Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.699
Filtrar
1.
FASEB J ; 36(1): e22098, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34918390

RESUMO

Vascular calcification (VC), in which vascular smooth muscle cells (VSMCs) undergo differentiation and osteogenic transition, is a common complication of chronic kidney disease (CKD). Recent findings show that nuclear factor-erythroid-2-related factor 2 (NRF2) is an evolutionarily conserved antioxidant and beneficial in preventing vascular senescence and calcification. The roles of NRF2 in the initiation and progression of VC in CKD still need further investigation. CKD-associated VC model rats exhibited significant upregulation of NRF2, NAD(P)H: quinone oxidoreductase-1 (NQO1), osteogenic markers such as alkaline phosphatase (ALP), runt-related transcription factor-2 (RUNX2) and osteopontin (OPN), and ß-catenin compared to CKD rats. Immunohistochemistry further verified these results. In addition, rat aortic VSMCs were isolated and subjected to four treatments: normal control, phosphorus-induced (Pi), Pi + NRF2 activator DMF, and Pi + NRF2 inhibitor ML385. The reactive oxygen species (ROS) generation, malondialdehyde (MDA) content, and calcium deposition of the four treatments were determined. The mRNA and protein expression levels of NRF2, NQO1, and haem oxygenase 1 (HO1) and the osteogenic markers ALP, Runx1, OPN, bone morphogenetic protein 2 (BMP2), and ß-catenin were quantified by RT-PCR and western blotting. VSMC apoptosis was calculated by flow cytometry. The in vitro results suggested that intracellular oxidative stress and calcification were closely associated with NRF2 activity and that the activation of NRF2 could significantly suppress osteogenic transition and apoptosis in VSMCs. Thus, this study indicated that the NRF2-related antioxidant pathway can positively respond to and protect against the initiation and progression of VC in CKD by reducing oxidative stress. This study may contribute insights facilitating the application of the NRF2 antioxidative system as a therapeutic treatment for vascular diseases such as CKD.


Assuntos
Antioxidantes/metabolismo , Aorta/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais , Calcificação Vascular/metabolismo , Animais , Antígenos de Diferenciação/biossíntese , Modelos Animais de Doenças , Heme Oxigenase (Desciclizante)/biossíntese , Masculino , NAD(P)H Desidrogenase (Quinona)/biossíntese , Ratos , Ratos Wistar
2.
FASEB J ; 36(1): e22120, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34958157

RESUMO

The mineralization capability of cementoblasts is the foundation for repairing orthodontic treatment-induced root resorption. It is essential to investigate the regulatory mechanism of mineralization in cementoblasts under mechanical compression to improve orthodontic therapy. Autophagy has a protective role in maintaining cell homeostasis under environmental stress and was reported to be involved in the mineralization process. Long noncoding RNAs are important regulators of biological processes, but their functions in compressed cementoblasts during orthodontic tooth movement remain unclear. In this study, we showed that compressive force downregulated the expression of mineralization-related markers. LincRNA-p21 was strongly enhanced by compressive force. Overexpression of lincRNA-p21 downregulated the expression of mineralization-related markers, while knockdown of lincRNA-p21 reversed the compressive force-induced decrease in mineralization. Furthermore, we found that autophagy was impeded in compressed cementoblasts. Then, overexpression of lincRNA-p21 decreased autophagic activity, while knockdown of lincRNA-p21 reversed the autophagic process decreased by mechanical compression. However, the autophagy inhibitor 3-methyladenine abolished the lincRNA-p21 knockdown-promoted mineralization, and the autophagy activator rapamycin rescued the mineralization inhibited by lincRNA-p21 overexpression. Mechanistically, the direct binding between lincRNA-p21 and FoxO3 blocked the expression of autophagy-related genes. In a mouse orthodontic tooth movement model, knockdown of lincRNA-p21 rescued the impeded autophagic process in cementoblasts, enhanced cementogenesis, and alleviated orthodontic force-induced root resorption. Overall, compressive force-induced lincRNA-p21 inhibits the mineralization capability of cementoblasts by impeding the autophagic process.


Assuntos
Antígenos de Diferenciação/biossíntese , Autofagia , Calcificação Fisiológica , Força Compressiva , Cemento Dentário/metabolismo , Regulação para Baixo , RNA Longo não Codificante/biossíntese , Animais , Masculino , Camundongos
3.
Sci Rep ; 11(1): 23977, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907219

RESUMO

Cancer stem cells (CSCs) are subpopulations in the malignant tumors that show self-renewal and multilineage differentiation into tumor microenvironment components that drive tumor growth and heterogeneity. In previous studies, our group succeeded in producing a CSC model by treating mouse induced pluripotent stem cells. In the current study, we investigated the potential of CSC differentiation into blood cells under chemical hypoxic conditions using CoCl2. CSCs and miPS-LLCcm cells were cultured for 1 to 7 days in the presence of CoCl2, and the expression of VEGFR1/2, Runx1, c-kit, CD31, CD34, and TER-119 was assessed by RT-qPCR, Western blotting and flow cytometry together with Wright-Giemsa staining and immunocytochemistry. CoCl2 induced significant accumulation of HIF-1α changing the morphology of miPS-LLCcm cells while the morphological change was apparently not related to differentiation. The expression of VEGFR2 and CD31 was suppressed while Runx1 expression was upregulated. The population with hematopoietic markers CD34+ and c-kit+ was immunologically detected in the presence of CoCl2. Additionally, high expression of CD34 and, a marker for erythroblasts, TER-119, was observed. Therefore, CSCs were suggested to differentiate into erythroblasts and erythrocytes under hypoxia. This differentiation potential of CSCs could provide new insight into the tumor microenvironment elucidating tumor heterogenicity.


Assuntos
Antígenos de Diferenciação/biossíntese , Diferenciação Celular/efeitos dos fármacos , Cobalto/farmacologia , Eritroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Animais , Hipóxia Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
4.
J Biol Chem ; 297(5): 101264, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600885

RESUMO

CCAAT enhancer binding protein (CEBP) transcription factors (TFs) are known to promote adipocyte differentiation; however, suppressors of CEBP TFs have not been reported thus far. Here, we find that homologous chromosome pairing protein 2 (Hop2) functions as an inhibitor for the TF CEBPα. We found that Hop2 mRNA is highly and specifically expressed in adipose tissue, and that ectopic Hop2 expression suppresses reporter activity induced by CEBP as revealed by DNA transfection. Recombinant and ectopically expressed Hop2 was shown to interact with CEBPα in pull-down and coimmunoprecipitation assays, and interaction between endogenous Hop2 and CEBPα was observed in the nuclei of 3T3 preadipocytes and adipocytes by immunofluorescence and coimmunoprecipitation of nuclear extracts. In addition, Hop2 stable overexpression in 3T3 preadipocytes inhibited adipocyte differentiation and adipocyte marker gene expression. These in vitro data suggest that Hop2 inhibits adipogenesis by suppressing CEBP-mediated transactivation. Consistent with a negative role for Hop2 in adipogenesis, ablation of Hop2 (Hop2-/-) in mice led to increased body weight, adipose volume, adipocyte size, and adipogenic marker gene expression. Adipogenic differentiation of isolated adipose-derived mesenchymal stem cells showed a greater number of lipid droplet-containing colonies formed in Hop2-/- adipose-derived mesenchymal stem cell cultures than in wt controls, which is associated with the increased expression of adipogenic marker genes. Finally, chromatin immunoprecipitation revealed a higher binding activity of endogenous CEBPα to peroxisome proliferator-activated receptor γ, a master adipogenic TF, and a known CEBPα target gene. Therefore, our study identifies for the first time that Hop2 is an intrinsic suppressor of CEBPα and thus adipogenesis in adipocytes.


Assuntos
Adipócitos/metabolismo , Adipogenia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica , Células 3T3 , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas de Ciclo Celular/genética , Camundongos , Camundongos Knockout
5.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638840

RESUMO

BACKGROUND: The aim of this study was to test the feasibility and safety of subretinal transplantation of human induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) cells into the healthy margins and within areas of degenerative retina in a swine model of geographic atrophy (GA). METHODS: Well-delimited selective outer retinal damage was induced by subretinal injection of NaIO3 into one eye in minipigs (n = 10). Thirty days later, a suspension of hiPSC-derived RPE cells expressing green fluorescent protein was injected into the subretinal space, into the healthy margins, and within areas of degenerative retina. In vivo follow-up was performed by multimodal imaging. Post-mortem retinas were analyzed by immunohistochemistry and histology. RESULTS: In vitro differentiated hiPSC-RPE cells showed a typical epithelial morphology, expressed RPE-related genes, and had phagocytic ability. Engrafted hiPSC-RPE cells were detected in 60% of the eyes, forming mature epithelium in healthy retina extending towards the border of the atrophy. Histological analysis revealed RPE interaction with host photoreceptors in the healthy retina. Engrafted cells in the atrophic zone were found in a patchy distribution but failed to form an epithelial-like layer. CONCLUSIONS: These results might support the use of hiPSC-RPE cells to treat atrophic GA by providing a housekeeping function to aid the overwhelmed remnant RPE, which might improve its survival and therefore slow down the progression of GA.


Assuntos
Atrofia Geográfica , Células-Tronco Pluripotentes Induzidas , Epitélio Pigmentado da Retina , Animais , Antígenos de Diferenciação/biossíntese , Modelos Animais de Doenças , Regulação da Expressão Gênica , Atrofia Geográfica/metabolismo , Atrofia Geográfica/patologia , Atrofia Geográfica/cirurgia , Xenoenxertos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/transplante , Suínos
6.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502478

RESUMO

Caspase-1, as the main pro-inflammatory cysteine protease, was investigated mostly with respect to inflammation-related processes. Interestingly, caspase-1 was identified as being involved in lipid metabolism, which is extremely important for the proper differentiation of chondrocytes. Based on a screening investigation, general caspase inhibition impacts the expression of Cd36 in chondrocytes, the fatty acid translocase with a significant impact on lipid metabolism. However, the engagement of individual caspases in the effect has not yet been identified. Therefore, the hypothesis that caspase-1 might be a candidate here appears challenging. The primary aim of this study thus was to find out whether the inhibition of caspase-1 activity would affect Cd36 expression in a chondrogenic micromass model. The expression of Pparg, a regulator Cd36, was examined as well. In the caspase-1 inhibited samples, both molecules were significantly downregulated. Notably, in the treated group, the formation of the chondrogenic nodules was apparently disrupted, and the subcellular deposition of lipids and polysaccharides showed an abnormal pattern. To further investigate this observation, the samples were subjected to an osteogenic PCR array containing selected markers related to cartilage/bone cell differentiation. Among affected molecules, Bmp7 and Gdf10 showed a significantly increased expression, while Itgam, Mmp9, Vdr, and Rankl decreased. Notably, Rankl is a key marker in bone remodeling/homeostasis and thus is a target in several treatment strategies, including a variety of fatty acids, and is balanced by its decoy receptor Opg (osteoprotegerin). To evaluate the effect of Cd36 downregulation on Rankl and Opg, Cd36 silencing was performed using micromass cultures. After Cd36 silencing, the expression of Rankl was downregulated and Opg upregulated, which was an inverse effect to caspase-1 inhibition (and Cd36 upregulation). These results demonstrate new functions of caspase-1 in chondrocyte differentiation and lipid metabolism-related pathways. The effect on the Rankl/Opg ratio, critical for bone maintenance and pathology, including osteoarthritis, is particularly important here as well.


Assuntos
Antígenos de Diferenciação/biossíntese , Caspase 1/metabolismo , Inibidores de Caspase/farmacologia , Diferenciação Celular/efeitos dos fármacos , Condrócitos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Condrogênese/efeitos dos fármacos , Camundongos
7.
FASEB J ; 35(10): e21904, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34569650

RESUMO

Blastocyst formation gives rise to the inner cell mass (ICM) and trophectoderm (TE) and is followed by the differentiation of the epiblast (Epi) and primitive endoderm (PrE) within the ICM. Although these two-round cell lineage differentiations underpin proper embryogenesis in every mammal, their spatiotemporal dynamics are quite diverse among species. Here, molecular details of the blastocyst stage in cattle were dissected using an optimized in vitro culture method. Blastocyst embryos were placed on agarose gel filled with nutrient-rich media to expose embryos to both gaseous and liquid phases. Embryos derived from this "on-gel" culture were transferred to surrogate mothers on day (D) 10 after fertilization and successfully implanted. Immunofluorescent studies using on-gel-cultured embryos revealed that the proportion of TE cells expressing the pluripotent ICM marker, OCT4, which was beyond 80% on D8, was rapidly reduced after D9 and reached 0% on D9.5. This first lineage segregation process was temporally parallel with the second one, identified by the spatial separation of Epi cells expressing SOX2 and PrE cells expressing SOX17. RNA-seq comparison of TE cells from D8 in vitro fertilized embryos and D14 in vivo embryos revealed that besides drastic reduction of pluripotency-related genes, TE cells highly expressed Wnt, FGF, and VEGF signaling pathways-related genes to facilitate the functional maturation required for feto-maternal interaction. Quantitative PCR analysis of TE cells derived from on-gel culture further confirmed time-dependent increments in the expression of key TE markers. Altogether, the present study provides platforms to understand species-specific strategies for mammalian preimplantation development.


Assuntos
Antígenos de Diferenciação/biossíntese , Blastocisto/metabolismo , Linhagem da Célula , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Animais , Bovinos
8.
J Cell Biochem ; 122(12): 1805-1816, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34427353

RESUMO

Osteoblasts are primary bone-making cells originating from mesenchymal stem cells (MSCs) in the bone marrow. The differentiation of MSCs to mature osteoblasts involves an intermediate stage called preosteoblasts, but the details of this process remain unclear. This study focused on the intracellular density of immature osteoblast lineage cells and hypothesized that the density might vary during differentiation and might be associated with the differentiation stages of osteoblast lineage cells. This study aimed to clarify the relationship between intracellular density and differentiation stages using density gradient centrifugation. Primary murine bone marrow stromal cell cultures were prepared in an osteogenic induction medium, and cells were separated into three fractions (low, intermediate, and high-density). The high-density fraction showed elevated expression of osteoblast differentiation markers (Sp7, Col1a1, Spp1, and Bglap) and low expression of MSC surface markers (Sca-1, CD73, CD105, and CD106). In contrast, the low-density fraction showed a high expression of MSC surface markers. These results indicated that intracellular density increased during differentiation from preosteoblasts to committed osteoblasts. Intracellular density may be a novel indicator for osteoblast differentiation stages. Density gradient centrifugation is a novel technique to study the process by which preosteoblasts transform into bone-forming cells.


Assuntos
Antígenos de Diferenciação/biossíntese , Diferenciação Celular , Regulação da Expressão Gênica , Osteoblastos/metabolismo , Osteogênese , Animais , Camundongos , Osteoblastos/citologia
9.
Tissue Cell ; 71: 101556, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34082260

RESUMO

Isolation of high-quality human postnatal stem cells from accessible sources is an important goal for dental tissue engineering. Stem cells from developing organs are a better cell source but are hard to obtain. With extensive caries that are difficult to restore, the extracted deciduous tooth with an immature apex is a developing organ for investigation. In the present study, a cell population from the tip of apical pulp of human deciduous teeth with an immature apex was isolated and termed apical pulp-derived cells of deciduous teeth (De-APDCs). De-APDCs expressed STRO-1, CD44, CD90 and CD105 but not CD34 or CD45. Furthermore, De-APDCs demonstrated a significantly higher clonogenic and proliferative ability and osteo/dentinogenic differentiation capacity than dental pulp cells from exfoliated deciduous teeth (De-DPCs) (P < 0.05). Differentiation potential toward adipogenic, neurogenic and chondrogenic lineages was also observed in induced De-APDCs. In addition, after De-APDCs were seeded into hydroxyapatite/tricalcium phosphate (HA/TCP) scaffolds and transplanted into nude mice, they were able to regenerate dentin/pulp-like structures aligned with human odontoblast-like cells. In conclusion, De-APDCs, which are derived from a developing tissue, represent an accessible and prospective cell source for tooth regeneration.


Assuntos
Antígenos de Diferenciação/biossíntese , Diferenciação Celular , Separação Celular , Polpa Dentária , Células-Tronco Multipotentes , Dente Decíduo , Animais , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Dente Decíduo/citologia , Dente Decíduo/metabolismo
10.
Dev Biol ; 477: 232-240, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34097879

RESUMO

In mammals, multiple cell-signaling pathways and transcription factors regulate development of the embryonic taste system and turnover of taste cells in the adult stage. Using single-cell RNA-Seq of mouse taste cells, we found that the homeobox-containing transcription factor Nkx2-2, a target of the Sonic Hedgehog pathway and a key regulator of the development and regeneration of multiple cell types in the body, is highly expressed in type III taste cells but not in type II or taste stem cells. Using in situ hybridization and immunostaining, we confirmed that Nkx2-2 is expressed specifically in type III taste cells in the endoderm-derived circumvallate and foliate taste papillae but not in the ectoderm-derived fungiform papillae. Lineage tracing revealed that Nkx2-2-expressing cells differentiate into type III, but not type II or type I cells in circumvallate and foliate papillae. Neonatal Nkx2-2-knockout mice did not express key type III taste cell marker genes, while the expression of type II and type I taste cell marker genes were unaffected in these mice. Our findings indicate that Nkx2-2-expressing cells are committed to the type III lineage and that Nkx2-2 may be critical for the development of type III taste cells in the posterior tongue, thus illustrating a key difference in the mechanism of type III cell lineage specification between ectoderm- and endoderm-derived taste fields.


Assuntos
Linhagem da Célula/fisiologia , Proteínas de Homeodomínio/fisiologia , Papilas Gustativas/embriologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Recém-Nascidos , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/fisiologia , Contagem de Células , Linhagem da Célula/genética , Feminino , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/biossíntese , Masculino , Camundongos , RNA-Seq , Papilas Gustativas/citologia , Papilas Gustativas/metabolismo , Proteínas de Peixe-Zebra/biossíntese
11.
Cells ; 10(6)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073789

RESUMO

Mesenchymal progenitor cells (MPCs) are a promising cell source for regenerative medicine because of their immunomodulatory properties, anti-inflammatory molecule secretion, and replacement of damaged cells. Despite these advantages, heterogeneity in functional potential and limited proliferation capacity of MPCs, as well as the lack of suitable markers for product potency, hamper the development of large-scale manufacturing processes of MPCs. Therefore, there is a sustained need to develop highly proliferative and standardized MPCs in vitro and find suitable functional markers for measuring product potency. In this study, three lines of pluripotent stem cell (PSC)-derived MPCs with high proliferative ability were established and compared with bone-marrow-derived MPCs using proliferation assays and microarrays. A total of six genes were significantly overexpressed (>10-fold) in the highest proliferative MPC line (CHA-hNT5-MPCs) and validated by qRT-PCR. However, only two of the genes (MYOCD and ODZ2) demonstrated a significant correlation with MPC senescence in vitro. Our study provides new gene markers for predicting replicative senescence and the available quantity of MPCs but may also help to guide the development of new standard criteria for manufacturing.


Assuntos
Antígenos de Diferenciação/biossíntese , Proliferação de Células , Senescência Celular , Células-Tronco Mesenquimais/metabolismo , Antígenos de Diferenciação/genética , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
12.
Arch Biochem Biophys ; 704: 108885, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33878327

RESUMO

Induction of white fat browning (beiging) and activation of brown fat has been considered a promising strategy to treat obesity and associated metabolic complications. However, the molecular mechanisms regulating brown and beige fat-mediated thermogenesis remains unclear. Our study aimed to identify genes with a hitherto unknown mechanism in the metabolic functions of adipocytes and identified family with sequence similarity 107, member A (FAM107A) as a factor that interferes with fat browning in white adipocytes. We explored physiological roles of FAM107A in cultured 3T3-L1 white adipocytes and HIB1B brown adipocytes by using FAM107A-deficient adipocytes. Significant loss in FAM107A gene functionality induced fat browning was evidenced by evaluating the gene and protein expression level of brown fat-associated markers through real-time qRT-PCR and immunoblot analysis, respectively. Deficiency of FAM107A promoted mitochondrial biogenesis and significantly upregulated core fat-browning marker proteins (PGC-1α, PRDM16, and UCP1) and beige-specific genes (Cd137, Cited1, Tbx1, and Tmem26). Furthermore, FAM107A increased adipogenesis and negatively regulated lipid metabolism in 3T3-L1 adipocytes. In addition, in-silico analysis revealed a strong interaction between FAM107A and ß3-AR based on their energy binding score. Next, mechanistic study revealed that specific knockdown of FAM107A induces browning in white adipocytes via activation of ß3-AR, AMPK and p38 MAPK-dependent signaling pathways. Our data unveiled a previously unknown mechanism of FAM107A in the regulation of lipid metabolism and identified its significant role in metabolic homeostasis. This highlighted the potential of FAM107A as a pharmacotherapeutic target in treating obesity and related metabolic disorders.


Assuntos
Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Antígenos de Diferenciação/biossíntese , Regulação da Expressão Gênica , Termogênese , Proteínas Supressoras de Tumor/deficiência , Células 3T3-L1 , Animais , Metabolismo dos Lipídeos/genética , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Proteínas Supressoras de Tumor/metabolismo
13.
Bioprocess Biosyst Eng ; 44(9): 1831-1839, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33821326

RESUMO

Mouse clonal mesenchymal stem cells (mc-MSCs) were cultured on a Cytodex 3 microcarrier in a spinner flask for a suspension culture under hypoxia condition to increase mass productivity. The hypoxia environment was established using 4.0 mM Na2SO3 with 10 µM or 100 µM CoCl2 for 24 h in a low glucose DMEM medium. As a result, the proliferation of mc-MSCs under hypoxic conditions was 1.56 times faster than the control group over 7 days. The gene expression of HIF-1a and VEGFA increased 4.62 fold and 2.07 fold, respectively. Furthermore, the gene expression of ALP, RUNX2, COL1A, and osteocalcin increased significantly by 9.55, 1.55, 2.29, and 2.53 times, respectively. In contrast, the expression of adipogenic differentiation markers, such as PPAR-γ and FABP4, decreased. These results show that the hypoxia environment produced by these chemicals in a suspension culture increases the proliferation of mc-MSCs and promotes the osteogenic differentiation of mc-MSCs.


Assuntos
Antígenos de Diferenciação/biossíntese , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Animais , Hipóxia Celular , Células Cultivadas , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos BALB C
14.
Tissue Cell ; 71: 101518, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33676235

RESUMO

Umbilical cord-derived mesenchymal stem cells (UC-MSCs) constitute a class of cells with significant self-renewal and multilineage differentiation properties and have great potential for therapeutic applications and the genetic conservation of endangered animals. In this study, we successfully isolated and cultured UC-MSCs from the blood vessels of giant panda umbilical cord (UC). The cells were arranged in a vortex or cluster pattern and exhibited a normal karyotype, showing the morphological characteristics of fibroblasts. In addition, we found that basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) promoted cell proliferation, whereas stem cell factor (SCF) did not promote cell proliferation. Cultured UC-MSCs were negative for CD34 (hematopoietic stem cell marker) and CD31 (endothelial cell marker), but positive for MSC markers (CD44, CD49f, CD105, and CD73) and stem cell markers (KLF4, SOX2, and THY1). Similar to other MSCs, giant panda UC-MSCs have multiple differentiation ability and can differentiate into adipocytes, osteoblasts and chondrocytes. Giant panda UC-MSCs are new resources for basic research as cell models following their differentiation into different cell types and for future clinical treatments of giant panda diseases.


Assuntos
Antígenos de Diferenciação/biossíntese , Proliferação de Células , Separação Celular , Células-Tronco Mesenquimais , Cordão Umbilical , Ursidae/metabolismo , Animais , Células Cultivadas , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/citologia , Cordão Umbilical/metabolismo
15.
Cell Rep ; 34(9): 108798, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33657363

RESUMO

Type I interferons (IFNs) induce hundreds of IFN-stimulated genes (ISGs) in response to viral infection. Induction of these ISGs must be regulated for an efficient and controlled antiviral response, but post-transcriptional controls of these genes have not been well defined. Here, we identify a role for the RNA base modification N6-methyladenosine (m6A) in the regulation of ISGs. Using ribosome profiling and quantitative mass spectrometry, coupled with m6A-immunoprecipitation and sequencing, we identify a subset of ISGs, including IFITM1, whose translation is enhanced by m6A and the m6A methyltransferase proteins METTL3 and METTL14. We further determine that the m6A reader YTHDF1 increases the expression of IFITM1 in an m6A-binding-dependent manner. Importantly, we find that the m6A methyltransferase complex promotes the antiviral activity of type I IFN. Thus, these studies identify m6A as having a role in post-transcriptional control of ISG translation during the type I IFN response for antiviral restriction.


Assuntos
Adenosina/análogos & derivados , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , Transcrição Gênica , Estomatite Vesicular/genética , Vesiculovirus/patogenicidade , Células A549 , Adenosina/metabolismo , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Antivirais/farmacologia , Chlorocebus aethiops , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Interferon beta/farmacologia , Metiltransferases/biossíntese , Metiltransferases/genética , Biossíntese de Proteínas/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica/efeitos dos fármacos , Células Vero , Estomatite Vesicular/metabolismo , Estomatite Vesicular/virologia , Vesiculovirus/crescimento & desenvolvimento , Replicação Viral
16.
Neurosci Lett ; 745: 135616, 2021 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-33421485

RESUMO

Ischemic stroke is a major cause of mortality and disability. Subventricular zone (SVZ) neurogenesis following an ischemic stroke may be beneficial for improving the outcomes. Environmental enrichment (EE) has been reported to increase neurogenesis following stroke. Growth arrest and DNA-damage-inducible protein 45 ß (Gadd45b) is a crucial gene for activity-correlated neurogenesis in the adult hippocampus of mice. This study examined whether Gadd45b inhibition affects adult SVZ neurogenesis after an ischemic injury and explored the role of Gadd45b in EE-induced SVZ neurogenesis in adult male Sprague Dawley rats following middle cerebral artery occlusion (MCAO). Gadd45b expression was silenced by a lentivirus with RNA interference (RNAi). The 5-ethynyl-2-deoxyuridine (EdU) staining test was performed to detect cell proliferation. Gadd45b-RNAi after MCAO decreased SVZ proliferation and differentiation in the infarction boundary following ischemic injury, accompanied by the depressed expression of the brain-derived neurotrophic factor (BDNF). Treatment with EE following ischemic stroke upregulated Gadd45b and BDNF expressions and increased neurogenesis in the SVZ. Inhibition of Gadd45b markedly ameliorated the increased neurogenesis induced by EE. These data indicated that Gadd45b is related to SVZ neurogenesis following ischemic stroke, and Gadd45b mediates EE-induced neurogenesis via BDNF in the SVZ of rats following an ischemia stroke. These results implicate that Gadd45b can be a potential therapeutic target to enhance adult neurogenesis following cerebral ischemia.


Assuntos
Antígenos de Diferenciação/biossíntese , Isquemia Encefálica/metabolismo , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Ventrículos Laterais/metabolismo , Neurogênese/fisiologia , Acidente Vascular Cerebral/metabolismo , Animais , Isquemia Encefálica/terapia , Meio Ambiente , Ventrículos Laterais/citologia , Masculino , Células-Tronco Neurais/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/terapia
17.
Vet Immunol Immunopathol ; 233: 110184, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33454621

RESUMO

γδ T cells are a numerically significant subset of immune cells in ruminants, where they may comprise up to 70 % of all peripheral blood mononuclear cells (PBMCs) in young animals and 25 % in adults. These cells can be activated through traditional TCR-dependent mechanisms, or alternatively in a TCR-independent manner by pattern recognition receptors and have been shown to uptake antigen, as well as process and present it to αß T cells. We have identified a novel CD11b+ subset of γδ T cells in normal sheep peripheral blood. An increase in the frequency of these cells in sheep peripheral blood in response to immunization with an experimental recombinant subunit Rift Valley fever (RVF) vaccine was observed. However, injection of the vaccine adjuvant ISA-25VG alone without the recombinant RVF virus antigens demonstrated the same effect, pointing to an antigen-independent innate immune function of CD11b+ γδ T cells in response to the adjuvant. In vitro studies showed repeatable increases of CD11b-, CD14-, CD86-, CD40-, CD72-, and IFNγ- expressing γδ T cells in PBMCs after 24 h of incubation in the absence of a mitogen. Moreover, the majority of these myeloid-like γδ T cells were demonstrated to process exogenous antigen even in the absence of mitogen. ConA activation increased CD25- and MHCII- expression in γδ T cells, but not the myeloid associated receptors CD14 or CD11b or co-stimulatory molecules such as CD86 and CD40. Considering the role of CD11b and CD14 in the activation of innate immunity, we hypothesize that this subpopulation of sheep γδ T cells may function as innate antigen presenting and pro-inflammatory cells during immune responses. The results presented here also suggest that stress molecules and/or damage-associated molecular patterns may be involved in triggering antigen presenting and pro-inflammatory functions of γδ T cells, given their appearance in vitro in the absence of specific stimulation. Taken together, these data suggest that the early appearance of γδ T cells following adjuvant administration and their possible role in early activation of αß T cell subsets may non-specifically contribute to augmented innate immunity and may promote strong initiation of the adaptive immune response to vaccines in general.


Assuntos
Linfócitos Intraepiteliais/imunologia , Febre do Vale de Rift/imunologia , Vacinas Virais/imunologia , Animais , Apresentação de Antígeno , Antígenos de Diferenciação/biossíntese , Antígeno CD11b/biossíntese , Proliferação de Células , Células Cultivadas , Feminino , Imunidade Inata , Imunogenicidade da Vacina , Imunofenotipagem , Subunidade alfa de Receptor de Interleucina-2/biossíntese , Células Mieloides/imunologia , Febre do Vale de Rift/prevenção & controle , Ovinos
18.
Cell Biochem Funct ; 39(1): 148-158, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33137853

RESUMO

Stem cell therapy is growing rapidly to treat numerous diseases including bone-associated diseases. Mesenchymal stem cells (MSCs) are most commonly preferred to treat bone diseases because it possesses high osteogenic potency. Though, to obtain maximum osteogenic efficiency of MSCs is challenging. Therefore, this study was planned to evaluate the osteogenic efficiency of human bone marrow derived mesenchymal stem cells (hBMSCs) by bacoside-A. This study was investigated the activity of alkaline phosphatase (ALP) and expressions of the genes specific to osteogenic regulation mainly runt-related transcription factor 2 (Runx2), osterix (Osx), osteocalcin (OCN) and collagen type Iα1 (Col I α1) in hBMSCs cultured under osteogenic conditions at different concentrations of bacoside-A for 14 days. The results of this study depicted significant upregulation in the activity of ALP and expressions of osteogenic regulator genes in bacoside-A treated cells when compared with control cells. Besides, expressions of glycogen synthase kinase-3ß (GSK-3ß) and Wnt/ß-catenin were evaluated; these expressions were also significantly increased in bacoside-A treated cells when compared with control cells. This result provides a further supporting evidence of bacoside-A role on osteogenesis in hBMSCs. The present study suggest that bacoside-A will be applied to ameliorate the process of osteogenesis in hBMSCs to repair damaged bone structure during MSC-based therapy; this will be an excellent and auspicious treatment for bone-associated disorders including osteoporosis. Significance of the study Osteoporosis is a bone metabolic disorder characterized by an imbalance between the activity of osteoblastic bone formation and osteoclastic bone resorption that disrupts the bone microarchitecture. Current anti-osteoporotic drugs are inhibiting bone resorption, but they are unable to restore the bone structure due to extreme bone remodelling process and causes numerous side effects. The finding of natural bioactive compounds with osteogenic property is very essential for osteoporosis treatment. This study was reported that bacoside-A ameliorated osteogenic differentiation of hBMSCs through upregulation of osteogenic differentiation genes and Wnt/ß-catenin signalling pathway. This result is indicating that bacoside-A may be useful for osteoporosis treatments.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Saponinas/farmacologia , Triterpenos/farmacologia , Antígenos de Diferenciação/biossíntese , Células da Medula Óssea/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia
19.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33230549

RESUMO

Deconvolution of mouse transcriptomic data is challenged by the fact that mouse models carry various genetic and physiological perturbations, making it questionable to assume fixed cell types and cell type marker genes for different data set scenarios. We developed a Semi-Supervised Mouse data Deconvolution (SSMD) method to study the mouse tissue microenvironment. SSMD is featured by (i) a novel nonparametric method to discover data set-specific cell type signature genes; (ii) a community detection approach for fixing cell types and their marker genes; (iii) a constrained matrix decomposition method to solve cell type relative proportions that is robust to diverse experimental platforms. In summary, SSMD addressed several key challenges in the deconvolution of mouse tissue data, including: (i) varied cell types and marker genes caused by highly divergent genotypic and phenotypic conditions of mouse experiment; (ii) diverse experimental platforms of mouse transcriptomics data; (iii) small sample size and limited training data source and (iv) capable to estimate the proportion of 35 cell types in blood, inflammatory, central nervous or hematopoietic systems. In silico and experimental validation of SSMD demonstrated its high sensitivity and accuracy in identifying (sub) cell types and predicting cell proportions comparing with state-of-the-arts methods. A user-friendly R package and a web server of SSMD are released via https://github.com/xiaoyulu95/SSMD.


Assuntos
Antígenos de Diferenciação , Microambiente Celular , Biologia Computacional , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Transcriptoma , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Camundongos , Especificidade de Órgãos
20.
Mol Med Rep ; 23(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33300053

RESUMO

The transformation of rat primary glial cells into mesenchymal stem cells (MSCs) is intriguing as more seed cells can be harvested. The present study aimed to evaluate the effects of growth factors, hypoxia and mild hypothermia on the transformation of primary glial cells into MSCs. Rat primary glial cells were induced to differentiate by treatment with hypoxia, mild hypothermia and basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). Immunohistochemistry and western blotting were then used to determine the expression levels of glial fibrillary acidic protein (GFAP), nestin, musashi­1, neuron specific enolase (NSE) and neuronal nuclei (NeuN), in each treatment group. bFGF and EGF increased the proportion of CD44+ and CD105+ cells, while anaerobic mild hypothermia increased the proportion of CD90+ cells. The combination of bFGF and EGF, and anaerobic mild hypothermia increased the proportion of CD29+ cells and significantly decreased the proportions of GFAP+ cells and NSE+ cells. Treatment of primary glial cells with bFGF and EGF increased the expression levels of nestin, Musashi­1, NSE and NeuN. Anaerobic mild hypothermia increased the expression levels of Musashi­1 and decreased the expression levels of NSE and NeuN in glial cells. The results of the present study demonstrated that bFGF, EGF and anaerobic mild hypothermia treatments may promote the transformation of glial cells into MSC­like cells, and that the combination of these two treatments may have the optimal effect.


Assuntos
Diferenciação Celular , Fator de Crescimento Epidérmico/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Hipotermia , Neuroglia/metabolismo , Animais , Antígenos de Diferenciação/biossíntese , Hipóxia Celular , Feminino , Masculino , Células-Tronco Mesenquimais , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...