Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.743
Filtrar
1.
Sci Rep ; 14(1): 10375, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710737

RESUMO

Tuberculosis (TB) a disease caused by Mycobacterium tuberculosis (Mtb) poses a significant threat to human life, and current BCG vaccinations only provide sporadic protection, therefore there is a need for developing efficient vaccines. Numerous immunoinformatic methods have been utilized previously, here for the first time a deep learning framework based on Deconvolutional Neural Networks (DCNN) and Bidirectional Long Short-Term Memory (DCNN-BiLSTM) was used to predict Mtb Multiepitope vaccine (MtbMEV) subunits against six Mtb H37Rv proteins. The trained model was used to design MEV within a few minutes against TB better than other machine learning models with 99.5% accuracy. The MEV has good antigenicity, and physiochemical properties, and is thermostable, soluble, and hydrophilic. The vaccine's BLAST search ruled out the possibility of autoimmune reactions. The secondary structure analysis revealed 87% coil, 10% beta, and 2% alpha helix, while the tertiary structure was highly upgraded after refinement. Molecular docking with TLR3 and TLR4 receptors showed good binding, indicating high immune reactions. Immune response simulation confirmed the generation of innate and adaptive responses. In-silico cloning revealed the vaccine is highly expressed in E. coli. The results can be further experimentally verified using various analyses to establish a candidate vaccine for future clinical trials.


Assuntos
Mycobacterium tuberculosis , Redes Neurais de Computação , Vacinas contra a Tuberculose , Vacinas contra a Tuberculose/imunologia , Mycobacterium tuberculosis/imunologia , Humanos , Simulação de Acoplamento Molecular , Desenvolvimento de Vacinas/métodos , Epitopos/imunologia , Tuberculose/prevenção & controle , Tuberculose/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/química
2.
ACS Biomater Sci Eng ; 10(5): 3387-3400, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38656158

RESUMO

Given the worldwide problem posed by enteric pathogens, the discovery of safe and efficient intestinal adjuvants combined with novel antigen delivery techniques is essential to the design of mucosal vaccines. In this work, we designed poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) to codeliver all-trans retinoic acid (atRA), novel antigens, and CpG. To address the insolubility of the intestinal adjuvant atRA, we utilized PLGA to encapsulate atRA and form a "nanocapsid" with polydopamine. By leveraging polydopamine, we adsorbed the water-soluble antigens and the TLR9 agonist CpG onto the NPs' surface, resulting in the pathogen-mimicking PLPCa NPs. In this study, the novel fusion protein (HBf), consisting of the Mycobacterium avium subspecies paratuberculosis antigens HBHA, Ag85B, and Bfra, was coloaded onto the NPs. In vitro, PLPCa NPs were shown to promote the activation and maturation of bone marrow-derived dendritic cells. Additionally, we found that PLPCa NPs created an immune-rich microenvironment at the injection site following intramuscular administration. From the results, the PLPCa NPs induced strong IgA levels in the gut in addition to enhancing powerful systemic immune responses. Consequently, significant declines in the bacterial burden and inflammatory score were noted in PLPCa NPs-treated mice. In summary, PLPCa can serve as a novel and safe vaccine delivery platform against gut pathogens, such as paratuberculosis, capable of activating both systemic and intestinal immunity.


Assuntos
Nanopartículas , Paratuberculose , Animais , Nanopartículas/química , Paratuberculose/imunologia , Paratuberculose/prevenção & controle , Camundongos , Tretinoína/química , Tretinoína/farmacologia , Mycobacterium avium subsp. paratuberculosis/imunologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/química , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Intestinos/imunologia , Intestinos/microbiologia , Camundongos Endogâmicos C57BL , Feminino , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/administração & dosagem , Vacinas Bacterianas/imunologia , Camundongos Endogâmicos BALB C
3.
Biomolecules ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672487

RESUMO

Tuberculosis (TB) is the leading global cause of death f rom an infectious bacterial agent. Therefore, limiting its epidemic spread is a pressing global health priority. The chaperone-like protein HtpG of M. tuberculosis (Mtb) is a large dimeric and multi-domain protein with a key role in Mtb pathogenesis and promising antigenic properties. This dual role, likely associated with the ability of Heat Shock proteins to act both intra- and extra-cellularly, makes HtpG highly exploitable both for drug and vaccine development. This review aims to gather the latest updates in HtpG structure and biological function, with HtpG operating in conjunction with a large number of chaperone molecules of Mtb. Altogether, these molecules help Mtb recovery after exposure to host-like stress by assisting the whole path of protein folding rescue, from the solubilisation of aggregated proteins to their refolding. Also, we highlight the role of structural biology in the development of safer and more effective subunit antigens. The larger availability of structural information on Mtb antigens and a better understanding of the host immune response to TB infection will aid the acceleration of TB vaccine development.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Fatores de Virulência , Mycobacterium tuberculosis/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/química , Fatores de Virulência/imunologia , Fatores de Virulência/química , Humanos , Vacinas contra a Tuberculose/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/química , Tuberculose/imunologia , Tuberculose/prevenção & controle , Tuberculose/microbiologia , Animais , Chaperonas Moleculares/imunologia , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo
4.
J Mol Biol ; 436(8): 168521, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458604

RESUMO

Dedicated translocase channels are nanomachines that often, but not always, unfold and translocate proteins through narrow pores across the membrane. Generally, these molecular machines utilize external sources of free energy to drive these reactions, since folded proteins are thermodynamically stable, and once unfolded they contain immense diffusive configurational entropy. To catalyze unfolding and translocate the unfolded state at appreciable timescales, translocase channels often utilize analogous peptide-clamp active sites. Here we describe how anthrax toxin has been used as a biophysical model system to study protein translocation. The tripartite bacterial toxin is composed of an oligomeric translocase channel, protective antigen (PA), and two enzymes, edema factor (EF) and lethal factor (LF), which are translocated by PA into mammalian host cells. Unfolding and translocation are powered by the endosomal proton gradient and are catalyzed by three peptide-clamp sites in the PA channel: the α clamp, the ϕ clamp, and the charge clamp. These clamp sites interact nonspecifically with the chemically complex translocating chain, serve to minimize unfolded state configurational entropy, and work cooperatively to promote translocation. Two models of proton gradient driven translocation have been proposed: (i) an extended-chain Brownian ratchet mechanism and (ii) a proton-driven helix-compression mechanism. These models are not mutually exclusive; instead the extended-chain Brownian ratchet likely operates on ß-sheet sequences and the helix-compression mechanism likely operates on α-helical sequences. Finally, we compare and contrast anthrax toxin with other related and unrelated translocase channels.


Assuntos
Bacillus anthracis , Toxinas Bacterianas , Animais , Prótons , Antígenos de Bactérias/química , Toxinas Bacterianas/metabolismo , Transporte Proteico , Peptídeos/metabolismo , Bacillus anthracis/química , Mamíferos/metabolismo
5.
Carbohydr Polym ; 330: 121731, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368077

RESUMO

Enterococcus faecium, a gram-positive opportunistic pathogen, has become a major concern for nosocomial infections due to its resistance to several antibiotics, including vancomycin. Finding novel alternatives for treatment prevention, such as vaccines, is therefore crucial. In this study, we used various techniques to discover a novel capsular polysaccharide. Firstly, we identified an encapsulated E. faecium strain by evaluating the opsonophagocytic activity of fifteen strains with antibodies targeting the well-known lipoteichoic acid antigen. This activity was attributed to an unknown polysaccharide. We then prepared a crude cell wall glycopolymer and fractionated it, guided by immunodot-blot analysis. The most immunoreactive fractions were used for opsonophagocytic inhibition assays. The fraction containing the inhibitory polysaccharide underwent structural characterization using NMR and chemical analyses. The elucidated structure presents a branched repeating unit, with the linear part being: →)-ß-d-Gal-(1 â†’ 4)-ß-d-Glc-(1 â†’ 4)-ß-d-Gal-(1 â†’ 4)-ß-d-GlcNAc-(1→, further decorated with a terminal α-d-Glc and a d-phosphoglycerol moiety, attached to O-2 and O-3 of the 4-linked Gal unit, respectively. This polysaccharide was conjugated to BSA and the synthetic glycoprotein used to immunize mice. The resulting sera exhibited good opsonic activity, suggesting its potential as a vaccine antigen. In conclusion, our effector-function-based approach successfully identified an immunogenic capsular polysaccharide with promising applications in immunotherapy.


Assuntos
Antígenos de Bactérias , Enterococcus faecium , Camundongos , Animais , Antígenos de Bactérias/química , Enterococcus faecium/química , Proteínas Opsonizantes , Polissacarídeos , Anticorpos Antibacterianos , Desenvolvimento de Vacinas
6.
Biomater Sci ; 11(22): 7229-7246, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37791425

RESUMO

Fimbriae are long filamentous polymeric protein structures located upon the surface of bacteria. Often implicated in pathogenicity, the biosynthesis and function of fimbriae has been a productive topic of study for many decades. Evolutionary pressures have ensured that fimbriae possess unique structural and mechanical properties which are advantageous to bacteria. These properties are also difficult to engineer with well-known synthetic and natural fibres, and this has raised an intriguing question: can we exploit the unique properties of bacterial fimbriae in useful ways? Initial work has set out to explore this question by using Capsular antigen fragment 1 (Caf1), a fimbriae expressed naturally by Yersina pestis. These fibres have evolved to 'shield' the bacterium from the immune system of an infected host, and thus are rather bioinert in nature. Caf1 is, however, very amenable to structural mutagenesis which allows the incorporation of useful bioactive functions and the modulation of the fibre's mechanical properties. Its high-yielding recombinant synthesis also ensures plentiful quantities of polymer are available to drive development. These advantageous features make Caf1 an archetype for the development of new polymers and materials based upon bacterial fimbriae. Here, we cover recent advances in this new field, and look to future possibilities of this promising biopolymer.


Assuntos
Antígenos de Bactérias , Yersinia pestis , Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/química , Fímbrias Bacterianas/metabolismo , Polímeros/química , Ciência dos Materiais , Yersinia pestis/química , Yersinia pestis/metabolismo
7.
SAR QSAR Environ Res ; 34(6): 501-521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37462112

RESUMO

Gastric cancer (GC) is the fifth most prevalent form of cancer worldwide. CagA - positive Helicobacter pylori infects more than 60% of the human population. Moreover, chronic infection of CagA-positive H. pylori can directly affect GC incidence. In the current study, we have repurposed FDA-approved antibiotics that are viable alternatives to current regimens and can potentially be used as combination therapy against the CagA of H. pylori. The 100 FDA-approved gram negative antibiotics were screened against CagA protein using the AutoDock 4.2 tool. Further, top nine compounds were selected based on higher binding affinity with CagA. The trajectory analysis of MD simulations reflected that binding of these drugs with CagA stabilizes the system. Nonetheless, atomic density map and principal component analysis also support the notion of stable binding of antibiotics to the protein. The residues ASP96, GLN100, PRO184, and THR185 of compound cefpiramide, doxycycline, delafloxacin, metacycline, oxytetracycline, and ertapenem were involved in the binding with CagA protein. These residues are crucial for the CagA that aids in entry or pathogenesis of the bacterium. The screened FDA-approved antibiotics have a potential druggability to inhibit CagA and reduce the progression of H. pylori borne diseases.


Assuntos
Proteínas de Bactérias , Neoplasias Gástricas , Humanos , Antibacterianos/farmacologia , Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/química , Simulação de Dinâmica Molecular , Proteínas Oncogênicas/metabolismo , Relação Quantitativa Estrutura-Atividade , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia
8.
Chem Biol Drug Des ; 102(4): 669-675, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37286890

RESUMO

Detection of anthrax protective antigen is an effective way to diagnose anthracnose, and it plays an important part in the treatment of anthracnose. Affinity peptides, as a miniature biological recognition element, can quickly and effectively detect anthrax protective antigens. Based on computer-aided design technology (CAD), we have herein developed an affinity peptide design strategy for the detection of anthrax protective antigens. Firstly, six high-value mutation sites were determined based on the molecular docking between the template peptide and the receptor, and then the multi-site mutation of amino acids was carried out in order to establish a virtual peptide library. The library was selected by using molecular dynamics simulation and the best designed affinity peptide (code: P24) was found. The theoretical affinity with P24 peptide has increased by 19.8% compared with template peptide. Finally, the affinity with P24 peptide was measured by SPR technology to reach the nanomole level, which verified the effectiveness of the design strategy. The newly designed affinity peptide is expected to be used in the diagnosis of anthracnose.


Assuntos
Antraz , Humanos , Simulação de Acoplamento Molecular , Antígenos de Bactérias/genética , Antígenos de Bactérias/química , Peptídeos
9.
J Biol Chem ; 299(8): 104980, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37390991

RESUMO

Coiled coil-forming M proteins of the widespread and potentially deadly bacterial pathogen Streptococcus pyogenes (strep A) are immunodominant targets of opsonizing antibodies. However, antigenic sequence variability of M proteins into >220 M types, as defined by their hypervariable regions (HVRs), is considered to limit M proteins as vaccine immunogens because of type specificity in the antibody response. Surprisingly, a multi-HVR immunogen in clinical vaccine trials was shown to elicit M-type crossreactivity. The basis for this crossreactivity is unknown but may be due in part to antibody recognition of a 3D pattern conserved in many M protein HVRs that confers binding to human complement C4b-binding protein (C4BP). To test this hypothesis, we investigated whether a single M protein immunogen carrying the 3D pattern would elicit crossreactivity against other M types carrying the 3D pattern. We found that a 34-amino acid sequence of S. pyogenes M2 protein bearing the 3D pattern retained full C4BP-binding capacity when fused to a coiled coil-stabilizing sequence from the protein GCN4. We show that this immunogen, called M2G, elicited cross-reactive antibodies against a number of M types that carry the 3D pattern but not against those that lack the 3D pattern. We further show that the M2G antiserum-recognized M proteins displayed natively on the strep A surface and promoted the opsonophagocytic killing of strep A strains expressing these M proteins. As C4BP binding is a conserved virulence trait of strep A, we propose that targeting the 3D pattern may prove advantageous in vaccine design.


Assuntos
Antígenos de Bactérias , Proteínas da Membrana Bacteriana Externa , Proteínas de Transporte , Streptococcus pyogenes , Humanos , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Ligação Proteica , Streptococcus pyogenes/imunologia , Reações Cruzadas
10.
Vet Res ; 54(1): 31, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016427

RESUMO

The available differentiating tests for Chlamydia are based on detection of genetic material and only give information about the actual infection status, but reveal nothing of past infections. As the use of serological methods increases the window of detection, the goal of this study was to investigate if it is possible to develop a differentiating serological test for antibodies against Chlamydia species in chicken sera. Focus was on C. psittaci, C. gallinacea, and two closely related species, i.e. C. abortus and C. avium. To enable differentiating serology, a bead-based Luminex suspension array was constructed, using peptides as antigens, derived from known immunoreactive Chlamydia proteins. For the majority of these peptides, species-specific seroreactivity in mammalian sera has been reported in literature. The suspension array correctly identified antibodies against various Chlamydia species in sera from experimentally infected mice, and was also able to differentiate between antibodies against C. psittaci and C. gallinacea in sera from experimentally infected chickens. In field sera, signals were difficult to interpret as insufficient sera from experimentally infected chickens were available for evaluating the seroreactivity of all peptides. Nevertheless, results of the suspension array with field sera are supported by published data on the occurrence of C. gallinacea in Dutch layers, thereby demonstrating the proof of concept of multiplex serology for Chlamydial species in poultry.


Assuntos
Anticorpos Antibacterianos , Antígenos de Bactérias , Técnicas Bacteriológicas , Infecções por Chlamydia , Peptídeos , Animais , Camundongos , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Galinhas , Chlamydia , Infecções por Chlamydia/diagnóstico , Infecções por Chlamydia/veterinária , Peptídeos/química , Peptídeos/metabolismo , Técnicas Bacteriológicas/métodos , Técnicas Bacteriológicas/veterinária
11.
Biomed Pharmacother ; 155: 113557, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36115112

RESUMO

Vaccines against Brucella abortus, B. melitensis and B. suis have been based on weakened or killed bacteria, however there is no recombinant vaccine for disease prevention or therapy. This study attempted to predict IFN-γ epitopes, T cell cytotoxicity, and T lymphocytes in order to produce a multiepitope vaccine based on BtpA, Omp16, Omp28, virB10, Omp25, and Omp31 antigens against B. melitensis, B. abortus, and B. suis. AAY, GPGPG, and EAAAK peptides were used as epitope linkers, while the PADRE sequence was used as a Toll-like receptor 2 (TLR2) and TLR4 agonist. The final construct included 389 amino acids, and was a soluble protein with a molecular weight of 41.3 kDa, and nonallergenic and antigenic properties. Based on molecular docking studies, molecular dynamics simulations such as Gyration, RMSF, and RMSD, as well as tertiary structure validation methods, the modeled protein had a stable structure capable of interacting with TLR2/4. As a result, this novel vaccine may stimulate immune responses in B and T cells, and could prevent infection by B. suis, B. abortus, and B. melitensis.


Assuntos
Brucella melitensis , Brucelose , Humanos , Receptor 2 Toll-Like , Mapeamento de Epitopos , Epitopos de Linfócito T , Brucelose/prevenção & controle , Brucelose/microbiologia , Receptor 4 Toll-Like , Simulação de Acoplamento Molecular , Antígenos de Bactérias/química , Aminoácidos
12.
J Mol Biol ; 434(12): 167623, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35533763

RESUMO

Pathogenic Staphylococcus aureus actively acquires iron from human hemoglobin (Hb) using the IsdH surface receptor. Heme extraction is mediated by a tri-domain unit within the receptor that contains its second (N2) and third (N3) NEAT domains joined by a helical linker domain. Extraction occurs within a dynamic complex, in which receptors engage each globin chain; the N2 domain tightly binds to Hb, while substantial inter-domain motions within the receptor enable its N3 domain to transiently distort the globin's heme pocket. Using molecular simulations coupled with Markov modeling, along with stopped-flow experiments to quantitatively measure heme transfer kinetics, we show that directed inter-domain motions within the receptor play a critical role in the extraction process. The directionality of N3 domain motion and the rate of heme extraction is controlled by amino acids within a short, flexible inter-domain tether that connects the N2 and linker domains. In the wild-type receptor directed motions originating from the tether enable the N3 domain to populate configurations capable of distorting Hb's pocket, whereas mutant receptors containing altered tethers are less able to adopt these conformers and capture heme slowly via indirect processes in which Hb first releases heme into the solvent. Thus, our results show inter-domain motions within the IsdH receptor play a critical role in its ability to extract heme from Hb and highlight the importance of directed motions by the short, unstructured, amino acid sequence connecting the domains in controlling the directionality and magnitude of these functionally important motions.


Assuntos
Antígenos de Bactérias , Heme , Hemoglobinas , Receptores de Superfície Celular , Infecções Estafilocócicas , Staphylococcus aureus , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Heme/química , Hemoglobinas/química , Humanos , Simulação de Dinâmica Molecular , Movimento (Física) , Domínios Proteicos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade
13.
J Biol Chem ; 298(6): 101995, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35500652

RESUMO

Staphylococcus aureus is a major cause of deadly nosocomial infections, a severe problem fueled by the steady increase of resistant bacteria. The iron surface determinant (Isd) system is a family of proteins that acquire nutritional iron from the host organism, helping the bacterium to proliferate during infection, and therefore represents a promising antibacterial target. In particular, the surface protein IsdH captures hemoglobin (Hb) and acquires the heme moiety containing the iron atom. Structurally, IsdH comprises three distinctive NEAr-iron Transporter (NEAT) domains connected by linker domains. The objective of this study was to characterize the linker region between NEAT2 and NEAT3 from various biophysical viewpoints and thereby advance our understanding of its role in the molecular mechanism of heme extraction. We demonstrate the linker region contributes to the stability of the bound protein, likely influencing the flexibility and orientation of the NEAT3 domain in its interaction with Hb, but only exerts a modest contribution to the affinity of IsdH for heme. Based on these data, we suggest that the flexible nature of the linker facilitates the precise positioning of NEAT3 to acquire heme. In addition, we also found that residues His45 and His89 of Hb located in the heme transfer route toward IsdH do not play a critical role in the transfer rate-determining step. In conclusion, this study clarifies key elements of the mechanism of heme extraction of human Hb by IsdH, providing key insights into the Isd system and other protein systems containing NEAT domains.


Assuntos
Antígenos de Bactérias , Heme , Ferro , Receptores de Superfície Celular , Staphylococcus aureus , Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Heme/metabolismo , Hemoglobinas/química , Humanos , Ferro/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ligação Proteica , Domínios Proteicos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(11): e2122161119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35271388

RESUMO

SignificanceTuberculosis (TB), an ancient disease of humanity, continues to be a major cause of worldwide death. The causative agent of TB, Mycobacterium tuberculosis, and its close pathogenic relative Mycobacterium marinum, initially infect, evade, and exploit macrophages, a major host defense against invading pathogens. Within macrophages, mycobacteria reside within host membrane-bound compartments called phagosomes. Mycobacterium-induced damage of the phagosomal membranes is integral to pathogenesis, and this activity has been attributed to the specialized mycobacterial secretion system ESX-1, and particularly to ESAT-6, its major secreted protein. Here, we show that the integrity of the unstructured ESAT-6 C terminus is required for macrophage phagosomal damage, granuloma formation, and virulence.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Mycobacterium marinum , Mycobacterium tuberculosis , Fagossomos , Tuberculoma , Sistemas de Secreção Tipo VII , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Mycobacterium marinum/metabolismo , Mycobacterium marinum/patogenicidade , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Fagossomos/metabolismo , Fagossomos/microbiologia , Conformação Proteica , Tuberculoma/microbiologia , Sistemas de Secreção Tipo VII/metabolismo , Virulência
15.
J Mol Biol ; 434(9): 167548, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35304125

RESUMO

The tripartite protein complex produced by anthrax bacteria (Bacillus anthracis) is a member of the AB family of ß-barrel pore-forming toxins. The protective antigen (PA) component forms an oligomeric prepore that assembles on the host cell surface and serves as a scaffold for binding of lethal and edema factors. Following endocytosis, the acidic environment of the late endosome triggers a pH-induced conformational rearrangement to promote maturation of the PA prepore to a functional, membrane spanning pore that facilitates delivery of lethal and edema factors to the cytosol of the infected host. Here, we show that the dominant-negative D425A mutant of PA stalls anthrax pore maturation in an intermediate state at acidic pH. Our 2.7 Å cryo-EM structure of the intermediate state reveals structural rearrangements that involve constriction of the oligomeric pore combined with an intramolecular dissociation of the pore-forming module. In addition to defining the early stages of anthrax pore maturation, the structure identifies asymmetric conformational changes in the oligomeric pore that are influenced by the precise configuration of adjacent protomers.


Assuntos
Antígenos de Bactérias , Bacillus anthracis , Toxinas Bacterianas , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Bacillus anthracis/química , Bacillus anthracis/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Microscopia Crioeletrônica , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Mutação , Conformação Proteica
16.
J Am Chem Soc ; 144(6): 2474-2478, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35129341

RESUMO

The human immune system detects potentially pathogenic microbes with receptors that respond to microbial metabolites. While the overall immune signaling pathway is known in considerable detail, the initial molecular signals, the microbially produced immunogens, for important diseases like Lyme disease (LD) are often not well-defined. The immunogens for LD are produced by the spirochete Borrelia burgdorferi, and a galactoglycerolipid (1) has been identified as a key trigger for the inflammatory immune response that characterizes LD. This report corrects the original structural assignment of 1 to 3, a change of an α-galactopyranose to an α-galactofuranose headgroup. The seemingly small change has important implications for the diagnosis, prevention, and treatment of LD.


Assuntos
Antígenos de Bactérias/química , Borrelia burgdorferi/química , Galactolipídeos/química , Animais , Antígenos de Bactérias/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Galactolipídeos/síntese química , Galactolipídeos/farmacologia , Inflamação/induzido quimicamente , Doença de Lyme/imunologia , Camundongos , Receptor 2 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008950

RESUMO

Mycobacterium tuberculosis (M.tb) is a successful pathogen that can reside within the alveolar macrophages of the host and can survive in a latent stage. The pathogen has evolved and developed multiple strategies to resist the host immune responses. M.tb escapes from host macrophage through evasion or subversion of immune effector functions. M.tb genome codes for PE/PPE/PE_PGRS proteins, which are intrinsically disordered, redundant and antigenic in nature. These proteins perform multiple functions that intensify the virulence competence of M.tb majorly by modulating immune responses, thereby affecting immune mediated clearance of the pathogen. The highly repetitive, redundant and antigenic nature of PE/PPE/PE_PGRS proteins provide a critical edge over other M.tb proteins in terms of imparting a higher level of virulence and also as a decoy molecule that masks the effect of effector molecules, thereby modulating immuno-surveillance. An understanding of how these proteins subvert the host immunological machinery may add to the current knowledge about M.tb virulence and pathogenesis. This can help in redirecting our strategies for tackling M.tb infections.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Interações Hospedeiro-Patógeno/imunologia , Proteínas de Membrana/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Suscetibilidade a Doenças/imunologia , Glicina/metabolismo , Humanos , Evasão da Resposta Imune , Imunomodulação , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mycobacterium tuberculosis/metabolismo , Virulência
18.
Immunology ; 165(1): 110-121, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34458991

RESUMO

Decades of studies on antibody structure led to the tenet that the V region binds antigens while the C region interacts with immune effectors. In some antibodies, however, the C region affects affinity and/or specificity for the antigen. One example is the 3E5 monoclonal murine IgG family, in which the mIgG3 isotype has different fine specificity to the Cryptococcus neoformans capsule polysaccharide than the other mIgG isotypes despite their identical variable sequences. Our group serendipitously found another pair of mIgG1/mIgG3 antibodies based on the 2H1 hybridoma to the C. neoformans capsule that recapitulated the differences observed with 3E5. In this work, we report the molecular basis of the constant domain effects on antigen binding using recombinant antibodies. As with 3E5, immunofluorescence experiments show a punctate pattern for 2H1-mIgG3 and an annular pattern for 2H1-mIgG1; these binding patterns have been associated with protective efficacy in murine cryptococcosis. Also as observed with 3E5, 2H1-mIgG3 bound on ELISA to both acetylated and non-acetylated capsular polysaccharide, whereas 2H1-mIgG1 only bound well to the acetylated form, consistent with differences in fine specificity. In engineering hybrid mIgG1/mIgG3 antibodies, we found that switching the 2H1-mIgG3 hinge for its mIgG1 counterpart changed the immunofluorescence pattern to annular, but a 2H1-mIgG1 antibody with an mIgG3 hinge still had an annular pattern. The hinge is thus necessary but not sufficient for these changes in binding to the antigen. This important role for the constant region in antigen binding could affect antibody biology and engineering.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Cápsulas Bacterianas/química , Cápsulas Bacterianas/imunologia , Cryptococcus neoformans/imunologia , Imunoglobulina G/química , Imunoglobulina G/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Sítios de Ligação de Anticorpos , Células CHO , Linhagem Celular , Cricetulus , Criptococose/imunologia , Epitopos/química , Epitopos/imunologia , Camundongos , Proteínas Recombinantes de Fusão , Relação Estrutura-Atividade
19.
J Biol Chem ; 298(1): 101467, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871548

RESUMO

Bacillus anthracis lethal toxin and edema toxin are binary toxins that consist of a common cell-binding moiety, protective antigen (PA), and the enzymatic moieties, lethal factor (LF) and edema factor (EF). PA binds to either of two receptors, capillary morphogenesis protein-2 (CMG-2) or tumor endothelial marker-8 (TEM-8), which triggers the binding and cytoplasmic translocation of LF and EF. However, the distribution of functional TEM-8 and CMG-2 receptors during anthrax toxin intoxication in animals has not been fully elucidated. Herein, we describe an assay to image anthrax toxin intoxication in animals, and we use it to visualize TEM-8- and CMG-2-dependent intoxication in mice. Specifically, we generated a chimeric protein consisting of the N-terminal domain of LF fused to a nuclear localization signal-tagged Cre recombinase (LFn-NLS-Cre). When PA and LFn-NLS-Cre were coadministered to transgenic mice expressing a red fluorescent protein in the absence of Cre and a green fluorescent protein in the presence of Cre, intoxication could be visualized at single-cell resolution by confocal microscopy or flow cytometry. Using this assay, we found that: (a) CMG-2 is critical for intoxication in the liver and heart, (b) TEM-8 is required for intoxication in the kidney and spleen, (c) CMG-2 and TEM-8 are redundant for intoxication of some organs, (d) combined loss of CMG-2 and TEM-8 completely abolishes intoxication, and (e) CMG-2 is the dominant receptor on leukocytes. The novel assay will be useful for basic and clinical/translational studies of Bacillus anthracis infection and for clinical development of reengineered toxin variants for cancer treatment.


Assuntos
Antraz , Antígenos de Bactérias , Bacillus anthracis , Toxinas Bacterianas , Animais , Antraz/diagnóstico por imagem , Antraz/metabolismo , Antígenos de Bactérias/química , Antígenos de Bactérias/toxicidade , Bacillus anthracis/metabolismo , Toxinas Bacterianas/toxicidade , Citoplasma/metabolismo , Camundongos , Camundongos Transgênicos
20.
Toxins (Basel) ; 13(12)2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34941724

RESUMO

We are studying the structures of bacterial toxins that form ion channels and enable macromolecule transport across membranes. For example, the crystal structure of the Staphylococcus aureus α-hemolysin (α-HL) channel in its functional state was confirmed using neutron reflectometry (NR) with the protein reconstituted in membranes tethered to a solid support. This method, which provides sub-nanometer structural information, could also test putative structures of the Bacillus anthracis protective antigen 63 (PA63) channel, locate where B. anthracis lethal factor and edema factor toxins (LF and EF, respectively) bind to it, and determine how certain small molecules can inhibit the interaction of LF and EF with the channel. We report here the solution structures of channel-forming PA63 and its precursor PA83 (which does not form channels) obtained with small angle neutron scattering. At near neutral pH, PA83 is a monomer and PA63 a heptamer. The latter is compared to two cryo-electron microscopy structures. We also show that although the α-HL and PA63 channels have similar structural features, unlike α-HL, PA63 channel formation in lipid bilayer membranes ceases within minutes of protein addition, which currently precludes the use of NR for elucidating the interactions between PA63, LF, EF, and potential therapeutic agents.


Assuntos
Antígenos de Bactérias/análise , Antígenos de Bactérias/química , Bacillus anthracis/química , Toxinas Bacterianas/análise , Toxinas Bacterianas/química , Substâncias Protetoras/análise , Substâncias Protetoras/química , Cinética , Estrutura Molecular , Espalhamento a Baixo Ângulo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...