Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Birth Defects Res ; 116(1): e2292, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38116840

RESUMO

BACKGROUND: Prenatal alcohol exposure during gastrulation (embryonic day [E] 7 in mice, ~3rd week of human pregnancy) impairs eye, facial, and cortical development, recapitulating birth defects characteristic of Fetal Alcohol Syndrome (FAS). However, it is not known whether the prevalence or severity of craniofacial features associated with FAS is affected by biological sex. METHODS: The current study administered either alcohol (2.9 g/kg, two i.p. doses, 4 hr apart) or vehicle to pregnant C57BL/6J females on E7, prior to gonadal sex differentiation, and assessed fetal morphology at E17. RESULTS: Whereas sex did not affect fetal size in controls, alcohol-exposed females were smaller than both control females and alcohol-treated males. Alcohol exposure increased the incidence of eye defects to a similar degree in males and females. Together, these data suggest that females might be more sensitive to the general developmental effects of alcohol, but not effects specific to the craniofacies. Whole transcriptomic analysis of untreated E7 embryos found 214 differentially expressed genes in females vs. males, including those in pathways related to cilia and mitochondria, histone demethylase activity, and pluripotency. CONCLUSION: Gastrulation-stage alcohol induces craniofacial malformations in male and female mouse fetuses at similar rates and severity, though growth deficits are more prevalent females. These findings support the investigation of biological sex as a contributing factor in prenatal alcohol studies.


Assuntos
Anormalidades Craniofaciais , Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Masculino , Gravidez , Animais , Camundongos , Gastrulação , Camundongos Endogâmicos C57BL , Efeitos Tardios da Exposição Pré-Natal/etiologia , Etanol/efeitos adversos , Transtornos do Espectro Alcoólico Fetal/genética , Anormalidades Craniofaciais/induzido quimicamente
2.
PeerJ ; 10: e14338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36444384

RESUMO

Background and Objective: A key pathway controlling skeletal development is fibroblast growth factor (FGF) and FGF receptor (FGFR) signaling. Major regulatory functions of FGF signaling are chondrogenesis, endochondral and intramembranous bone development. In this study we focus on fgfr2, as mutations in this gene are found in patients with craniofacial malformations. The high degree of conservation between FGF signaling of human and zebrafish (Danio rerio) tempted us to investigate effects of the mutated fgfr2 sa10729 allele in zebrafish on cartilage and bone formation. Methods: We stained cartilage and bone in 5 days post fertilization (dpf) zebrafish larvae and compared mutants with wildtypes. We also determined the expression of genes related to these processes. We further investigated whether pharmacological blocking of all FGFRs with the inhibitor BGJ398, during 0-12 and 24-36 h post fertilization (hpf), affected craniofacial structure development at 5 dpf. Results: We found only subtle differences in craniofacial morphology between wildtypes and mutants, likely because of receptor redundancy. After exposure to BGJ398, we found dose-dependent cartilage and bone malformations, with more severe defects in fish exposed during 0-12 hpf. These results suggest impairment of cranial neural crest cell survival and/or differentiation by FGFR inhibition. Compensatory reactions by upregulation of fgfr1a, fgfr1b, fgfr4, sp7 and dlx2a were found in the 0-12 hpf group, while in the 24-36 hpf group only upregulation of fgf3 was found together with downregulation of fgfr1a and fgfr2. Conclusions: Pharmacological targeting of FGFR1-4 kinase signaling causes severe craniofacial malformations, whereas abrogation of FGFR2 kinase signaling alone does not induce craniofacial skeletal abnormalities. These findings enhance our understanding of the role of FGFRs in the etiology of craniofacial malformations.


Assuntos
Anormalidades Craniofaciais , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Larva/genética , Compostos de Fenilureia , Fatores de Crescimento de Fibroblastos/genética , Anormalidades Craniofaciais/induzido quimicamente , Proteínas de Peixe-Zebra/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos
3.
Arch Toxicol ; 96(10): 2815-2824, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35748892

RESUMO

Craniofacial defects are one of the most frequent abnormalities at birth, but their experimental evaluation in animal models requires complex procedures. The aim of the present work is the comparison of different methodologies to identify dose- and stage-related craniofacial malformations in Xenopus laevis assay (R-FETAX, where the full cartilage evaluation, including flat mount technique, is the gold standard for skeletal defect detection). Different methods (external morphological evaluation of fresh samples, deglutition test, whole mount cartilage evaluation and Meckel-palatoquadrate angle measurements) were applied. Triadimefon (FON) was selected as the causative molecule as it is known to induce craniofacial defects in different animal models, including the amphibian X. laevis.FON exposure (0-31.25 µM) was scheduled to cover the whole 6-day test (from gastrula to free swimming tadpole stage) or each crucial developmental phases: gastrula, neurula, early morphogenesis, late morphogenesis, tadpole. Dose-dependent effects (fusions among craniofacial cartilages) were evident for groups exposed during the morphogenetic periods (neurula, early morphogenesis, late morphogenesis); gastrula was insensitive to the tested concentrations, tadpole group showed malformations only at 31.25 µM. The overall NOAEL was set at 3.9 µM. Results were evaluated applying benchmark dose (BMD) approach. The comparison of relative potencies from different methods showed deglutition as the only assay comparable with the gold standard (cartilage full evaluation).In conclusion, we suggest deglutition test as a reliable method for a rapid screening of craniofacial abnormalities in the alternative model X. laevis. This is a rapid, inexpensive and vital test allowing to preserve samples for the application of further morphological or molecular investigations.


Assuntos
Anormalidades Craniofaciais , Triazóis , Animais , Anormalidades Craniofaciais/induzido quimicamente , Morfogênese , Xenopus laevis
4.
Artigo em Inglês | MEDLINE | ID: mdl-35682521

RESUMO

An idea of therapy intensification in order to make anticancer treatment more effective is still being investigated. The study aimed to estimate the impact of the chemotherapy dose levels and treatment duration on the risk for dental development disturbance. The clinical examination and OPG analysis were carried out in 37 cancer survivors and germ agenesis, microdontia, size reduction, taurodontism, root and enamel abnormalities were identified. An analysis of anticancer treatment was carried out separately for vincristine (VCR), doxorubicin (DXR), cyclophosphamide (CP), etoposide (VP-16), carboplatin (CBDCA) and actinomycin D (ACTD) recipients in terms of treatment duration and drug doses administered. Individuals aged between three years and ten months, and seven years and four months, at diagnosis presented with no severe dental abnormalities, regardless of treatment duration and increasing cytotoxic drug doses. The largest number of abnormalities per one person was noted in the survivors treated with the highest single doses of VCR, DXR, CP and ACTD. No similar observation was made in the cases of cumulative and weekly doses analyzed. Moreover, there were no significant differences between the mean number of abnormalities across all the drug groups.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Anormalidades Craniofaciais , Doxorrubicina , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carboplatina , Criança , Anormalidades Craniofaciais/induzido quimicamente , Ciclofosfamida/efeitos adversos , Doxorrubicina/efeitos adversos , Etoposídeo/efeitos adversos , Humanos , Lactente , Vincristina/efeitos adversos
5.
Artigo em Inglês | MEDLINE | ID: mdl-34655806

RESUMO

Extrinsic estradiol-17ß (E2) is an environmental hormone. Female fish exposure to waterborne E2 might affect the development of craniofacial cartilage of its offspring. The present study investigates the effects of maternal E2 on larval craniofacial cartilage development by administering oral feed containing E2 (F-E2) to female zebrafish, and examines whether the swimming behavior and their stress coping style are influenced by maternal E2. The results showed that E2 contents responded to dosage and time in male fish after being fed with a diet containing E2. In addition, the E2 contents in female ovaries showed a significant increase after 250 mg of E2/kg treatment for 14 d. On the other hand, the fecundity rate of F-E2 group was lower around 2 folds than FC (female fed 0 mg of E2/kg) group. Craniofacial chondrogenesis on 72 hpf (hours of post fertilization) of F-E2 larvae were abnormalities, and a recovery to a normal developmental pattern was observed at the 96 hpf stage. The swimming speed was slower for F-E2 larvae compared to the FC larvae; and the F-E2 juvenile seems to be less responsive to cortisol (LRC) after cold stress. According to the results, we suggested that F-E2 larvae might have worse environmental adaptability than FC larvae.


Assuntos
Comportamento Animal/efeitos dos fármacos , Estradiol/farmacologia , Exposição Materna , Estresse Fisiológico/efeitos dos fármacos , Natação , Animais , Condrogênese/efeitos dos fármacos , Temperatura Baixa , Anormalidades Craniofaciais/induzido quimicamente , Dieta , Feminino , Larva/efeitos dos fármacos , Peixe-Zebra
6.
Dev Biol ; 481: 14-29, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543654

RESUMO

Environmental teratogens such as smoking are known risk factors for developmental disorders such as cleft palate. While smoking rates have declined, a new type of smoking, called vaping is on the rise. Vaping is the use of e-cigarettes to vaporize and inhale an e-liquid containing nicotine and food-like flavors. There is the potential that, like smoking, vaping could also pose a danger to the developing human. Rather than waiting for epidemiological and mammalian studies, we have turned to an aquatic developmental model, Xenopus laevis, to more quickly assess whether e-liquids contain teratogens that could lead to craniofacial malformations. Xenopus, like zebrafish, has the benefit of being a well-established developmental model and has also been effective in predicting whether a chemical could be a teratogen. We have determined that embryonic exposure to dessert flavored e-liquids can cause craniofacial abnormalities, including an orofacial cleft in Xenopus. To better understand the underlying mechanisms contributing to these defects, transcriptomic analysis of the facial tissues of embryos exposed to a representative dessert flavored e-liquid vapor extract was performed. Analysis of differentially expressed genes in these embryos revealed several genes associated with retinoic acid metabolism or the signaling pathway. Consistently, retinoic acid receptor inhibition phenocopied the craniofacial defects as those embryos exposed to the vapor extract of the e-liquid. Such malformations also correlated with a group of common differentially expressed genes, two of which are associated with midface birth defects in humans. Further, e-liquid exposure sensitized embryos to forming craniofacial malformations when they already had depressed retinoic acid signaling. Moreover, 13-cis-retinoic acid treatment could significantly reduce the e-liquid induced malformation in the midface. Such results suggest the possibility of an interaction between retinoic acid signaling and e-liquid exposure. One of the most popular and concentrated flavoring chemicals in dessert flavored e-liquids is vanillin. Xenopus embryos exposed to this chemical closely resembled embryos exposed to dessert-like e-liquids and a retinoic acid receptor antagonist. In summary, we determined that e-liquid chemicals, in particular vanillin, can cause craniofacial defects potentially by dysregulating retinoic acid signaling. This work warrants the evaluation of vanillin and other such flavoring additives in e-liquids on mammalian development.


Assuntos
Benzaldeídos/administração & dosagem , Anormalidades Craniofaciais , Embrião não Mamífero/embriologia , Aromatizantes/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Produtos do Tabaco/toxicidade , Tretinoína/metabolismo , Animais , Benzaldeídos/farmacologia , Anormalidades Craniofaciais/induzido quimicamente , Anormalidades Craniofaciais/embriologia , Embrião não Mamífero/patologia , Aromatizantes/farmacologia , Xenopus laevis
7.
Environ Toxicol Pharmacol ; 87: 103700, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34237469

RESUMO

Glyphosate [N-(phosphonomethyl)glycine] is the active ingredient in widely used broad-spectrum herbicides. Even though the toxicity mechanism of this herbicide in vertebrates is poorly understood, evidence suggests that glyphosate is an endocrine disruptor capable of producing morphological anomalies as well as cardiotoxic and neurotoxic effects. We used the zebrafish model to assess the effects of early life glyphosate exposure on the development of cartilage and bone tissues and organismal responses. We found functional alterations, including a reduction in the cardiac rate, significant changes in the spontaneous tail movement pattern, and defects in craniofacial development. These effects were concomitant with alterations in the level of the estrogen receptor alpha osteopontin and bone sialoprotein. We also found that embryos exposed to glyphosate presented spine deformities as adults. These developmental alterations are likely induced by changes in protein levels related to bone and cartilage formation.


Assuntos
Osso e Ossos/efeitos dos fármacos , Anormalidades Craniofaciais/induzido quimicamente , Glicina/análogos & derivados , Herbicidas/toxicidade , Teratogênicos/toxicidade , Animais , Osso e Ossos/anormalidades , Anormalidades Craniofaciais/metabolismo , Anormalidades Craniofaciais/veterinária , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Proteínas de Peixes/metabolismo , Glicina/toxicidade , Frequência Cardíaca/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Osteopontina/metabolismo , Sialoglicoproteínas/metabolismo , Peixe-Zebra/anormalidades , Peixe-Zebra/metabolismo , Glifosato
8.
Alcohol Clin Exp Res ; 45(7): 1383-1397, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33960427

RESUMO

BACKGROUND: Prenatal alcohol exposure (PAE) can result in developmental defects that include growth restriction, craniofacial anomalies, and cognitive behavioral deficits, though the presence and severity of these adverse outcomes can vary dramatically among exposed individuals. Preclinical animal models have demonstrated that the dose and timing of PAE account for much, but not all, of this phenotypic variation, suggesting that additional factors mitigate the effects of PAE. Here, we used a mouse model to investigate whether maternal age modulates the effects of PAE on the severity and variation in offspring growth and craniofacial outcomes. METHODS: Nulliparous C57BL/6N dams received either an intraperitoneal injection of ethanol (EtOH) or vehicle solution on gestational day 7.5. Dams were divided into four groups: (1) EtOH-treated young dams (6 to 10 weeks); (2) control young dams; (3) EtOH-treated old dams (6 to 7 months); and (4) old control dams. Neonate offspring growth restriction was measured through body mass and organ-to-body mass ratios, while skeletal craniofacial features were imaged using micro-CT and analyzed for size, shape, and variation. RESULTS: PAE and advanced maternal age each increased the risk of low birthweight and growth restriction in offspring, but these factors in combination changed the nature of the growth restriction. Similarly, both PAE and advanced maternal age individually caused changes to craniofacial morphology such as smaller skull size, dysmorphic skull shape, and greater skull shape variation and asymmetry. Interestingly, while the combination of PAE and advanced maternal age did not affect mean skull shape or size, it significantly increased the variation and asymmetry of those measures. CONCLUSION: Our results indicate that maternal age modulates the effects of PAE, but that the effects of this combination on offspring outcomes are more complex than simply scaling the effects of either factor.


Assuntos
Animais Recém-Nascidos/crescimento & desenvolvimento , Etanol/administração & dosagem , Etanol/efeitos adversos , Ossos Faciais/patologia , Idade Materna , Crânio/patologia , Animais , Peso ao Nascer/efeitos dos fármacos , Índice de Massa Corporal , Anormalidades Craniofaciais/induzido quimicamente , Feminino , Retardo do Crescimento Fetal/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Fenótipo , Gravidez , Efeitos Tardios da Exposição Pré-Natal
9.
Toxicol Lett ; 342: 20-25, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581288

RESUMO

Many bony features of the face develop from endochondral ossification of preexisting collagen-rich cartilage structures. The proper development of these cartilage structures is essential to the morphological formation of the face. The developmental programs governing the formation of the pre-bone facial cartilages are sensitive to chemical compounds that disturb histone acetylation patterns and chromatin structure. We have taken advantage of this fact to develop a quantitative morphological assay of craniofacial developmental toxicity based on the distortion and deterioration of facial cartilage structures in zebrafish larvae upon exposure to increasing concentrations of several well-described histone deacetylase inhibitors. In this assay, we measure the angle formed by the developing ceratohyal bone as a precise, sensitive and quantitative proxy for the overall developmental status of facial cartilages. Using the well-established developmental toxicant and histone deacetylase-inhibiting compound valproic acid along with 12 structurally related compounds, we demonstrate the applicability of the ceratohyal angle assay to investigate structure-activity relationships.


Assuntos
Butiratos/toxicidade , Colágeno Tipo II/metabolismo , Anormalidades Craniofaciais/induzido quimicamente , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/toxicidade , Peptídeos/toxicidade , Animais , Animais Geneticamente Modificados , Antibióticos Antineoplásicos/toxicidade , Anticonvulsivantes/toxicidade , Antifúngicos/toxicidade , Colágeno Tipo II/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes Reporter , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Ácido Valproico/toxicidade , Peixe-Zebra , Proteína Vermelha Fluorescente
10.
Alcohol Clin Exp Res ; 44(10): 1988-1996, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32767777

RESUMO

BACKGROUND: Prenatal alcohol exposure (PAE) is perhaps the most common environmental cause of human birth defects. These exposures cause a range of structural and neurological defects, including facial dysmorphologies, collectively known as fetal alcohol spectrum disorders (FASD). While PAE causes FASD, phenotypic outcomes vary widely. It is thought that multifactorial genetic and environmental interactions modify the effects of PAE. However, little is known of the nature of these modifiers. Disruption of the Hedgehog (Hh) signaling pathway has been suggested as a modifier of ethanol teratogenicity. In addition to regulating the morphogenesis of craniofacial tissues commonly disrupted in FASD, a core member of the Hh pathway, Smoothened, is susceptible to modulation by structurally diverse chemicals. These include environmentally prevalent teratogens like piperonyl butoxide (PBO), a synergist found in thousands of pesticide formulations. METHODS: Here, we characterize multifactorial genetic and environmental interactions using a zebrafish model of craniofacial development. RESULTS: We show that loss of a single allele of shha sensitized embryos to both alcohol- and PBO-induced facial defects. Co-exposure of PBO and alcohol synergized to cause more frequent and severe defects. The effects of this co-exposure were even more profound in the genetically susceptible shha heterozygotes. CONCLUSIONS: Together, these findings shed light on the multifactorial basis of alcohol-induced craniofacial defects. In addition to further implicating genetic disruption of the Hh pathway in alcohol teratogenicity, our findings suggest that co-exposure to environmental chemicals that perturb Hh signaling may be important variables in FASD and related craniofacial disorders.


Assuntos
Anormalidades Craniofaciais/induzido quimicamente , Etanol/efeitos adversos , Interação Gene-Ambiente , Proteínas Hedgehog/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Proteínas de Peixe-Zebra/antagonistas & inibidores , Animais , Anormalidades Craniofaciais/embriologia , Anormalidades Craniofaciais/metabolismo , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Butóxido de Piperonila/farmacologia , Teratogênicos/farmacologia , Peixe-Zebra/anormalidades , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
11.
Birth Defects Res ; 112(16): 1287-1291, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32639113

RESUMO

BACKGROUND: Agnathia otocephaly is a rare craniofacial malformation complex characterised by absent/hypoplastic mandible, abnormally positioned ears meeting at level of neck. Besides mutations in two genes, PRRX1 and OTX2, a teratogenic cause has been suggested. A higher risk of congenital malformations has been associated with paternal work in mining in the Democratic Republic of the Congo's part of the Copperbelt. CASE: We studied a female neonate with a clinical diagnosis of agnathia otocephaly, stillborn in Lubumbashi in 2019. The child's father had been working as an artisanal mineworker at the time of conception. RESULTS: Genetic analysis did not reveal a causal mutation. The concentrations of cobalt, arsenic cadmium, and uranium in cord blood of the infant were much higher than those of normal neonates from a previous study. CONCLUSION: In the absence of identified genetic causes, we hypothesize this case of agnathia otocephaly was related to an exogenous cause, possibly the father's mining-related job.


Assuntos
Anormalidades Craniofaciais , Anormalidades Maxilomandibulares , Criança , Anormalidades Craniofaciais/induzido quimicamente , Anormalidades Craniofaciais/genética , República Democrática do Congo , Feminino , Proteínas de Homeodomínio , Humanos , Lactente , Recém-Nascido , Zâmbia
12.
Reprod Toxicol ; 96: 114-127, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32553615

RESUMO

Knowledge on mode-of-action (MOA) is required to understand toxicological effects of compounds, notably in the context of risk assessment of mixtures. Such information is generally scarce, and often complicated by the existence of multiple MOAs per compound. Here, MOAs related to developmental craniofacial malformations were derived from literature, and assembled in a MOA network. A selection of gene expression markers was based on these MOAs. Next, these markers were verified by qPCR in zebrafish embryos, after exposure to reference compounds. These were: triazoles for inhibition of retinoic acid (RA) metabolism, AM580 and CD3254 for selective activation of respectively RA-receptor (RAR) and retinoid-X-receptor (RXR), dithiocarbamates for inhibition of lysyl oxidase, TCDD for activation of the aryl-hydrocarbon-receptor (AhR), VPA for inhibition of histone deacetylase (HDAC), and PFOS for activation of peroxisome proliferator-activated receptor-alpha (PPARα). Next, marker gene profiles for these reference compounds were used to map the profiles of test compounds to known MOAs. In this way, 2,4-dinitrophenol matched with the TCDD and RAR profiles, boric acid with RAR, endosulfan with PFOS, fenpropimorph with dithiocarbamates, PCB126 with AhR, and RA with triazoles and RAR profiles. Prochloraz showed no match. Activities of these compounds in ToxCast assays, and in silico analysis of binding affinity to the respective targets showed limited concordance with the marker gene expression profiles, but still confirmed the complex MOA profiles of reference and test compounds. Ultimately, this approach could be used to support modeling of mixture effects based on upfront knowledge of (dis)similarity of MOAs.


Assuntos
Anormalidades Craniofaciais/induzido quimicamente , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Teratogênicos/toxicidade , Animais , Anormalidades Craniofaciais/genética , Relação Dose-Resposta a Droga , Embrião não Mamífero , Feminino , Masculino , Modelos Biológicos , Teratogênicos/classificação , Peixe-Zebra
13.
Dev Dyn ; 249(7): 794-815, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32314458

RESUMO

BACKGROUND: Craniofacial anomalies are among the most frequent birth defects worldwide, and are thought to be caused by gene-environment interactions. Genetically manipulated zebrafish simulate human diseases and provide great advantages for investigating the etiology and pathology of craniofacial anomalies. Although substantial advances have been made in understanding genetic factors causing craniofacial disorders, limited information about the etiology by which environmental factors, such as teratogens, induce craniofacial anomalies is available in zebrafish. RESULTS: Zebrafish embryos displayed craniofacial malformations after teratogen treatments. Further observations revealed characteristic disruption of chondrocyte number, shape and stacking. These findings suggested aberrant development of cranial neural crest (CNC) cells, which was confirmed by gene expression analysis of the CNC. Notably, these observations suggested conserved etiological pathways between zebrafish and mammals including human. Furthermore, several of these chemicals caused malformations of the eyes, otic vesicle, and/or heart, representing a phenocopy of neurocristopathy, and these chemicals altered the expression levels of the responsible genes. CONCLUSIONS: Our results demonstrate that chemical-induced craniofacial malformation is caused by aberrant development of neural crest. This study indicates that zebrafish provide a platform for investigating contributions of environmental factors as causative agents of craniofacial anomalies and neurocristopathy.


Assuntos
Anormalidades Craniofaciais/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Crista Neural/citologia , Teratogênicos , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Animais , Apoptose , Cartilagem/efeitos dos fármacos , Cartilagem/embriologia , Diferenciação Celular , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Anormalidades Craniofaciais/induzido quimicamente , Modelos Animais de Doenças , Olho/efeitos dos fármacos , Olho/embriologia , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Interação Gene-Ambiente , Masculino , Exposição Materna , Crista Neural/efeitos dos fármacos , Organogênese/efeitos dos fármacos , Organogênese/genética , Crânio , Proteínas de Peixe-Zebra/genética
14.
Alcohol ; 86: 75-80, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32243902

RESUMO

Alcohol exposure during pregnancy has been associated with altered brain development and facial dysmorphology. While Autism Spectrum Disorder (ASD) is not specifically related to distinct facial phenotypes, recent studies have suggested certain facial characteristics such as increased facial masculinity and asymmetry may be associated with ASD and its clinical presentations. In the present study, we conducted a preliminary investigation to examine facial morphology in autistic children with (n = 37; mean age = 8.21 years, SD = 2.72) and without (n = 100; mean age = 8.37 years, SD = 2.47) prenatal alcohol exposure. Using three-dimensional facial scans and principal component analysis, we identified a facial shape associated with prenatal alcohol exposure in autistic children. However, variations in the alcohol-related facial shape were generally not associated with behavioral and cognitive outcomes. These findings suggest that while early exposure to alcohol may influence the development of facial structures, it does not appear to be associated with ASD phenotypic variability. Importantly, although these findings do not implicate a role for prenatal alcohol exposure in the etiology of ASD, further research is warranted to investigate the link between prenatal alcohol exposure and facial morphology differences among neurodevelopmental conditions.


Assuntos
Transtorno do Espectro Autista/complicações , Anormalidades Craniofaciais/induzido quimicamente , Etanol/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Criança , Feminino , Humanos , Masculino , Gravidez
15.
Food Chem Toxicol ; 140: 111303, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32251704

RESUMO

Mixtures of substances sharing the same molecular initiating event (MIE) are supposed to induce additive effects. The proposed MIE for azole fungicides is CYP26 inhibition with retinoic acid (RA) local increase, triggering key events leading to craniofacial defects. Valproic acid (VPA) is supposed to imbalance RA-regulated gene expression trough histone deacetylases (HDACs) inhibition. The aim was to evaluate effects of molecules sharing the same MIE (azoles) and of such having (hypothetically) different MIEs but which are eventually involved in the same adverse outcome pathway (AOP). An in silico approach (molecular docking) investigated the suggested MIEs. Teratogenicity was evaluated in vitro (WEC). Abnormalities were modelled by PROAST software. The common target was the branchial apparatus. In silico results confirmed azole-related CYP26 inhibition and a weak general VPA inhibition on the tested HDACs. Unexpectedly, VPA showed also a weak, but not marginal, capability to enter the CYP 26A1 and CYP 26C1 catalytic sites, suggesting a possible role of VPA in decreasing RA catabolism, acting as an additional MIE. Our findings suggest a new more complex picture. Consequently two different AOPs, leading to the same AO, can be described. VPA MIEs (HDAC and CYP26 inhibition) impinge on the two converging AOPs.


Assuntos
Rotas de Resultados Adversos , Anormalidades Craniofaciais/induzido quimicamente , Animais , Anticonvulsivantes/toxicidade , Simulação por Computador , Família 26 do Citocromo P450/metabolismo , Feminino , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/efeitos dos fármacos , Técnicas In Vitro , Simulação de Acoplamento Molecular , Morfogênese , Ratos , Teratogênicos/toxicidade , Ácido Valproico/toxicidade
16.
Biochem Pharmacol ; 174: 113816, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31972168

RESUMO

In spite of its toxic effects, N-acetyl-p-aminophenol (APAP), also commonly known as acetaminophen or paracetamol, is one of the most widely used analgesic and antipyretic agents. It can be obtained without a medical prescription. To test the effect over the zebrafish embryonic development, a Fish Embryo acute Toxicity (FET) test was carried out with acetaminophen to establish the range of concentrations that cause a harmful effect on the zebrafish development. Diminished pigmentation (in embryos treated from 0 h post-fertilization) and blockage of melanin synthesis (in larvae treated from 72 h post-fertilization) were detected, suggesting the involvement of this compound in the development of black pigment cells as described recently for human epidermal melanocytes. Morphological abnormalities such as aberrant craniofacial structures, pericardial edemas, and blood accumulation were also found. All these effects could be due to higher levels of apoptotic cells detected in treated embryos. Therefore, teratogenic effects of acetaminophen cannot be ruled out, and its wide use should be taken with caution.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Anormalidades Craniofaciais/induzido quimicamente , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Pigmentação/efeitos dos fármacos , Animais , Anormalidades Craniofaciais/patologia , Embrião não Mamífero/anormalidades , Desenvolvimento Embrionário/fisiologia , Melanócitos/efeitos dos fármacos , Melanócitos/patologia , Melanócitos/fisiologia , Pigmentação/fisiologia , Peixe-Zebra
17.
Toxicol Lett ; 319: 250-255, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778774

RESUMO

The effect of thalidomide on mandibular development is unclear. In this study, thalidomide was delivered to pregnant rabbits from the 8th to 14th day of gestation. Then, embryos were harvested for examination on the 16th day (GD16), 20th day (GD20) and 24th day (GD24) of gestation. The results showed obvious hemorrhage and hematoma on one side of the craniofacial region in 50 % of the thalidomide-treated embryos and obvious hemorrhage and hematoma on both sides of the craniofacial region in 50 % of the thalidomide-treated embryos at GD16. Histological examination showed soft tissues and mandible defects on the affected side of the maxillofacial region. The expression of Vegf-α, Ki67 and Sox9 on the affected side was significantly down-regulated in comparison to their expression on the unaffected side at GD20. There was also an obvious defect in the affected mandible, and the density of the skull and mandible was decreased compared to the unaffected side or the control group at GD24. These findings demonstrated that thalidomide may lead to hemorrhage and hematoma in the craniofacial region by inhibiting angiogenesis, resulting in the abnormal development of cranial neural crest cells that are involved in the normal development of the mandible in rabbits.


Assuntos
Anormalidades Craniofaciais/induzido quimicamente , Anormalidades Craniofaciais/patologia , Hemorragia/induzido quimicamente , Hemorragia/patologia , Mandíbula/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Teratogênicos/toxicidade , Talidomida/toxicidade , Animais , Regulação para Baixo/efeitos dos fármacos , Feminino , Mandíbula/anormalidades , Anormalidades Maxilofaciais/induzido quimicamente , Anormalidades Maxilofaciais/patologia , Crista Neural/patologia , Gravidez , Coelhos , Crânio/anormalidades
18.
Alcohol Clin Exp Res ; 44(1): 56-65, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31742718

RESUMO

BACKGROUND: Fetal alcohol spectrum disorders (FASD) collectively refer to all deleterious outcomes due to prenatal alcohol exposures. Alterations to the face are common phenotypes in FASD. While alcohol exposure is the underlying cause of FASD, many variables modify the outcomes of such exposures. Genetic risk is one such variable, yet we still have a limited understanding of the nature of the genetic loci mediating susceptibility to FASD. METHODS: We employed ENU-based random mutagenesis in zebrafish to identify mutations that enhanced the teratogenicity of ethanol (EtOH). F3 embryos obtained from 126 inbred F2 families were exposed to 1% EtOH in the medium (approximately 41 mM tissue levels). Zebrafish stained with Alcian Blue and Alizarin Red were screened for qualitative alterations to the craniofacial skeleton between 4 and 7 days postfertilization (dpf). RESULTS: In all, we recovered 6 EtOH-sensitive mutants, 5 from the genetic screen itself and one as a background mutation in one of our wild-type lines. Each mutant has a unique EtOH-induced phenotype relative to the other mutant lines. All but 1 mutation appears to be recessive in nature, and only 1 mutant, au29, has apparent craniofacial defects in the absence of EtOH. To validate the genetic screen, we genetically mapped au29 and found that it carries a mutation in a previously uncharacterized gene, si:dkey-88l16.3. CONCLUSIONS: The phenotypes of these EtOH-sensitive mutants differ from those in previous characterizations of gene-EtOH interactions. Thus, each mutant is likely to provide novel insights into EtOH teratogenesis. Given that most of these mutants only have craniofacial defects in the presence of EtOH and our mapping of au29, it is also likely that many of the mutants will be previously uncharacterized. Collectively, our findings point to the importance of unbiased genetic screens in the identification, and eventual characterization, of risk alleles for FASD.


Assuntos
Modelos Animais de Doenças , Etanol/toxicidade , Transtornos do Espectro Alcoólico Fetal/genética , Testes Genéticos/métodos , Mutação/efeitos dos fármacos , Mutação/genética , Animais , Anormalidades Craniofaciais/induzido quimicamente , Anormalidades Craniofaciais/genética , Feminino , Transtornos do Espectro Alcoólico Fetal/patologia , Predisposição Genética para Doença/genética , Gravidez , Peixe-Zebra
19.
Neurotoxicol Teratol ; 76: 106836, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31593814

RESUMO

Pesticides despite being agents that protect the plants and humans from noxious pests, are infamous for their potential to cause detrimental health issues in nontargeted species. In order to ascertain the latter, a set of experiments were conducted by exposing early chick embryos to a widely used combination insecticide (Ci, 50% chlorpyrifos and 5% cypermethrin). The results revealed a myriad of congenital defects pertaining to craniofacial development such as anophthalmia, microphthalmia, exencephaly as well as deformed beak and cranial structures. These teratological manifestations could be attributed to the Ci induced alteration in the titre of major regulators of neurulation and ossification. Therefore, the mRNA and/or the protein level expression pattern of genes which are reported to be involved in the craniofacial development were studied at selected time points of embryonic development. The analysis of the result showed that there have been significant alternations in the expression patterns of the signalling molecules such as SHH, WNTs, CDH1, CDH2, L1CAM, PAX6, HOX, PCNA, GLI3, BMP7, FGF8, GLIs, SOX9, RUNX2, DLX5, COL10A1, CASPASE3 etc. on embryonic days 2, 4 and/or 10. Concurrently, on day 10, whole-mount skeletal staining and biochemical estimation of hydroxyproline were carried out in the cranial tissues of the embryos. The overall result of the current study indicates that exposure to Ci during early development impede the crucial regulatory signals that orchestrate the morphogenesis of cranial neural crest cells thereby hindering the normal progression of neural tube and endochondral ossification which collectively lead to craniofacial dysmorphism in domestic chicks.


Assuntos
Anormalidades Craniofaciais/induzido quimicamente , Inseticidas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Animais , Bico/anormalidades , Química Encefálica/efeitos dos fármacos , Embrião de Galinha , Galinhas , Clorpirifos/toxicidade , Anormalidades Craniofaciais/mortalidade , Anormalidades Craniofaciais/fisiopatologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hidroxiprolina/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Piretrinas/toxicidade , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
20.
Toxicol In Vitro ; 61: 104638, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31476374

RESUMO

The inclusion of a read-out to detect functional consequences of craniofacial alterations in the zebrafish embryotoxicity test will allow to evaluate these alterations which are difficult to assess morphologically, and to detect alterations in cranial nerves functions leading to impairment of jaw movements. In this study we have established an ingestion test in zebrafish larvae younger than 120 hpf. To overcome the challenge of evaluating larvae which still do not present independent feeding behaviour, we have tested the ability of 72, 96 or 102 hpf larvae to ingest food mixed with fluorescent microspheres under several conditions (dark/light, with/without shaking) to find the best experimental set-up for the test. We have included the investigation of two substances as potential positive controls: ketoconazole and tricaine. Ketoconazole 10 µM exposure during development produced significant embryotoxic effects including a characteristic craniofacial alteration pattern consisting in impaired development of brain, nasal cavity, mouth opening and jaw, as well as a significant decrease in food intake. Tricaine exposure at 380 µM during the food availability period significantly decreased the food intake. The method proposed will be a useful alternative tool to animal testing to detect compounds inducing adverse effects on craniofacial development.


Assuntos
Aminobenzoatos/toxicidade , Anormalidades Craniofaciais/induzido quimicamente , Embrião não Mamífero/anormalidades , Cetoconazol/toxicidade , Teratogênicos/toxicidade , Testes de Toxicidade/métodos , Peixe-Zebra/anormalidades , Alternativas aos Testes com Animais , Animais , Ingestão de Alimentos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...