Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.047
Filtrar
1.
BMC Vet Res ; 20(1): 198, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745180

RESUMO

BACKGROUND: Primary sheep fetal fibroblasts (SFFCs) have emerged as a valuable resource for investigating the molecular and pathogenic mechanisms of orf viruses (ORFV). However, their utilization is considerably restricted due to the exorbitant expenses associated with their isolation and culture, their abbreviated lifespan, and the laborious procedure. RESULTS: In our investigation, the primary SFFCs were obtained and immortalized by introducing a lentiviral recombinant plasmid containing the large T antigen from simian virus 40 (SV40). The expression of fibronectin and vimentin proteins, activity of SV40 large T antigen, cell proliferation assays, and analysis of programmed cell death revealed that the immortalized large T antigen SFFCs (TSFFCs) maintained the same physiological characteristics and biological functions as the primary SFFCs. Moreover, TSFFCs demonstrated robust resistance to apoptosis, extended lifespan, and enhanced proliferative activity compared to primary SFFCs. Notably, the primary SFFCs did not undergo in vitro transformation or exhibit any indications of malignancy in nude mice. Furthermore, the immortalized TSFFCs displayed live ORFV vaccine susceptibility. CONCLUSIONS: Immortalized TSFFCs present valuable in vitro models for exploring the characteristics of ORFV using various techniques. This indicates their potential for secure utilization in future studies involving virus isolation, vaccine development, and drug screening.


Assuntos
Fibroblastos , Animais , Fibroblastos/virologia , Ovinos , Camundongos , Vírus do Orf/genética , Camundongos Nus , Proliferação de Células , Vírus 40 dos Símios , Linhagem Celular , Apoptose , Antígenos Virais de Tumores/genética
2.
Cells ; 13(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38667318

RESUMO

Muscle satellite cells (MuSCs) are crucial for muscle development and regeneration. The primary pig MuSCs (pMuSCs) is an ideal in vitro cell model for studying the pig's muscle development and differentiation. However, the long-term in vitro culture of pMuSCs results in the gradual loss of their stemness, thereby limiting their application. To address this conundrum and maintain the normal function of pMuSCs during in vitro passaging, we generated an immortalized pMuSCs (SV40 T-pMuSCs) by stably expressing SV40 T-antigen (SV40 T) using a lentiviral-based vector system. The SV40 T-pMuSCs can be stably sub-cultured for over 40 generations in vitro. An evaluation of SV40 T-pMuSCs was conducted through immunofluorescence staining, quantitative real-time PCR, EdU assay, and SA-ß-gal activity. Their proliferation capacity was similar to that of primary pMuSCs at passage 1, and while their differentiation potential was slightly decreased. SiRNA-mediated interference of SV40 T-antigen expression restored the differentiation capability of SV40 T-pMuSCs. Taken together, our results provide a valuable tool for studying pig skeletal muscle development and differentiation.


Assuntos
Antígenos Transformantes de Poliomavirus , Diferenciação Celular , Células Satélites de Músculo Esquelético , Animais , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Suínos , Antígenos Transformantes de Poliomavirus/metabolismo , Antígenos Transformantes de Poliomavirus/genética , Proliferação de Células , Desenvolvimento Muscular , Antígenos Virais de Tumores/metabolismo , Antígenos Virais de Tumores/genética , Vírus 40 dos Símios/genética
3.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38674125

RESUMO

Polyomavirus (PyV) Large T-antigen (LT) is the major viral regulatory protein that targets numerous cellular pathways for cellular transformation and viral replication. LT directly recruits the cellular replication factors involved in initiation of viral DNA replication through mutual interactions between LT, DNA polymerase alpha-primase (Polprim), and single-stranded DNA binding complex, (RPA). Activities and interactions of these complexes are known to be modulated by post-translational modifications; however, high-sensitivity proteomic analyses of the PTMs and proteins associated have been lacking. High-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS) of the immunoprecipitated factors (IPMS) identified 479 novel phosphorylated amino acid residues (PAARs) on the three factors; the function of one has been validated. IPMS revealed 374, 453, and 183 novel proteins associated with the three, respectively. A significant transcription-related process network identified by Gene Ontology (GO) enrichment analysis was unique to LT. Although unidentified by IPMS, the ETS protooncogene 1, transcription factor (ETS1) was significantly overconnected to our dataset indicating its involvement in PyV processes. This result was validated by demonstrating that ETS1 coimmunoprecipitates with LT. Identification of a novel PAAR that regulates PyV replication and LT's association with the protooncogenic Ets1 transcription factor demonstrates the value of these results for studies in PyV biology.


Assuntos
Replicação do DNA , Polyomavirus , Proteômica , Replicação Viral , Fosforilação , Humanos , Proteômica/métodos , Polyomavirus/metabolismo , Polyomavirus/genética , Espectrometria de Massas em Tandem , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteína Proto-Oncogênica c-ets-1/genética , Cromatografia Líquida , Antígenos Virais de Tumores/metabolismo , Antígenos Virais de Tumores/genética , Processamento de Proteína Pós-Traducional , DNA Viral/metabolismo , DNA Viral/genética
4.
Microbiol Immunol ; 68(5): 179-184, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433377

RESUMO

BK polyomavirus (BKPyV) was the first human polyomavirus to be isolated from an immunosuppressed kidney transplant recipient in 1971. BKPyV reactivation causes BKPyV-associated nephropathy and hemorrhagic cystitis. However, the mechanisms underlying BKPyV replication remain unclear. In the present study, we performed the long-term cultivation of COS-7 cells transfected with archetype KOM-5 DNA, which were designated as COS-BK cells. BKPyV derived from COS-BK cells was characterized by analyzing the amount of the virus based on hemagglutination, viral replication, and the production of viral protein 1 (VP1). Immunostaining showed that VP1-positive cells accounted for a small percentage of COS-BK cells. The nucleotide sequences encompassing the origin of the DNA replication of BKPyV derived from COS-BK cells were generated from KOM-5 by the deletion of an 8-bp sequence, which did not involve T antigen binding sites. BKPyV replicated most efficiently in COS-BK cells in DMEM containing 2% fetal bovine serum. These results indicate that COS-BK cells are a suitable culture system for studying the persistent infection of archetype BKPyV.


Assuntos
Vírus BK , Infecções por Polyomavirus , Replicação Viral , Vírus BK/fisiologia , Vírus BK/genética , Animais , Chlorocebus aethiops , Células COS , Infecções por Polyomavirus/virologia , Humanos , Proteínas do Capsídeo/genética , DNA Viral/genética , Infecção Persistente/virologia , Antígenos Virais de Tumores/genética , Infecções Tumorais por Vírus/virologia
5.
Proc Natl Acad Sci U S A ; 120(51): e2316467120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079542

RESUMO

Merkel cell polyomavirus (MCV or MCPyV) is an alphapolyomavirus causing human Merkel cell carcinoma and encodes four tumor (T) antigen proteins: large T (LT), small tumor (sT), 57 kT, and middle T (MT)/alternate LT open reading frame proteins. We show that MCV MT is generated as multiple isoforms through internal methionine translational initiation that insert into membrane lipid rafts. The membrane-localized MCV MT oligomerizes and promiscuously binds to lipid raft-associated Src family kinases (SFKs). MCV MT-SFK interaction is mediated by a Src homology (SH) 3 recognition motif as determined by surface plasmon resonance, coimmunoprecipitation, and bimolecular fluorescence complementation assays. SFK recruitment by MT leads to tyrosine phosphorylation at a SH2 recognition motif (pMTY114), allowing interaction with phospholipase C gamma 1 (PLCγ1). The secondary recruitment of PLCγ1 to the SFK-MT membrane complex promotes PLCγ1 tyrosine phosphorylation on Y783 and activates the NF-κB inflammatory signaling pathway. Mutations at either the MCV MT SH2 or SH3 recognition sites abrogate PLCγ1-dependent activation of NF-κB signaling and increase viral replication after MCV genome transfection into 293 cells. These findings reveal a conserved viral targeting of the SFK-PLCγ1 pathway by both MCV and murine polyomavirus (MuPyV) MT proteins. The molecular steps in how SFK-PLCγ1 activation is achieved, however, differ between these two viruses.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Camundongos , Animais , Humanos , Antígenos Transformantes de Poliomavirus/metabolismo , Poliomavírus das Células de Merkel/metabolismo , NF-kappa B/metabolismo , Quinases da Família src/metabolismo , Fosfolipase C gama/metabolismo , Transdução de Sinais , Antígenos Virais de Tumores/genética , Carcinoma de Célula de Merkel/genética , Tirosina/metabolismo
6.
Front Immunol ; 14: 1253568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711623

RESUMO

Introduction: Most cases of Merkel cell carcinoma (MCC), a rare and highly aggressive type of neuroendocrine skin cancer, are associated with Merkel cell polyomavirus (MCPyV) infection. MCPyV integrates into the host genome, resulting in expression of oncoproteins including a truncated form of the viral large T antigen (LT) in infected cells. These oncoproteins are an attractive target for a therapeutic cancer vaccine. Methods: We designed a cancer vaccine that promotes potent, antigen-specific CD4 T cell responses to MCPyV-LT. To activate antigen-specific CD4 T cells in vivo, we utilized our nucleic acid platform, UNITE™ (UNiversal Intracellular Targeted Expression), which fuses a tumor-associated antigen with lysosomal-associated membrane protein 1 (LAMP1). This lysosomal targeting technology results in enhanced antigen presentation and potent antigen-specific T cell responses. LTS220A, encoding a mutated form of MCPyV-LT that diminishes its pro-oncogenic properties, was introduced into the UNITE™ platform. Results: Vaccination with LTS220A-UNITE™ DNA vaccine (ITI-3000) induced antigen-specific CD4 T cell responses and a strong humoral response that were sufficient to delay tumor growth of a B16F10 melanoma line expressing LTS220A. This effect was dependent on the CD4 T cells' ability to produce IFNγ. Moreover, ITI-3000 induced a favorable tumor microenvironment (TME), including Th1-type cytokines and significantly enhanced numbers of CD4 and CD8 T cells as well as NK and NKT cells. Additionally, ITI-3000 synergized with an α-PD-1 immune checkpoint inhibitor to further slow tumor growth and enhance survival. Conclusions: These findings strongly suggest that in pre-clinical studies, DNA vaccination with ITI-3000, using the UNITE™ platform, enhances CD4 T cell responses to MCPyV-LT that result in significant anti-tumor immune responses. These data support the initiation of a first-in-human (FIH) Phase 1 open-label study to evaluate the safety, tolerability, and immunogenicity of ITI-3000 in patients with polyomavirus-positive MCC (NCT05422781).


Assuntos
Vacinas Anticâncer , Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Neoplasias Cutâneas , Humanos , Antígenos Virais de Tumores/genética , Linfócitos T CD4-Positivos , Proteína 1 de Membrana Associada ao Lisossomo , Neoplasias Cutâneas/terapia , Microambiente Tumoral , Proteínas de Membrana Lisossomal
7.
Biotechnol Bioeng ; 120(7): 1953-1960, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37232541

RESUMO

Viral vectors for gene therapy, such as recombinant adeno-associated viruses, are produced in human embryonic kidney (HEK) 293 cells. However, the presence of the SV40 T-antigen-encoding CDS SV40GP6 and SV40GP7 in the HEK293T genome raises safety issues when these cells are used in manufacturing for clinical purposes. We developed a new T-antigen-negative HEK cell line from ExcellGene's proprietary HEKExpress,® using the CRISPR-Cas9 strategy. We obtained a high number of clonally-derived cell populations and all of them were demonstrated T-antigen negative. Stability study and AAV production evaluation showed that the deletion of the T-antigen-encoding locus did not impact neither cell growth nor viability nor productivity. The resulting CMC-compliant cell line, named HEKzeroT,® is able to produce high AAV titers, from small to large scale.


Assuntos
Antígenos Virais de Tumores , Vetores Genéticos , Humanos , Células HEK293 , Antígenos Virais de Tumores/genética , Dependovirus/genética
8.
Hum Gene Ther ; 34(15-16): 697-704, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37171121

RESUMO

Efficient production of adeno-associated virus (AAV) vectors is a significant challenge. Human embryonic kidney HEK293T cells are widely used in good manufacturing practice facilities, producing higher yield of AAV vectors for clinical applications than HEK293 through the addition of a constitutive expression of SV40 large T antigen (SV40T), which stimulates Rep expression. However, the theoretical potential for tumorigenic consequences of a clinical AAV product containing residual DNA encoding SV40T, which may inhibit p53 growth suppressive functions is a safety concern. Although the risk is theoretical, to assure a low risk/high confidence of safety for clinical drug development, we have established a sensitive assay for assessment of functional full-length transcription competent SV40T DNA in HEK293T cell-produced AAV vectors. Using HEK293T generated 8, 9, and rh.10 serotype AAV vectors, the presence of SV40T in purified vector was assessed in vitro using quantitative polymerase chain reaction (qPCR) targeting a 129 bp amplicon combined with nested PCR targeting full-length SV40T DNA. Although low levels of the smaller amplicon were present in each AAV serotype, the full-length SV40T was undetectable. No transcription competent full-length SV40T DNA was observed by reverse transcription-quantitative polymerase chain reaction using an in vivo amplification of signal in mouse liver administered (2-10 × 1010 gc) 129 bp amplicon-positive AAV vectors. As a control for gene transfer, high levels of expressed transgene mRNAs were observed from each serotype AAV vector, yet, SV40T mRNA was undetectable. In vivo assessment of these three liver-tropic AAV serotypes, each with amplicon-positive qPCR SV40T DNA, demonstrated high transgene mRNA expression but no SV40T mRNA, that is, detection of small segments of SV40T DNA in 293T cell produced AAV inappropriately leads to the conclusion of residuals with the potential to express SV40T. This sensitive assay can be used to assess the level, if any, of SV40T antigen contaminating AAV vectors generated by HEK293T cells. ClinicalTrials.gov identifier: NCT03634007; NCT05302271; NCT01414985; NCT01161576.


Assuntos
Herpesvirus Humano 1 , Camundongos , Animais , Humanos , Células HEK293 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Vetores Genéticos/genética , DNA
9.
Transgenic Res ; 32(4): 305-319, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37247123

RESUMO

JC polyoma virus (JCPyV), a ubiquitous polyoma virus that commonly infects people, is identified as the etiologic factor for progressive multifocal leukoencephalopathy and has been closely linked to various human cancers. Transgenic mice of CAG-loxp-Laz-loxp T antigen were established. T-antigen expression was specifically activated in gastroenterological target cells with a LacZ deletion using a cre-loxp system. Gastric poorly-differentiated carcinoma was observed in T antigen-activated mice using K19-cre (stem-like cells) and PGC-cre (chief cells), but not Atp4b-cre (parietal cells) or Capn8-cre (pit cells) mice. Spontaneous hepatocellular and colorectal cancers developed in Alb-cre (hepatocytes)/T antigen and villin-cre (intestinal cells)/T antigen transgenic mice respectively. Gastric, colorectal, and breast cancers were observed in PGC-cre/T antigen mice. Pancreatic insulinoma and ductal adenocarcinoma, gastric adenoma, and duodenal cancer were detected in Pdx1-cre/T antigen mice. Alternative splicing of T antigen mRNA occurred in all target organs of these transgenic mice. Our findings suggest that JCPyV T antigen might contribute to gastroenterological carcinogenesis with respect to cell specificity. Such spontaneous tumor models provide good tools for investigating the oncogenic roles of T antigen in cancers of the digestive system.


Assuntos
Polyomavirus , Neoplasias Gástricas , Camundongos , Humanos , Animais , Antígenos Virais de Tumores/genética , Camundongos Transgênicos , Células Epiteliais/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
10.
J Invest Dermatol ; 143(10): 1937-1946.e7, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037414

RESUMO

Merkel cell carcinoma (MCC) is an aggressive skin cancer for which Merkel cell polyomavirus integration and expression of viral oncogenes small T and Large T have been identified as major oncogenic determinants. Recently, a component of the PRC2 complex, the histone methyltransferase enhancer of zeste homolog 2 (EZH2) that induces H3K27 trimethylation as a repressive mark has been proposed as a potential therapeutic target in MCC. Because divergent results have been reported for the levels of EZH2 and trimethylation of lysine 27 on histone 3, we analyzed these factors in a large MCC cohort to identify the molecular determinants of EZH2 activity in MCC and to establish MCC cell lines' sensitivity to EZH2 inhibitors. Immunohistochemical expression of EZH2 was observed in 92% of MCC tumors (156 of 170), with higher expression levels in virus-positive than virus-negative tumors (P = 0.026). For the latter, we showed overexpression of EZHIP, a negative regulator of the PRC2 complex. In vitro, ectopic expression of the large T antigen in fibroblasts led to the induction of EZH2 expression, whereas the knockdown of T antigens in MCC cell lines resulted in decreased EZH2 expression. EZH2 inhibition led to selective cytotoxicity on virus-positive MCC cell lines. This study highlights the distinct mechanisms of EZH2 induction between virus-negative and -positive MCC.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Neoplasias Cutâneas , Humanos , Carcinoma de Célula de Merkel/patologia , Histonas/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Neoplasias Cutâneas/patologia , Poliomavírus das Células de Merkel/genética , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo
11.
J Neurovirol ; 29(2): 232-236, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37097595

RESUMO

Due to its peculiar histopathological findings, pleomorphic xanthoastrocytoma (PXA), a rare cerebral tumor of young adults with a slow growth and a good prognosis, resembles to the lytic phase of progressive multifocal leukoencephalopathy, a fatal neurodegenerative disease caused by JC polyomavirus (JCPyV). Therefore, the presence of JCPyV DNA was examined in an 11-year-old child with xanthoastrocytoma, WHO grade 3, by quantitative PCR (qPCR) and nested PCR (nPCR) using primers amplifying sequences encoding the N- and C-terminal region of large T antigen (LTAg), the non-coding control region (NCCR), and viral protein 1 (VP1) DNA. The expression of transcripts from LTAg and VP1 genes was also evaluated. In addition, viral microRNAs' (miRNAs) expression was investigated. Cellular p53 was also searched at both DNA and RNA level. qPCR revealed the presence of JCPyV DNA with a mean value of 6.0 × 104 gEq/mL. nPCR gave a positive result for the 5' region of the LTAg gene and the NCCR, whereas 3' end LTAg and VP1 DNA sequences were not amplifiable. Only LTAg transcripts of 5' end were found whereas VP1 gene transcript was undetectable. Although in most cases, either Mad-1 or Mad-4 NCCRs have been identified in association with JCPyV-positive human brain neoplasms, the archetype NCCR structure was observed in the patient's sample. Neither viral miRNA miR-J1-5p nor p53 DNA and RNA were detected. Although the expression of LTAg supports the possible role of JCPyV in PXA, further studies are warranted to better understand whether the genesis of xanthoastrocytoma could depend on the transformation capacity of LTAg by Rb sequestration.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , MicroRNAs , Doenças Neurodegenerativas , Adulto Jovem , Humanos , Criança , Sequência de Bases , Doenças Neurodegenerativas/genética , Proteína Supressora de Tumor p53/genética , Vírus JC/genética , MicroRNAs/genética , Antígenos Virais de Tumores/genética , DNA Viral/genética
12.
J Virol ; 97(3): e0007723, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36916919

RESUMO

Polyomavirus small T antigen (tAg) plays important roles in regulating viral replication, the innate immune response, apoptosis, and transformation for SV40, Merkel cell polyomavirus (MCPyV), murine polyomavirus (MuPyV), and JC polyomavirus (JCPyV). However, the function of BK polyomavirus (BKPyV) tAg has been much less studied. Here, we constructed mutant viruses that do not express tAg, and we showed that, in contrast with other polyomaviruses, BKPyV tAg inhibits large T antigen (TAg) gene expression and viral DNA replication. However, this occurs only in an archetype viral background. We also observed that the transduction of cells with a lentivirus-expressing BKPyV tAg kills the cells. We further discovered that BKPyV tAg interacts not only with PP2A A and C subunits, as has been demonstrated for other polyomavirus tAg proteins, but also with PP2A B''' subunit members. Knocking down either of two B''' subunits, namely STRN or STRN3, mimics the phenotype of the tAg mutant virus. However, a virus containing a point mutation in the PP2A binding domain of tAg only partially affected virus TAg expression and DNA replication. These results indicate that BKPyV tAg downregulates viral gene expression and DNA replication and that this occurs in part through interactions with PP2A. IMPORTANCE BK polyomavirus is a virus that establishes a lifelong infection of the majority of people. The infection usually does not cause any clinical symptoms, but, in transplant recipients whose immune systems have been suppressed, unchecked virus replication can cause severe disease. In this study, we show that a viral protein called small T antigen is one of the ways that the virus can persist without high levels of replication. Understanding which factors control viral replication enhances our knowledge of the virus life cycle and could lead to potential interventions for these patients.


Assuntos
Vírus BK , Infecções por Polyomavirus , Animais , Camundongos , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Vírus BK/fisiologia , Replicação do DNA , DNA Viral/genética , Replicação Viral/fisiologia
13.
Viruses ; 15(3)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36992464

RESUMO

The human neurotropic Polyomavirus JCPyV is the widespread opportunistic causative pathogen of the fatal demyelinating disease progressive multifocal leukoencephalopathy; however, it has also been implicated in the oncogenesis of several types of cancers. It causes brain tumors when intracerebrally inoculated into rodents, and genomic sequences of different strains and expression of the viral protein large T-Antigen have been detected in a wide variety of glial brain tumors and CNS lymphomas. Here, we present a case of an AIDS-related multifocal primary CNS lymphoma in which JCPyV genomic sequences of the three regions of JCPyV and expression of T-Antigen were detected by PCR and immunohistochemistry, respectively. No capsid proteins were detected, ruling out active JCPyV replication. Sequencing of the control region revealed that Mad-4 was the strain of JCPyV present in tumor cells. In addition, expression of viral proteins LMP and EBNA-1 from another ubiquitous oncogenic virus, Epstein-Barr, was also detected in the same lymphocytic neoplastic cells, co-localizing with JCPyV T-Antigen, suggesting a potential collaboration between these two viruses in the process of malignant transformation of B-lymphocytes, which are the site of latency and reactivation for both viruses.


Assuntos
Síndrome da Imunodeficiência Adquirida , Neoplasias Encefálicas , Vírus JC , Linfoma Difuso de Grandes Células B , Polyomavirus , Humanos , Polyomavirus/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Vírus JC/fisiologia , Proteínas Virais/genética , Antígenos Virais de Tumores/genética , Sistema Nervoso Central/metabolismo
14.
In Vitro Cell Dev Biol Anim ; 59(3): 224-233, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36971906

RESUMO

The Ryukyu long-furred rat is an endangered species confined to the southernmost three small islands of Japan (Amami-Oshima, Tokunoshima, and Okinawa). Its population is rapidly decreasing because of roadkill, deforestation, and feral animals. To date, its genomic and biological information are poorly understood. In this study, we successfully immortalized Ryukyu long-furred rat cells by expressing a combination of cell cycle regulators, mutant cyclin-dependent kinase 4 (CDK4R24C) and cyclin D1, together with telomerase reverse transcriptase or an oncogenic protein, the Simian Virus large T antigen. The cell cycle distribution, telomerase enzymatic activity, and karyotype of these two immortalized cell lines were analyzed. The karyotype of the former cell line immortalized with cell cycle regulators and telomerase reverse transcriptase retained the nature of the primary cells, while that of the latter cell line immortalized with the Simian Virus large T antigen had many aberrant chromosomes. These immortalized cells would be valuable for studying the genomics and biology of Ryukyu long-furred rats.


Assuntos
Telomerase , Ratos , Animais , Telomerase/genética , Telomerase/metabolismo , Divisão Celular , Ciclo Celular , Linhagem Celular , Antígenos Virais de Tumores/genética
15.
Cells ; 12(3)2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36766726

RESUMO

Senescent cells accumulate in the host during the aging process and are associated with age-related pathogeneses, including cancer. Although persistent senescence seems to contribute to many aspects of cellular pathways and homeostasis, the role of senescence in virus-induced human cancer is not well understood. Merkel cell carcinoma (MCC) is an aggressive skin cancer induced by a life-long human infection of Merkel cell polyomavirus (MCPyV). Here, we show that MCPyV large T (LT) antigen expression in human skin fibroblasts causes a novel nucleolar stress response, followed by p21-dependent senescence and senescence-associated secretory phenotypes (SASPs), which are required for MCPyV genome maintenance. Senolytic and navitoclax treatments result in decreased senescence and MCPyV genome levels, suggesting a potential therapeutic for MCC prevention. Our results uncover the mechanism of a host stress response regulating human polyomavirus genome maintenance in viral persistency, which may lead to targeted intervention for MCC.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Infecções Tumorais por Vírus , Humanos , Infecções por Polyomavirus/genética , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/patologia , Antígenos Virais de Tumores/genética , Poliomavírus das Células de Merkel/genética , Poliomavírus das Células de Merkel/metabolismo , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/patologia , Neoplasias Cutâneas/patologia , Senescência Celular , Genoma Viral
16.
PLoS Pathog ; 18(12): e1011039, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574443

RESUMO

Merkel cell polyomavirus (MCV) is a small DNA tumor virus that persists in human skin and causes Merkel cell carcinoma (MCC) in immunocompromised individuals. The multi-functional protein MCV small T (sT) activates viral DNA replication by stabilizing large T (LT) and promotes cell transformation through the LT stabilization domain (LTSD). Using MCVΔsT, a mutant MCV clone that ablates sT, we investigated the role of sT in MCV genome maintenance. sT was dispensable for initiation of viral DNA replication, but essential for maintenance of the MCV genome and activation of viral early and late gene expression for progression of the viral lifecycle. Furthermore, in phenotype rescue studies, exogenous sT activated viral DNA replication and mRNA expression in MCVΔsT through the LTSD. While exogenous LT expression, which mimics LT stabilization, increased viral DNA replication, it did not activate viral mRNA expression. After cataloging transcriptional regulator proteins by proximity-based MCV sT-host protein interaction analysis, we validated LTSD-dependent sT interaction with four transcriptional regulators: Cux1, c-Jun, BRD9, and CBP. Functional studies revealed Cux1 and c-Jun as negative regulators, and CBP and BRD9 as positive regulators of MCV transcription. CBP inhibitor A-485 suppressed sT-induced viral gene activation in replicating MCVΔsT and inhibited early gene expression in MCV-integrated MCC cells. These results suggest that sT promotes viral lifecycle progression by activating mRNA expression and capsid protein production through interaction with the transcriptional regulators. This activity is essential for MCV genome maintenance, suggesting a critical role of sT in MCV persistence and MCC carcinogenesis.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Infecções Tumorais por Vírus , Humanos , Poliomavírus das Células de Merkel/metabolismo , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Transcrição Viral , Replicação do DNA , Replicação Viral , DNA Viral/genética , DNA Viral/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Cutâneas/patologia , Genoma Viral , RNA Mensageiro/metabolismo , Infecções por Polyomavirus/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(49): e2216240119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442086

RESUMO

Duplication of DNA genomes requires unwinding of the double-strand (ds) DNA so that each single strand (ss) can be copied by a DNA polymerase. The genomes of eukaryotic cells are unwound by two ring-shaped hexameric helicases that initially encircle dsDNA but transition to ssDNA for function as replicative helicases. How the duplex is initially unwound, and the role of the two helicases in this process, is poorly understood. We recently described an initiation mechanism for eukaryotes in which the two helicases are directed inward toward one another and shear the duplex open by pulling on opposite strands of the duplex while encircling dsDNA [L. D. Langston, M. E. O'Donnell, eLife 8, e46515 (2019)]. Two head-to-head T-Antigen helicases are long known to be loaded at the SV40 origin. We show here that T-Antigen tracks head (N-tier) first on ssDNA, opposite the direction proposed for decades. We also find that SV40 T-Antigen tracks directionally while encircling dsDNA and mainly tracks on one strand of the duplex in the same orientation as during ssDNA translocation. Further, two inward directed T-Antigen helicases on dsDNA are able to melt a 150-bp duplex. These findings explain the "rabbit ear" DNA loops observed at the SV40 origin by electron microscopy and reconfigure how the DNA loops emerge from the double hexamer relative to earlier models. Thus, the mechanism of DNA shearing by two opposing helicases is conserved in a eukaryotic viral helicase and may be widely used to initiate origin unwinding of dsDNA genomes.


Assuntos
Antígenos Virais de Tumores , DNA Helicases , Animais , Coelhos , Antígenos Virais de Tumores/genética , DNA de Cadeia Simples/genética , Replicação do DNA , Eucariotos
18.
Viruses ; 14(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36298759

RESUMO

Merkel cell polyomavirus (MCPyV) is the only human polyomavirus currently known to cause human cancer. MCPyV is believed to be an etiological factor in at least 80% of cases of the rare but aggressive skin malignancy Merkel cell carcinoma (MCC). In these MCPyV+ MCC tumors, clonal integration of the viral genome results in the continued expression of two viral proteins: the viral small T antigen (ST) and a truncated form of the viral large T antigen. The oncogenic potential of MCPyV and the functional properties of the viral T antigens that contribute to neoplasia are becoming increasingly well-characterized with the recent development of model systems that recapitulate the biology of MCPyV+ MCC. In this review, we summarize our understanding of MCPyV and its role in MCC, followed by the current state of both in vitro and in vivo model systems used to study MCPyV and its contribution to carcinogenesis. We also highlight the remaining challenges within the field and the major considerations related to the ongoing development of in vitro and in vivo models of MCPyV+ MCC.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Infecções Tumorais por Vírus , Humanos , Poliomavírus das Células de Merkel/genética , Infecções Tumorais por Vírus/metabolismo , Antígenos Virais de Tumores/genética , Carcinogênese/genética , Proteínas Virais
19.
J Clin Invest ; 132(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35775490

RESUMO

Cancers avoid immune surveillance through an array of mechanisms, including perturbation of HLA class I antigen presentation. Merkel cell carcinoma (MCC) is an aggressive, HLA-I-low, neuroendocrine carcinoma of the skin often caused by the Merkel cell polyomavirus (MCPyV). Through the characterization of 11 newly generated MCC patient-derived cell lines, we identified transcriptional suppression of several class I antigen presentation genes. To systematically identify regulators of HLA-I loss in MCC, we performed parallel, genome-scale, gain- and loss-of-function screens in a patient-derived MCPyV-positive cell line and identified MYCL and the non-canonical Polycomb repressive complex 1.1 (PRC1.1) as HLA-I repressors. We observed physical interaction of MYCL with the MCPyV small T viral antigen, supporting a mechanism of virally mediated HLA-I suppression. We further identify the PRC1.1 component USP7 as a pharmacologic target to restore HLA-I expression in MCC.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/patologia , Epigênese Genética , Humanos , Poliomavírus das Células de Merkel/genética , Poliomavírus das Células de Merkel/metabolismo , Infecções por Polyomavirus/genética , Neoplasias Cutâneas/patologia , Peptidase 7 Específica de Ubiquitina/metabolismo
20.
PLoS Pathog ; 18(5): e1010551, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35560034

RESUMO

Clear evidence supports a causal link between Merkel cell polyomavirus (MCPyV) and the highly aggressive human skin cancer called Merkel cell carcinoma (MCC). Integration of viral DNA into the human genome facilitates continued expression of the MCPyV small tumor (ST) and large tumor (LT) antigens in virus-positive MCCs. In MCC tumors, MCPyV LT is truncated in a manner that renders the virus unable to replicate yet preserves the LXCXE motif that facilitates its binding to and inactivation of the retinoblastoma tumor suppressor protein (pRb). We previously developed a MCPyV transgenic mouse model in which MCC tumor-derived ST and truncated LT expression were targeted to the stratified epithelium of the skin, causing epithelial hyperplasia, increased proliferation, and spontaneous tumorigenesis. We sought to determine if any of these phenotypes required the association between the truncated MCPyV LT and pRb. Mice were generated in which K14-driven MCPyV ST/LT were expressed in the context of a homozygous RbΔLXCXE knock-in allele that attenuates LT-pRb interactions through LT's LXCXE motif. We found that many of the phenotypes including tumorigenesis that develop in the K14-driven MCPyV transgenic mice were dependent upon LT's LXCXE-dependent interaction with pRb. These findings highlight the importance of the MCPyV LT-pRb interaction in an in vivo model for MCPyV-induced tumorigenesis.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Infecções Tumorais por Vírus , Animais , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Transformação Celular Neoplásica , Hiperplasia/patologia , Células de Merkel/metabolismo , Células de Merkel/patologia , Poliomavírus das Células de Merkel/genética , Camundongos , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...