Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.229
Filtrar
1.
PLoS One ; 19(5): e0294998, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713688

RESUMO

Tularemia is a zoonotic disease caused by the facultative intracellular gram-negative bacterium Francisella tularensis. F. tularensis has a very low infection dose by the aerosol route which can result in an acute, and potentially lethal, infection in humans. Consequently, it is classified as a Category A bioterrorism agent by the US Centers for Disease Control (CDC) and is a pathogen of concern for the International Biodefence community. There are currently no licenced tularemia vaccines. In this study we report on the continued assessment of a tularemia subunit vaccine utilising ß-glucan particles (GPs) as a vaccine delivery platform for immunogenic F. tularensis antigens. Using a Fischer 344 rat infection model, we demonstrate that a GP based vaccine comprising the F. tularensis lipopolysaccharide antigen together with the protein antigen FTT0814 provided partial protection of F344 rats against an aerosol challenge with a high virulence strain of F. tularensis, SCHU S4. Inclusion of imiquimod as an adjuvant failed to enhance protective efficacy. Moreover, the level of protection afforded was dependant on the challenge dose. Immunological characterisation of this vaccine demonstrated that it induced strong antibody immunoglobulin responses to both polysaccharide and protein antigens. Furthermore, we demonstrate that the FTT0814 component of the GP vaccine primed CD4+ and CD8+ T-cells from immunised F344 rats to express interferon-γ, and CD4+ cells to express interleukin-17, in an antigen specific manner. These data demonstrate the development potential of this tularemia subunit vaccine and builds on a body of work highlighting GPs as a promising vaccine platform for difficult to treat pathogens including those of concern to the bio-defence community.


Assuntos
Vacinas Bacterianas , Modelos Animais de Doenças , Francisella tularensis , Ratos Endogâmicos F344 , Tularemia , Vacinas de Subunidades Antigênicas , Animais , Tularemia/prevenção & controle , Tularemia/imunologia , Ratos , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Francisella tularensis/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Glucanos/imunologia , Glucanos/farmacologia , Linfócitos T/imunologia , Feminino , Antígenos de Bactérias/imunologia
2.
Sci Rep ; 14(1): 10375, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710737

RESUMO

Tuberculosis (TB) a disease caused by Mycobacterium tuberculosis (Mtb) poses a significant threat to human life, and current BCG vaccinations only provide sporadic protection, therefore there is a need for developing efficient vaccines. Numerous immunoinformatic methods have been utilized previously, here for the first time a deep learning framework based on Deconvolutional Neural Networks (DCNN) and Bidirectional Long Short-Term Memory (DCNN-BiLSTM) was used to predict Mtb Multiepitope vaccine (MtbMEV) subunits against six Mtb H37Rv proteins. The trained model was used to design MEV within a few minutes against TB better than other machine learning models with 99.5% accuracy. The MEV has good antigenicity, and physiochemical properties, and is thermostable, soluble, and hydrophilic. The vaccine's BLAST search ruled out the possibility of autoimmune reactions. The secondary structure analysis revealed 87% coil, 10% beta, and 2% alpha helix, while the tertiary structure was highly upgraded after refinement. Molecular docking with TLR3 and TLR4 receptors showed good binding, indicating high immune reactions. Immune response simulation confirmed the generation of innate and adaptive responses. In-silico cloning revealed the vaccine is highly expressed in E. coli. The results can be further experimentally verified using various analyses to establish a candidate vaccine for future clinical trials.


Assuntos
Mycobacterium tuberculosis , Redes Neurais de Computação , Vacinas contra a Tuberculose , Vacinas contra a Tuberculose/imunologia , Mycobacterium tuberculosis/imunologia , Humanos , Simulação de Acoplamento Molecular , Desenvolvimento de Vacinas/métodos , Epitopos/imunologia , Tuberculose/prevenção & controle , Tuberculose/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/química
3.
Elife ; 122024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805257

RESUMO

Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH-dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Macrófagos , Mycobacterium tuberculosis , Fagossomos , Anticorpos de Domínio Único , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Fagossomos/metabolismo , Concentração de Íons de Hidrogênio , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Anticorpos de Domínio Único/metabolismo , Humanos , Simulação de Dinâmica Molecular , Animais
4.
Front Immunol ; 15: 1392456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779673

RESUMO

In response to the global threat posed by bacterial pathogens, which are the second leading cause of death worldwide, vaccine development is challenged by the diversity of bacterial serotypes and the lack of immunoprotection across serotypes. To address this, we introduce BacScan, a novel genome-wide technology for the rapid discovery of conserved highly immunogenic proteins (HIPs) across serotypes. Using bacterial-specific serum, BacScan combines phage display, immunoprecipitation, and next-generation sequencing to comprehensively identify all the HIPs in a single assay, thereby paving the way for the development of universally protective vaccines. Our validation of this technique with Streptococcus suis, a major pathogenic threat, led to the identification of 19 HIPs, eight of which conferred 20-100% protection against S. suis challenge in animal models. Remarkably, HIP 8455 induced complete immunity, making it an exemplary vaccine target. BacScan's adaptability to any bacterial pathogen positions it as a revolutionary tool that can expedite the development of vaccines with broad efficacy, thus playing a critical role in curbing bacterial transmission and slowing the march of antimicrobial resistance.


Assuntos
Proteínas de Bactérias , Animais , Camundongos , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/prevenção & controle , Streptococcus suis/imunologia , Streptococcus suis/genética , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Feminino , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Humanos , Vacinas Bacterianas/imunologia
5.
Vet Immunol Immunopathol ; 272: 110757, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723459

RESUMO

The dynamics that develop between cells and molecules in the host against infection by Mycobacterium bovis, leads to the formation of granulomas mainly present in the lungs and regional lymph nodes in cattle. Cell death is one of the main features in granuloma organization, however, it has not been characterized in granulomatous lesions caused by M. bovis. In this study we aimed to identify the profiles of cell death in the granuloma stages and its relationship with the accumulation of bacteria. We identified necrosis, activated caspase-3, LC3B/p62 using immunohistochemistry and digital pathology analysis on 484 granulomatous lesions in mediastinal lymph nodes from 23 naturally infected cattle. Conclusions: greater amounts of mycobacterial antigens were identified in granulomas from calves compared with adult cattle. The highest percentage of necrosis and quantity of mycobacterial antigens were identified in granuloma stages (III/IV) from adults. The LC3B/p62 profile was heterogeneous in granulomas between adults and calves. Our data suggest that necrosis is associated with a higher amount of mycobacterial antigens in the late stages of granuloma and the development of autophagy appears to play an heterogeneous effector response against infection in adults and calves. These results represent one of the first approaches in the identification of cell death in the four stages of granulomas in bovine tuberculosis.


Assuntos
Antígenos de Bactérias , Granuloma , Mycobacterium bovis , Necrose , Tuberculose Bovina , Animais , Bovinos , Granuloma/veterinária , Granuloma/imunologia , Granuloma/microbiologia , Granuloma/patologia , Mycobacterium bovis/imunologia , Mycobacterium bovis/patogenicidade , Necrose/veterinária , Necrose/imunologia , Necrose/microbiologia , Tuberculose Bovina/imunologia , Tuberculose Bovina/microbiologia , Tuberculose Bovina/patologia , Antígenos de Bactérias/imunologia , Linfonodos/microbiologia , Linfonodos/imunologia , Linfonodos/patologia , Caspase 3/imunologia , Imuno-Histoquímica/veterinária
6.
Cell Mol Biol Lett ; 29(1): 70, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741147

RESUMO

BACKGROUND: Mycobacterium tuberculosis heat-resistant antigen (Mtb-HAg) is a peptide antigen released from the mycobacterial cytoplasm into the supernatant of Mycobacterium tuberculosis (Mtb) attenuated H37Ra strain after autoclaving at 121 °C for 20 min. Mtb-HAg can specifically induce γδ T-cell proliferation in vitro. However, the exact composition of Mtb-HAg and the protein antigens that are responsible for its function are currently unknown. METHODS: Mtb-HAg extracted from the Mtb H37Ra strain was subjected to LC‒MS mass spectrometry. Twelve of the identified protein fractions were recombinantly expressed in Escherichia coli by genetic engineering technology using pET-28a as a plasmid and purified by Ni-NTA agarose resin to stimulate peripheral blood mononuclear cells (PBMCs) from different healthy individuals. The proliferation of γδ T cells and major γδ T-cell subset types as well as the production of TNF-α and IFN-γ were determined by flow cytometry. Their proliferating γδ T cells were isolated and purified using MACS separation columns, and Mtb H37Ra-infected THP-1 was co-cultured with isolated and purified γδ T cells to quantify Mycobacterium viability by counting CFUs. RESULTS: In this study, Mtb-HAg from the attenuated Mtb H37Ra strain was analysed by LC‒MS mass spectrometry, and a total of 564 proteins were identified. Analysis of the identified protein fractions revealed that the major protein components included heat shock proteins and Mtb-specific antigenic proteins. Recombinant expression of 10 of these proteins in by Escherichia coli genetic engineering technology was used to successfully stimulate PBMCs from different healthy individuals, but 2 of the proteins, EsxJ and EsxA, were not expressed. Flow cytometry results showed that, compared with the IL-2 control, HspX, GroEL1, and GroES specifically induced γδ T-cell expansion, with Vγ2δ2 T cells as the main subset, and the secretion of the antimicrobial cytokines TNF-α and IFN-γ. In contrast, HtpG, DnaK, GroEL2, HbhA, Mpt63, EsxB, and EsxN were unable to promote γδ T-cell proliferation and the secretion of TNF-α and IFN-γ. None of the above recombinant proteins were able to induce the secretion of TNF-α and IFN-γ by αß T cells. In addition, TNF-α, IFN-γ-producing γδ T cells inhibit the growth of intracellular Mtb. CONCLUSION: Activated γδ T cells induced by Mtb-HAg components HspX, GroES, GroEL1 to produce TNF-α, IFN-γ modulate macrophages to inhibit intracellular Mtb growth. These data lay the foundation for subsequent studies on the mechanism by which Mtb-HAg induces γδ T-cell proliferation in vitro, as well as the development of preventive and therapeutic vaccines and rapid diagnostic reagents.


Assuntos
Antígenos de Bactérias , Proliferação de Células , Mycobacterium tuberculosis , Linfócitos T , Humanos , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/genética , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Interferon gama/metabolismo , Interferon gama/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Fator de Necrose Tumoral alfa/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia
7.
BMC Infect Dis ; 24(1): 481, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730343

RESUMO

BACKGROUND: Tuberculosis (TB) poses a major public health challenge, particularly in children. A substantial proportion of children with TB disease remain undetected and unconfirmed. Therefore, there is an urgent need for a highly sensitive point-of-care test. This study aims to assess the performance of serological assays based on various antigen targets and antibody properties in distinguishing children (0-18 years) with TB disease (1) from healthy TB-exposed children, (2) children with non-TB lower respiratory tract infections, and (3) from children with TB infection. METHODS: The study will use biobanked plasma samples collected from three prospective multicentric diagnostic observational studies: the Childhood TB in Switzerland (CITRUS) study, the Pediatric TB Research Network in Spain (pTBred), and the Procalcitonin guidance to reduce antibiotic treatment of lower respiratory tract infections in children and adolescents (ProPAED) study. Included are children diagnosed with TB disease or infection, healthy TB-exposed children, and sick children with non-TB lower respiratory tract infection. Serological multiplex assays will be performed to identify M. tuberculosis antigen-specific antibody features, including isotypes, subclasses, Fc receptor (FcR) binding, and IgG glycosylation. DISCUSSION: The findings from this study will help to design serological assays for diagnosing TB disease in children. Importantly, those assays could easily be developed as low-cost point-of-care tests, thereby offering a potential solution for resource-constrained settings. GOV IDENTIFIER: NCT03044509.


Assuntos
Testes Sorológicos , Tuberculose , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Mycobacterium tuberculosis/imunologia , Testes Imediatos , Estudos Prospectivos , Testes Sorológicos/métodos , Espanha , Suíça , Tuberculose/diagnóstico , Tuberculose/sangue
8.
PLoS One ; 19(5): e0301688, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768145

RESUMO

Swine atrophic rhinitis is a disease caused by Pasteurella multocida and Bordetella bronchiseptica that affects pigs. Inactivated vaccines containing the toxins produced by Pasteurella multocida and Bordetella bronchiseptica have been widely used for the prevention of swine atrophic rhinitis. The efficacy of a vaccine is correlated with the amount of antigen present; however, the protective toxin of P. multocida bound to aluminum hydroxide, which is used as an adjuvant, can hinder the monitoring of the antigen concentration in the vaccine. This study assessed the applicability of a dot immunoassay as an antigen quantification method using monoclonal antibodies. This quantification method was able to detect the antigen with high specificity and sensitivity even when the antigen was bound to the adjuvant, and its application to vaccine products revealed a correlation between the amount of antigen present in the vaccine and the neutralizing antibody titers induced in pigs. The antigen quantification method presented in this study is a simple and sensitive assay capable of quantifying the amount of antigen present in a vaccine that can be used as an alternative quality control measure.


Assuntos
Adjuvantes Imunológicos , Hidróxido de Alumínio , Antígenos de Bactérias , Vacinas Bacterianas , Pasteurella multocida , Rinite Atrófica , Doenças dos Suínos , Animais , Pasteurella multocida/imunologia , Suínos , Rinite Atrófica/imunologia , Rinite Atrófica/prevenção & controle , Rinite Atrófica/microbiologia , Vacinas Bacterianas/imunologia , Antígenos de Bactérias/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/microbiologia , Doenças dos Suínos/imunologia , Bordetella bronchiseptica/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/imunologia , Anticorpos Neutralizantes/imunologia
9.
Front Immunol ; 15: 1378040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698866

RESUMO

Background: Interleukin-17-producing CD4 T cells contribute to the control of Mycobacterium tuberculosis (Mtb) infection in humans; whether infection with human immunodeficiency virus (HIV) disproportionately affects distinct Th17-cell subsets that respond to Mtb is incompletely defined. Methods: We performed high-definition characterization of circulating Mtb-specific Th17 cells by spectral flow cytometry in people with latent TB and treated HIV (HIV-ART). We also measured kynurenine pathway activity by liquid chromatography-mass spectrometry (LC/MS) on plasma and tested the hypothesis that tryptophan catabolism influences Th17-cell frequencies in this context. Results: We identified two subsets of Th17 cells: subset 1 defined as CD4+Vα7.2-CD161+CD26+and subset 2 defined as CD4+Vα7.2-CCR6+CXCR3-cells of which subset 1 was significantly reduced in latent tuberculosis infection (LTBI) with HIV-ART, yet Mtb-responsive IL-17-producing CD4 T cells were preserved; we found that IL-17-producing CD4 T cells dominate the response to Mtb antigen but not cytomegalovirus (CMV) antigen or staphylococcal enterotoxin B (SEB), and tryptophan catabolism negatively correlates with both subset 1 and subset 2 Th17-cell frequencies. Conclusions: We found differential effects of ART-suppressed HIV on distinct subsets of Th17 cells, that IL-17-producing CD4 T cells dominate responses to Mtb but not CMV antigen or SEB, and that kynurenine pathway activity is associated with decreases of circulating Th17 cells that may contribute to tuberculosis immunity.


Assuntos
Antígenos de Bactérias , Infecções por HIV , Interleucina-17 , Tuberculose Latente , Mycobacterium tuberculosis , Células Th17 , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antígenos de Bactérias/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Imunofenotipagem , Interleucina-17/metabolismo , Interleucina-17/imunologia , Cinurenina/metabolismo , Tuberculose Latente/imunologia , Tuberculose Latente/microbiologia , Mycobacterium tuberculosis/imunologia , Fenótipo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Triptofano/metabolismo
10.
J Int Med Res ; 52(5): 3000605241253454, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38759213

RESUMO

OBJECTIVE: To explore the prevalence of type I and type II Helicobacter pylori infection and investigate risk factors in a population from Hainan Province in China. METHODS: Data came from a large, cross-sectional study conducted from August 2022 to April 2023 involving five cities of Hainan. Subjects with confirmed 14C-urea breath test (UBT) and positive serological assay were included. All subjects had a gastroscopy. According to presence or absence of CagA/VacA proteins, subjects were classified as either type I (present) or type II strains (absent). Gastroscopic findings and several socio-demographic factors were examined for correlation with antibody serotyping. RESULTS: In total, 410 subjects were investigated for H. pylori strain types. The overall prevalence of the highly virulent, type I H. pylori strain was 79% (324/410) and type II strain was 21% (86/410). There was a strong association between type I strain and peptic ulcer disease. Of several sociodemographic factors investigated, only smoking and data over baseline (DOB) values showed significant differences between type 1 and type II strains. Logistic regression analysis showed a lower risk of type I H. pylori infection in smokers compared with non-smokers, and a higher risk of H. pylori type I infection in subjects with medium and high data over baseline (DOB) values compared with subjects who had low DOB values. CONCLUSION: Highly virulent, type I H. pylori infections predominate in Hainan and the co-positivity of CagA and VacA antibodies are related to type I H. pylori infection. We found that Type I H. pylori was closely associated with peptic ulcer disease and the DOB values were generally high.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/isolamento & purificação , Helicobacter pylori/imunologia , Helicobacter pylori/patogenicidade , Masculino , Feminino , China/epidemiologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/epidemiologia , Infecções por Helicobacter/diagnóstico , Pessoa de Meia-Idade , Fatores de Risco , Estudos Transversais , Adulto , Proteínas de Bactérias , Prevalência , Antígenos de Bactérias/imunologia , Úlcera Péptica/microbiologia , Úlcera Péptica/epidemiologia , Idoso , Testes Respiratórios , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia
11.
Diagn Microbiol Infect Dis ; 109(3): 116338, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718661

RESUMO

The diagnosis if leprosy is difficult, as it requires clinical expertise and sensitive laboratory tests. In this study, we develop a serological test for leprosy by using bioinformatics tools to identify specific B-cell epitopes from Mycobacterium leprae hypothetical proteins, which were used to construct a recombinant chimeric protein, M1. The synthetic peptides were obtained and showed good reactivity to detect leprosy patients, although the M1 chimera have showed sensitivity (Se) and specificity (Sp) values higher than 90.0% to diagnose both paucibacillary (PB) and multibacillary (MB) leprosy patients, but not those developing tegumentary or visceral leishmaniasis, tuberculosis, Chagas disease, malaria, histoplasmosis and aspergillosis, in ELISA experiments. Using sera from household contacts, values for Se and Sp were 100% and 65.3%, respectively. In conclusion, our proof-of-concept study has generated data that suggest that a new recombinant protein could be developed into a diagnostic antigen for leprosy.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Epitopos de Linfócito B , Hanseníase , Mycobacterium leprae , Sensibilidade e Especificidade , Humanos , Mycobacterium leprae/imunologia , Mycobacterium leprae/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Hanseníase/diagnóstico , Hanseníase/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/genética , Ensaio de Imunoadsorção Enzimática/métodos , Adulto , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Masculino , Feminino , Testes Sorológicos/métodos , Biologia Computacional/métodos , Pessoa de Meia-Idade , Adulto Jovem , Adolescente
12.
Vet Immunol Immunopathol ; 272: 110768, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703559

RESUMO

The Mycoplasma hyorhinis (Mhr) variable lipoprotein (Vlp) family, comprising Vlps A, B, C, D, E, F, and G, are highly variable in expression, size, and cytoadhesion capabilities across Mhr strains. The 'Vlp system' plays a crucial role in cytoadhesion, immune evasion, and in eliciting a host immunologic response. This pilot study described the development of Vlp peptide-based ELISAs to evaluate the antigenic reactivity of individual Vlps against Mhr antisera collected throughout a longitudinal study focused on Mhr strain 38983, reproducing Mhr-associated disease under experimental conditions. Specifically, serum samples were collected at day post-inoculation 0, 7, 10, 14, 17, 21, 24, 28, 35, 42, 49, and 56 from Mhr- and mock (Friis medium)-inoculated cesarean-derived, colostrum-deprived pigs. Significant Mhr-specific IgG responses were detected at specific time points throughout the infection, with some variations for each Vlp. Overall, individual Vlp ELISAs showed consistently high accuracy rates, except for VlpD, which would likely be associated with its expression levels or the anti-Vlp humoral immune response specific to the Mhr strain used in this study. This study provides the basis and tools for a more refined understanding of these Vlp- and Mhr strain-specific variations, which is foundational in understanding the host immune response to Mhr.


Assuntos
Lipoproteínas , Infecções por Mycoplasma , Mycoplasma hyorhinis , Animais , Lipoproteínas/imunologia , Mycoplasma hyorhinis/imunologia , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/veterinária , Suínos/imunologia , Ensaio de Imunoadsorção Enzimática/veterinária , Projetos Piloto , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Feminino , Proteínas de Bactérias/imunologia , Estudos Longitudinais
13.
Biochem Biophys Res Commun ; 717: 150040, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38718566

RESUMO

Mtb12, a small protein secreted by Mycobacterium tuberculosis, is known to elicit immune responses in individuals infected with the pathogen. It serves as an antigen recognized by the host's immune system. Due to its immunogenic properties and pivotal role in tuberculosis (TB) pathogenesis, Mtb12 is considered a promising candidate for TB diagnosis and vaccine development. However, the structural and functional properties of Mtb12 are largely unexplored, representing a significant gap in our understanding of M. tuberculosis biology. In this study, we present the first structure of Mtb12, which features a unique tertiary configuration consisting of four beta strands and four alpha helices. Structural analysis reveals that Mtb12 has a surface adorned with a negatively charged pocket adjacent to a central cavity. The features of these structural elements and their potential effects on the function of Mtb12 warrant further exploration. These findings offer valuable insights for vaccine design and the development of diagnostic tools.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Mycobacterium tuberculosis , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/metabolismo , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Peso Molecular , Sequência de Aminoácidos , Conformação Proteica , Humanos
14.
BMC Immunol ; 25(1): 27, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38706005

RESUMO

BACKGROUND: Due to antibiotic resistance, the Klebsiella genus is linked to morbidity and death, necessitating the development of a universally protective vaccine against Klebsiella pathogens. METHODS: Core sequence analysis prioritized non-redundant host molecules and expected lipid bilayer peptides from fully sequenced Klebsiella genomes. These proteins were refined to identify epitopes, examining their immunogenicity, toxicity, solubility, and interaction with MHC alleles. Epitopes were linked to CPG ODN C274 via EAAAK, HEYGAEALERAG, and GGGS linkers to enhance immunological responses. The vaccine's tertiary structure was modelled and docked with MHC-I and MHC-II. RESULTS: Fifty-five proteins were recognized in the Vaxign collection as having remarkable features. Twenty-three proteins with potential pathogenicity were then identified. Eight options for vaccines emerged after the immunogenicity of proteins was examined. The best antigens were three proteins: MrkD, Iron-regulated lipid membrane polypeptides, and RmpA. These compounds were selected for their sensitivity. The structural protein sequences of K. pneumoniae were utilized to identify seven CTL epitopes, seven HTL epitopes, and seven LBL epitopes, respectively. The produced immunization displayed a stable contact with the receptors, based on molecular dynamic simulations lasting 250 nanoseconds. Intermolecular binding free energies also indicated the dominance of the van der Waals and electrostatic energies. CONCLUSION: In summary, the results of this study might help scientists develop a novel vaccine to prevent K. pneumoniae infections.


Assuntos
Vacinas Bacterianas , Infecções por Klebsiella , Klebsiella pneumoniae , Klebsiella pneumoniae/imunologia , Vacinas Bacterianas/imunologia , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/prevenção & controle , Animais , Epitopos de Linfócito T/imunologia , Camundongos , Humanos , Simulação de Dinâmica Molecular , Antígenos de Bactérias/imunologia , Oligodesoxirribonucleotídeos/imunologia , Epitopos/imunologia , Simulação de Acoplamento Molecular
15.
Mol Biomed ; 5(1): 15, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679629

RESUMO

Tuberculosis (TB) is an infectious disease that significantly threatens human health. However, the differential diagnosis of latent tuberculosis infection (LTBI) and active tuberculosis (ATB) remains a challenge for clinicians in early detection and preventive intervention. In this study, we developed a novel biomarker named HP16118P, utilizing 16 helper T lymphocyte (HTL) epitopes, 11 cytotoxic T lymphocyte (CTL) epitopes, and 8 B cell epitopes identified from 15 antigens associated with LTBI-RD using the IEDB database. We analyzed the physicochemical properties, spatial structure, and immunological characteristics of HP16118P using various tools, which indicated that it is a hydrophilic and relatively stable alkaline protein. Furthermore, HP16118P exhibited good antigenicity and immunogenicity, while being non-toxic and non-allergenic, with the potential to induce immune responses. We observed that HP16118P can stimulate the production of high levels of IFN-γ+ T lymphocytes in individuals with ATB, LTBI, and health controls. IL-5 induced by HP16118P demonstrated potential in distinguishing LTBI individuals and ATB patients (p=0.0372, AUC=0.8214, 95% CI [0.5843 to 1.000]) with a sensitivity of 100% and specificity of 71.43%. Furthermore, we incorporated the GM-CSF, IL-23, IL-5, and MCP-3 induced by HP16118P into 15 machine learning algorithms to construct a model. It was found that the Quadratic discriminant analysis model exhibited the best diagnostic performance for discriminating between LTBI and ATB, with a sensitivity of 1.00, specificity of 0.86, and accuracy of 0.93. In summary, HP16118P has demonstrated strong antigenicity and immunogenicity, with the induction of GM-CSF, IL-23, IL-5, and MCP-3, suggesting their potential for the differential diagnosis of LTBI and ATB.


Assuntos
Biomarcadores , Tuberculose Latente , Mycobacterium tuberculosis , Humanos , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Biomarcadores/sangue , Diagnóstico Diferencial , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Tuberculose Latente/diagnóstico , Tuberculose Latente/imunologia , Mycobacterium tuberculosis/imunologia
16.
Rev Alerg Mex ; 71(1): 57, 2024 Feb 01.
Artigo em Espanhol | MEDLINE | ID: mdl-38683075

RESUMO

OBJECTIVE: Identify molecular mimicry between TPO, eosinophil peroxidase (EPX), thyroglobulin and IL24 and microorganism antigens. METHODS: Through in silico analysis, we performed local alignments between human and microorganism antigens with PSI-BLAST. Proteins that did not present a 3D structure were modeled by homology through the Swiss Modeller server and epitope prediction was performed through Ellipro. Epitopes were located in the 3D models using PYMOL software. RESULTS: A total of 38 microorganism antigens (parasites, bacteria) had identities between 30% and 45%, being the highest with Anisakis simplex. The alignment between 2 candidate proteins from A. simplex and EPX presented significant values, with identities of 43 and 44%. In bacteria, Campylobacter jejuni presented the highest identity with thyroglobulin (35%). 220 linear and conformational epitopes of microorganism antigens were predicted. Peroxidasin-like proteins from Toxocara canis and Trichinella pseudospiralis presented 10 epitopes similar to TPO and EPX, as possible molecules triggering cross-reactivity. No virus presented identity with the human proteins studied. CONCLUSION: TPO and EPX antigens shared potential cross-reactive epitopes with bacterial and nematode proteins, suggesting that molecular mimicry could be a mechanism that explains the relationship between infections and urticaria/hypothyroidism. In vitro work is needed to demonstrate the results obtained in the in silico analysis.


OBJETIVO: Identificar mimetismo molecular entre TPO, eosinofil peroxidasa (EPX), tiroglobulina e IL24 y antígenos de microorganismos. MÉTODOS: A través de análisis in silico, realizamos los alineamientos locales entre los antígenos humanos y de microorganismos con PSI-BLAST. Las proteínas que no presentaban estructura 3D, fueron modeladas por homología a través del servidor Swiss Modeller y se realizó una predicción de epítopes a través de Ellipro. Los epítopes se localizaron en los modelos 3D utilizando el software PYMOL. RESULTADOS: Un total de 38 antígenos de microorganismos (parásitos y bacterias), tuvieron identidades entre 30 y 45%, siendo los más altos con Anisakis simplex. El alineamiento entre dos proteínas candidatas de A. simplex y EPX presentaron valores importantes, con identidades de 43 y 44%. En las bacterias, Campylobacter jejuni presentó la mayor identidad con tiroglobulina (35%). Se predijeron 220 epítopes lineales y conformacionales de antígenos de microorganismos. Las proteínas similares a la peroxidasina de Toxocara canis y Trichinella pseudospiralis presentaron diez epítopes similares a TPO y EPX, como posibles moléculas desencadenantes de una reactividad cruzada. Ningún virus presentó identidad con las proteínas humanas estudiadas. CONCLUSIÓN: Los antígenos TPO y EPX compartieron potenciales epítopes de reacción cruzada con proteínas bacterianas y nematodos, lo que sugiere que el mimetismo molecular podría ser un mecanismo que explique la relación entre infecciones y la urticaria/hipotiroidismo. Se necesitan trabajos in vitro que demuestren los resultados obtenidos en el análisis in silico.


Assuntos
Autoantígenos , Iodeto Peroxidase , Mimetismo Molecular , Tireoglobulina , Mimetismo Molecular/imunologia , Humanos , Tireoglobulina/imunologia , Iodeto Peroxidase/imunologia , Peroxidase de Eosinófilo/imunologia , Animais , Antígenos de Bactérias/imunologia , Reações Cruzadas , Proteínas de Ligação ao Ferro/imunologia , Epitopos/imunologia
17.
Rev Alerg Mex ; 71(1): 61, 2024 Feb 01.
Artigo em Espanhol | MEDLINE | ID: mdl-38683079

RESUMO

INTRODUCTION: Cardiovascular diseases are the result of genetic and environmental interaction that conditions the integrity of the heart and blood vessels. Risk factors include infections. The inflammatory response against the infectious agent is a trigger of autoimmune cardiovascular diseases due to the similarity between the pathogen proteins and human antigens, since the immune response can present cross-reactivity caused by molecular mimicry. METHODS: We performed a search for pathogens involved in autoimmune heart diseases and autoantigens 9 associated with these diseases in the Pubmed and Google Scholar search engines. Identity between proteins was performed through global alignments using PSI-BLAST. The 3D structures of the proteins were obtained by Uniprot or NCBI and, if not found, the structure was modeled by homology using the Swiss Model server. Epitope prediction was performed through Ellipro and the Immunological Epitope Database (IEDB). In addition, the PYMOL program was used to visualize proteins in 3D and position the epitopes in the structure. RESULTS: A total of ten cardiovascular proteins showed identity (30-88,24%) in their amino acid sequences with antigens from 10 pathogens. Actin proteins and heat shock protein (HSP) families had higher levels of identity with Trypanosoma Cruzi, Cryptococcus neoformans, and Chlamydia trachomatis, 71,47%, 88,24%, and 80,61%, respectively. Other pathogens, such as Streptococcus pyogenes, Bacillus sp, Magnetospirillum gryphiswaldense, Helicobacter pylori and Chlamydia pneumoniae, presented a moderate identity with a maximum value of 65,79%. CONCLUSION: Human actin and HSPs share a high degree of conservation with epitopes from various microorganisms, such as bacteria, fungi and protozoa, suggesting molecular mimicry and cross-reactivity as a mechanism for the development of atherosclerosis, heart disease rheumatic disease, myocarditis and Chagas heart disease. In vitro and in vivo work is needed to demonstrate the results obtained in the In Silico analysis.


INTRODUCCIÓN: Las enfermedades cardiovasculares son el resultado de la interacción genética y ambiental que condiciona la integridad del corazón y los vasos sanguíneos. Los factores de riesgo incluyen infecciones. La respuesta inflamatoria contra el agente infeccioso es un desencadenante de las enfermedades cardiovasculares autoinmunes, debido a la similitud entre las proteínas del patógeno y los antígenos humanos, pues la respuesta inmunitaria puede presentar reactividad cruzada causada por mimetismo molecular. MÉTODOS: Realizamos una búsqueda de patógenos involucrados en enfermedades cardíacas autoinmunes y de autoantígenos asociados a estas enfermedades en los buscadores Pubmed y Google Scholar. La identidad entre proteínas se realizó a través de alineamientos globales utilizando PSI-BLAST. Las estructuras 3D de las proteínas fue obtenida por Uniprot o NCBI y, si no se encontraban, las estructuras se modelaban por homología, utilizando el servidor Swiss Model. La predicción de los epítopes se realizó a través de Ellipro, y la Base de Datos de Epítopos Inmunológicos (IEDB). Además, se utilizó el programa PYMOL para la visualización de proteínas en 3D, y el posicionamiento de los epítopes en la estructura. RESULTADOS: Diez proteínas cardiovasculares mostraron una identidad (30-88,24%) en sus secuencias de aminoácidos con antígenos de diez patógenos. Las proteínas de actina y las familias de proteínas de choque térmico (HSP, por sus siglas en inglés), presentaron niveles de identidad más altos con Trypanosoma Cruzi, Cryptococcus neoformans y Chlamydia trachomatis, 71,47%, 88,24% y 80,61%, respectivamente. Otros patógenos, como Streptococcus pyogenes, Bacillus sp, Magnetospirillum gryphiswaldense, Helicobacter pylori y Chlamydia pneumoniae, presentaron identidad moderada con un valor máximo del 65,79%. CONCLUSIÓN: La actina humana y las HSP comparten un alto grado de conservación con epítopos de varios microorganismos, como bacterias, hongos y protozoos; lo que sugiere la imitación molecular y la reactividad cruzada como mecanismos para el desarrollo de la aterosclerosis, la enfermedad cardíaca reumática, la miocarditis y la enfermedad cardíaca de Chagas. Se necesitan trabajos in vitro e in vivo, que demuestren los resultados obtenidos en el análisis In Silico.


Assuntos
Doenças Cardiovasculares , Mimetismo Molecular , Humanos , Mimetismo Molecular/imunologia , Antígenos de Bactérias/imunologia , Autoantígenos/imunologia , Doenças Autoimunes/imunologia
18.
PLoS One ; 19(4): e0301609, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38687765

RESUMO

Bovine tuberculosis is usually diagnosed using tuberculin skin tests or at post-mortem. Recently, we have developed a serological test for bovine tuberculosis in cattle which shows a high degree of accuracy using serum samples. Here, we have assessed the performance of the test using individual bovine milk samples. The diagnostic specificity estimate using the high sensitivity setting of the test was 99.7% (95% CI: 99.2-99.9). This estimate was not altered significantly by tuberculin boosting. The relative sensitivity estimates of the test using the high sensitivity setting in milk samples from comparative skin test positive animals was 90.8% (95% CI: 87.1-93.6) with boosting. In animals with lesions, the relative sensitivity was 96.0% (95% CI: 89.6-98.7). Analysis of paired serum and milk samples from skin test positive animals showed correlation coefficients ranging from 0.756-0.955 for individual antigens used in the test. Kappa analysis indicated almost perfect agreement between serum and milk results, while McNemar marginal homogeneity analysis showed no statistically significant differences between the two media. The positive and negative likelihood ratio were 347.8 (95% CI: 112.3-1077.5) and 0.092 (95% CI: 0.07-0.13) respectively for boosted samples from skin test positive animals. The results show that the test has high sensitivity and specificity in individual milk samples and thus milk samples could be used for the diagnosis of bovine tuberculosis.


Assuntos
Leite , Sensibilidade e Especificidade , Tuberculose Bovina , Animais , Bovinos , Leite/imunologia , Tuberculose Bovina/diagnóstico , Tuberculose Bovina/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Teste Tuberculínico/veterinária , Teste Tuberculínico/métodos , Mycobacterium bovis/imunologia , Feminino , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/análise
19.
Hum Vaccin Immunother ; 20(1): 2343544, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38655676

RESUMO

Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory illness in older adults. A major cause of COPD-related morbidity and mortality is acute exacerbation of COPD (AECOPD). Bacteria in the lungs play a role in exacerbation development, and the most common pathogen is non-typeable Haemophilus influenzae (NTHi). A vaccine to prevent AECOPD containing NTHi surface antigens was tested in a clinical trial. This study measured IgG and IgA against NTHi vaccine antigens in sputum. Sputum samples from 40 COPD patients vaccinated with the NTHi vaccine were collected at baseline and 30 days after the second dose. IgG and IgA antibodies against the target antigens and albumin were analyzed in the sputum. We compared antibody signals before and after vaccination, analyzed correlation with disease severity and between sputum and serum samples, and assessed transudation. Antigen-specific IgG were absent before vaccination and present with high titers after vaccination. Antigen-specific IgA before and after vaccination were low but significantly different for two antigens. IgG correlated between sputum and serum, and between sputum and disease severity. Sputum albumin was higher in patients with severe COPD than in those with moderate COPD, suggesting changes in transudation played a role. We demonstrated that immunization with the NTHi vaccine induces antigen-specific antibodies in sputum. The correlation between IgG from sputum and serum and the presence of albumin in the sputum of severe COPD patients suggested transudation of antibodies from the serum to the lungs, although local IgG production could not be excluded.Clinical Trial Registration: NCT02075541.


What is the context? Chronic obstructive pulmonary disease (COPD) is the most common chronic respiratory illness in older adults and the third leading cause of death worldwide.One bacterium in the lungs, non-typeable Haemophilus influenzae (NTHi), is responsible for acute exacerbation of the disease, characterized by an increase in airway wall inflammation and symptoms, leading to high morbidity and mortality.A vaccine targeting NTHi was previously developed but did not show efficacy in reducing exacerbations in COPD patients, probably because the vaccine did not elicit an immune response in the lung mucosae, where the bacteria are located.What is the impact? Parenteral immunization with new vaccines targeting NTHi is able to elicit immune defense at the level of lung mucosae.Now that antibodies can be measured in sputum, new vaccines against COPD exacerbations or other lung infections can be tested for efficacy in the actual target tissue.Also, lung immunity against specific pathogens can now be tested.What is new? We determined that antigen-specific antibodies were present in the lungs after vaccination; these were assessed in sputum after vaccination with NTHi surface antigens.NTHi-specific IgG were present in the lungs and appeared to have arrived there primarily by transudation, a type of leakage from the serum to the lung mucosae.Transudation appeared to be stronger in severe than in moderate COPD patients.


Assuntos
Anticorpos Antibacterianos , Antígenos de Bactérias , Infecções por Haemophilus , Vacinas Anti-Haemophilus , Haemophilus influenzae , Imunidade nas Mucosas , Imunoglobulina A , Imunoglobulina G , Doença Pulmonar Obstrutiva Crônica , Escarro , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Infecções por Haemophilus/imunologia , Infecções por Haemophilus/prevenção & controle , Haemophilus influenzae/imunologia , Vacinas Anti-Haemophilus/imunologia , Vacinas Anti-Haemophilus/administração & dosagem , Imunidade nas Mucosas/imunologia , Imunoglobulina A/imunologia , Imunoglobulina A/análise , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Pulmão/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Escarro/imunologia , Escarro/microbiologia
20.
Emerg Microbes Infect ; 13(1): 2348525, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38661428

RESUMO

To assess the clinical applicability of a semi-quantitative luciferase immunosorbent assay (LISA) for detecting antibodies against Treponema pallidum antigens TP0171 (TP15), TP0435 (TP17), and TP0574 (TP47) in diagnosing and monitoring syphilis. LISA for detection of anti-TP15, TP17, and TP47 antibodies were developed and evaluated for syphilis diagnosis using 261 serum samples (161 syphilis, 100 non-syphilis). Ninety serial serum samples from 6 syphilis rabbit models (3 treated, 3 untreated) and 110 paired serum samples from 55 syphilis patients were used to assess treatment effects by utilizing TRUST as a reference. Compared to TPPA, LISA-TP15, LISA-TP17, and LISA-TP47 showed a sensitivity of 91.9%, 96.9%, and 98.8%, specificity of 99%, 99%, and 98%, and AUC of 0.971, 0.992, and 0.995, respectively, in diagnosing syphilis. Strong correlations (rs = 0.89-0.93) with TPPA were observed. In serial serum samples from rabbit models, significant differences in the relative light unit (RLU) were observed between the treatment and control group for LISA-TP17 (days 31-51) and LISA-TP47 (day 41). In paired serum samples from syphilis patients, TRUST titres and the RLU of LISA-TP15, LISA-TP17, and LISA-TP47 decreased post-treatment (P < .001). When TRUST titres decreased by 0, 2, 4, or ≥8-folds, the RLU decreased by 17.53%, 31.34%, 48.62%, and 72.79% for LISA-TP15; 8.84%, 17.00%, 28.37%, and 50.57% for LISA-TP17; 22.25%, 29.79%, 51.75%, and 70.28% for LISA-TP47, respectively. Semi-quantitative LISA performs well for syphilis diagnosis while LISA-TP17 is more effective for monitoring syphilis treatment in rabbit models and clinical patients.


Assuntos
Anticorpos Antibacterianos , Antígenos de Bactérias , Sensibilidade e Especificidade , Sífilis , Treponema pallidum , Sífilis/diagnóstico , Sífilis/microbiologia , Sífilis/sangue , Treponema pallidum/imunologia , Animais , Humanos , Coelhos , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Masculino , Feminino , Adulto , Luciferases/genética , Sorodiagnóstico da Sífilis/métodos , Pessoa de Meia-Idade , Modelos Animais de Doenças , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...