-C, suggesting a different, protective function. The peptides form right-twisted ß-hairpins, change conformation upon lipid binding, and rapidly disrupt bacterial membranes. Both peptides exhibit broad-spectrum activity against multidrug-resistant ESKAPE pathogens with 1-4 µM MICs and remarkably low toxicity, giving 40-70-fold selectivity towards bacteria. These BRICHOS AMPs, previously unseen in vertebrates, reveal a novel lung innate immunity mechanism and offer a promising antibiotics template.


Assuntos
Peptídeos Antimicrobianos , Pulmão , Animais , Pulmão/imunologia , Pulmão/metabolismo , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Sequência de Aminoácidos , Imunidade Inata , Testes de Sensibilidade Microbiana , Anfíbios/imunologia , Anfíbios/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/imunologia , Antibacterianos/farmacologia , Antibacterianos/química
16.
Sci Rep ; 14(1): 5151, 2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431740

RESUMO

Chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) is pushing amphibians towards extinction. Whilst mitigation methods were suggested a decade ago, we lack field trials testing their efficacy. We used the agrochemical fungicide, tebuconazole, to treat Bd infected breeding waterbodies of an endangered species that is highly susceptible to the fungus. Just two applications of tebuconazole led to a significant reduction in infection loads in the vast majority of sites, and at six sites the disinfection remained one/two-years post-application. Tebuconazole values drastically decreased in the waterbodies within a week after application, with no significant effects on their hydrochemical and hydrobiological characteristics. Although the use of chemicals in natural populations is undesirable, the growing existential threat to amphibians all over the world indicates that effective interventions in selected populations of endangered species are urgently needed.


Assuntos
Quitridiomicetos , Micoses , Animais , Desinfecção , Melhoramento Vegetal , Anfíbios/microbiologia , Micoses/veterinária , Micoses/microbiologia , Espécies em Perigo de Extinção , Batrachochytrium
17.
Elife ; 122024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497531

RESUMO

Gasdermins oligomerize to form pores in the cell membrane, causing regulated lytic cell death called pyroptosis. Mammals encode five gasdermins that can trigger pyroptosis: GSDMA, B, C, D, and E. Caspase and granzyme proteases cleave the linker regions of and activate GSDMB, C, D, and E, but no endogenous activation pathways are yet known for GSDMA. Here, we perform a comprehensive evolutionary analysis of the gasdermin family. A gene duplication of GSDMA in the common ancestor of caecilian amphibians, reptiles, and birds gave rise to GSDMA-D in mammals. Uniquely in our tree, amphibian, reptile, and bird GSDMA group in a separate clade than mammal GSDMA. Remarkably, GSDMA in numerous bird species contain caspase-1 cleavage sites like YVAD or FASD in the linker. We show that GSDMA from birds, amphibians, and reptiles are all cleaved by caspase-1. Thus, GSDMA was originally cleaved by the host-encoded protease caspase-1. In mammals the caspase-1 cleavage site in GSDMA is disrupted; instead, a new protein, GSDMD, is the target of caspase-1. Mammal caspase-1 uses exosite interactions with the GSDMD C-terminal domain to confer the specificity of this interaction, whereas we show that bird caspase-1 uses a stereotypical tetrapeptide sequence to confer specificity for bird GSDMA. Our results reveal an evolutionarily stable association between caspase-1 and the gasdermin family, albeit a shifting one. Caspase-1 repeatedly changes its target gasdermin over evolutionary time at speciation junctures, initially cleaving GSDME in fish, then GSDMA in amphibians/reptiles/birds, and finally GSDMD in mammals.


Assuntos
Gasderminas , Inflamassomos , Animais , Caspase 1/metabolismo , Caspases/metabolismo , Inflamassomos/metabolismo , Anfíbios , Répteis , Aves
18.
Nat Commun ; 15(1): 2328, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499530

RESUMO

Cornified skin appendages, such as hair and nails, are major evolutionary innovations of terrestrial vertebrates. Human hair and nails consist largely of special intermediate filament proteins, known as hair keratins, which are expressed under the control of the transcription factor Hoxc13. Here, we show that the cornified claws of Xenopus frogs contain homologs of hair keratins and the genes encoding these keratins are flanked by promoters in which binding sites of Hoxc13 are conserved. Furthermore, these keratins and Hoxc13 are co-expressed in the claw-forming epithelium of frog toe tips. Upon deletion of hoxc13, the expression of hair keratin homologs is abolished and the development of cornified claws is abrogated in X. tropicalis. These results indicate that Hoxc13-dependent expression of hair keratin homologs evolved already in stem tetrapods, presumably as a mechanism for protecting toe tips, and that this ancestral genetic program was coopted to the growth of hair in mammals.


Assuntos
Queratinas Específicas do Cabelo , Fatores de Transcrição , Animais , Humanos , Fatores de Transcrição/metabolismo , Pele/metabolismo , Cabelo/metabolismo , Queratinas/genética , Queratinas/metabolismo , Anfíbios , Mamíferos/metabolismo
19.
Curr Top Dev Biol ; 157: 1-42, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556456

RESUMO

This article is about how the famous organizer experiment has been perceived since it was first published in 1924. The experiment involves the production of a secondary embryo under the influence of a graft of a dorsal lip from an amphibian gastrula to a host embryo. The early experiments of Spemann and his school gave rise to a view that the whole early amphibian embryo was "indifferent" in terms of determination, except for a special region called "the organizer". This was viewed mainly as an agent of neural induction, also having the ability to generate an anteroposterior body pattern. Early biochemical efforts to isolate a factor emitted by the organizer were not successful but culminated in the definition of "neuralizing (N)" and "mesodermalizing (M)" factors present in a wide variety of animal tissues. By the 1950s this view became crystallized as a "two gradient" model involving the N and M factors, which explained the anteroposterior patterning effect. In the 1970s, the phenomenon of mesoderm induction was characterized as a process occurring before the commencement of gastrulation. Reinvestigation of the organizer effect using lineage labels gave rise to a more precise definition of the sequence of events. Since the 1980s, modern research using the tools of molecular biology, combined with microsurgery, has explained most of the processes involved. The organizer graft should now be seen as an experiment which involves multiple interactions: dorsoventral polarization following fertilization, mesoderm induction, the dorsalizing signal responsible for neuralization and dorsoventral patterning of the mesoderm, and additional factors responsible for anteroposterior patterning.


Assuntos
Desenvolvimento Embrionário , Mesoderma , Animais , Anfíbios , Biologia do Desenvolvimento , Padronização Corporal , Indução Embrionária , Organizadores Embrionários , Regulação da Expressão Gênica no Desenvolvimento
20.
Curr Biol ; 34(7): 1469-1478.e6, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38490202

RESUMO

The global panzootic lineage (GPL) of the pathogenic fungus Batrachochytrium dendrobatidis (Bd) has caused severe amphibian population declines, yet the drivers underlying the high frequency of GPL in regions of amphibian decline are unclear. Using publicly available Bd genome sequences, we identified multiple non-GPL Bd isolates that contain a circular Rep-encoding single-stranded (CRESS)-like DNA virus, which we named Bd DNA virus 1 (BdDV-1). We further sequenced and constructed genome assemblies with long read sequences to find that the virus is integrated into the nuclear genome in some strains. Attempts to cure virus-positive isolates were unsuccessful; however, phenotypic differences between naturally virus-positive and virus-negative Bd isolates suggested that BdDV-1 decreases the growth of its host in vitro but increases the virulence of its host in vivo. BdDV-1 is the first-described CRESS DNA mycovirus of zoosporic true fungi, with a distribution inversely associated with the emergence of the panzootic lineage.


Assuntos
Quitridiomicetos , Micoses , Animais , Virulência/genética , Quitridiomicetos/genética , Micoses/microbiologia , Anfíbios/microbiologia , Genótipo , Vírus de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...