Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 190(12): 2417-2426, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919979

RESUMO

Increased expression of the transient receptor potential ankyrin 1 (TRPA1) channel has been detected in carious tooth pulp, suggesting involvement of TRPA1 in defense or repair of this tissue after exogenous noxious stimuli. This study aimed to elucidate the induction mechanism in response to lipopolysaccharide (LPS) stimulation and the function of TRPA1 in dental pulp cells. Stimulation of human dental pulp cells with LPS up-regulated TRPA1 expression, as demonstrated by quantitative RT-PCR and Western blotting. LPS stimulation also promoted nitric oxide (NO) synthesis and p38/mitogen-activated protein kinase (MAPK) phosphorylation. NOR5, an NO donor, up-regulated TRPA1 expression, whereas 1400W, an inhibitor of inducible nitric oxide synthase, and SB202190, a p38/MAPK inhibitor, down-regulated LPS-induced TRPA1 expression. Moreover, JT010, a TRPA1 agonist, increased the intracellular calcium concentration and extracellular signal-regulated kinase 1/2 phosphorylation, and up-regulated alkaline phosphatase mRNA in human dental pulp cells. Icilin-a TRPA1 agonist-up-regulated secreted phosphoprotein 1 mRNA expression and promoted mineralized nodule formation in mouse dental papilla cells. In vivo expression of TRPA1 was detected in odontoblasts along the tertiary dentin of carious teeth. In conclusion, this study demonstrated that LPS stimulation induced TRPA1 via the NO-p38 MAPK signaling pathway and TRPA1 agonists promoted differentiation or mineralization of dental pulp cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Polpa Dentária/citologia , Odontoblastos/efeitos dos fármacos , Canal de Cátion TRPA1/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Anquirinas/efeitos dos fármacos , Anquirinas/genética , Anquirinas/metabolismo , Polpa Dentária/efeitos dos fármacos , Proteínas da Matriz Extracelular/efeitos dos fármacos , Proteínas da Matriz Extracelular/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Odontoblastos/citologia , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Canal de Cátion TRPA1/metabolismo
2.
Nat Commun ; 7: 11031, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26980593

RESUMO

Building a sophisticated protein nano-assembly requires a method for linking protein components in a predictable and stable structure. Most of the cross linkers available have flexible spacers. Because of this, the linked hybrids have significant structural flexibility and the relative structure between their two components is largely unpredictable. Here we describe a method of connecting two proteins via a 'fusion α helix' formed by joining two pre-existing helices into a single extended helix. Because simple ligation of two helices does not guarantee the formation of a continuous helix, we used EY-CBS, a synthetic cross linker that has been shown to react selectively with cysteines in α-helices, to stabilize the connecting helix. Formation and stabilization of the fusion helix was confirmed by determining the crystal structures of the fusion proteins with and without bound EY-CBS. Our method should be widely applicable for linking protein building blocks to generate predictable structures.


Assuntos
Anquirinas/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Proteína Estafilocócica A/efeitos dos fármacos , Anquirinas/química , Cristalização , Cristalografia por Raios X , Cisteína/química , Cisteína/efeitos dos fármacos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Proteína Estafilocócica A/química
3.
Free Radic Res ; 49(2): 175-85, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25426774

RESUMO

Chronically haemodialysed end-stage renal disease patients are at high risk of morbidity arising from complications of dialysis, the underlying pathology that has led to renal disease and the complex pathology of chronic kidney disease. Anaemia is commonplace and its origins are multifactorial, involving reduced renal erythropoietin production, accumulation of uremic toxins and an increase in erythrocyte fragility. Oxidative damage is a common risk factor in renal disease and its co-morbidities and is known to cause erythrocyte fragility. Therefore, we have investigated the hypothesis that specific erythrocyte membrane proteins are more oxidised in end-stage renal disease patients and that vitamin C supplementation can ameliorate membrane protein oxidation. Eleven patients and 15 control subjects were recruited to the study. Patients were supplemented with 2 × 500 mg vitamin C per day for 4 weeks. Erythrocyte membrane proteins were prepared pre- and post-vitamin C supplementation for determination of protein oxidation. Total protein carbonyls were reduced by vitamin C supplementation but not by dialysis when investigated by enzyme linked immunosorbent assay. Using a western blot to detect oxidised proteins, one protein band, later identified as containing ankyrin, was found to be oxidised in patients but not controls and was reduced significantly by 60% in all patients after dialysis and by 20% after vitamin C treatment pre-dialysis. Ankyrin oxidation analysis may be useful in a stratified medicines approach as a possible marker to identify requirements for intervention in dialysis patients.


Assuntos
Anquirinas/química , Ácido Ascórbico/uso terapêutico , Membrana Eritrocítica/química , Falência Renal Crônica/sangue , Diálise Renal , Anquirinas/efeitos dos fármacos , Membrana Eritrocítica/efeitos dos fármacos , Humanos , Falência Renal Crônica/tratamento farmacológico , Falência Renal Crônica/terapia , Oxirredução/efeitos dos fármacos
4.
Life Sci ; 92(8-9): 415-24, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22910182

RESUMO

Since cloning and characterizing the first nociceptive ion channel Transient Receptor Potential (TRP) Vanilloid 1 (TRPV1), other TRP channels involved in nociception have been cloned and characterized, which include TRP Vanilloid 2 (TRPV2), TRP Vanilloid 3 (TRPV3), TRP Vanilloid 4 (TRPV4), TRP Ankyrin 1 (TRPA1) and TRP Melastatin 8 (TRPM8), more recently TRP Canonical 1, 5, 6 (TRPC1, 5, 6), TRP Melastatin 2 (TRPM2) and TRP Melastatin 3 (TRPM3). These channels are predominantly expressed in C and Aδ nociceptors and transmit noxious thermal, mechanical and chemical sensitivities. TRP channels are modulated by pro-inflammatory mediators, neuropeptides and cytokines. Significant advances have been made targeting these receptors either by antagonists or agonists to treat painful conditions. In this review, we will discuss TRP channels as targets for next generation analgesics and the side effects that may ensue as a result of blocking/activating these receptors, because they are also involved in physiological functions such as release of vasoactive neuropeptides and regulation of vascular tone, maintenance of the body temperature, gastrointestinal motility, urinary bladder control, etc.


Assuntos
Analgesia , Nociceptores/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Anquirinas/efeitos dos fármacos , Anquirinas/fisiologia , Humanos , Canais de Cátion TRPM/efeitos dos fármacos , Canais de Cátion TRPM/fisiologia , Canais de Cátion TRPV/fisiologia
5.
Mol Membr Biol ; 14(3): 143-8, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-9394295

RESUMO

Fusion of human red cells through the action of polyethylene glycol gives rise to pairs or higher clusters with a common membrane envelope, in which a barrier at the position of the original interface can be seen in phase contrast. At early times this septum contains lipids, as judged by labelling with a fluorescent lipophile, and transmembrane protein; this was shown by the presence of the preponderant component, band 3, detected by a fluorescent label, covalently attached before fusion at an extracellular site, or by immunofluorescence with anti-band 3 antibody. Ankyrin, which is bound to band 3, is also observed in the septum. The lipid thereafter disappears from the interface, carrying most of the band 3 with it. A continuous membrane skeletal network, defined by the presence of spectrin (detected by immunofluorescent staining in epifluorescence and confocal microscopy) appears to persist for long periods, but in many cells interruptions develop in the septum. In other fused pairs, particularly at longer times, the interface is seen to have vanished completely. Protease inhibitors have no discernible effect on any of these observations. The results suggest a model for the events that follow fusion. Covalent cross-linking of membrane proteins beyond a critical level causes inhibition of fusion, suggesting that proteins, probably the membrane skeletal network, regulate the fusion process. The efficiency of fusion is strikingly dependent on the composition of the isotonic medium, being relatively high at an orthophosphate concentration of 5 mM and minimal at 20 mM.


Assuntos
Fusão Celular/efeitos dos fármacos , Membrana Eritrocítica/efeitos dos fármacos , Proteínas de Membrana/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Proteína 1 de Troca de Ânion do Eritrócito/efeitos dos fármacos , Anquirinas/efeitos dos fármacos , Membrana Eritrocítica/química , Membrana Eritrocítica/ultraestrutura , Humanos , Lipídeos de Membrana/sangue , Microscopia Confocal , Microscopia de Fluorescência , Modelos Químicos , Espectrina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...