Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.433
Filtrar
1.
Sci Immunol ; 9(95): eadn0126, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728413

RESUMO

MR1T cells are a recently found class of T cells that recognize antigens presented by the major histocompatibility complex-I-related molecule MR1 in the absence of microbial infection. The nature of the self-antigens that stimulate MR1T cells remains unclear, hampering our understanding of their physiological role and therapeutic potential. By combining genetic, pharmacological, and biochemical approaches, we found that carbonyl stress and changes in nucleobase metabolism in target cells promote MR1T cell activation. Stimulatory compounds formed by carbonyl adducts of nucleobases were detected within MR1 molecules produced by tumor cells, and their abundance and antigenicity were enhanced by drugs that induce carbonyl accumulation. Our data reveal carbonyl-nucleobase adducts as MR1T cell antigens. Recognizing cells under carbonyl stress allows MR1T cells to monitor cellular metabolic changes with physiological and therapeutic implications.


Assuntos
Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/imunologia , Animais , Ativação Linfocitária/imunologia , Camundongos , Linfócitos T/imunologia
2.
JCI Insight ; 9(9)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716731

RESUMO

T cells are required for protective immunity against Mycobacterium tuberculosis. We recently described a cohort of Ugandan household contacts of tuberculosis cases who appear to "resist" M. tuberculosis infection (resisters; RSTRs) and showed that these individuals harbor IFN-γ-independent T cell responses to M. tuberculosis-specific peptide antigens. However, T cells also recognize nonprotein antigens via antigen-presenting systems that are independent of genetic background, known as donor-unrestricted T cells (DURTs). We used tetramer staining and flow cytometry to characterize the association between DURTs and "resistance" to M. tuberculosis infection. Peripheral blood frequencies of most DURT subsets were comparable between RSTRs and latently infected controls (LTBIs). However, we observed a 1.65-fold increase in frequency of MR1-restricted T (MR1T) cells among RSTRs in comparison with LTBIs. Single-cell RNA sequencing of 18,251 MR1T cells sorted from 8 donors revealed 5,150 clonotypes that expressed a common transcriptional program, the majority of which were private. Sequencing of the T cell receptor α/T cell receptor δ (TCRα/δ) repertoire revealed several DURT clonotypes were expanded among RSTRs, including 2 MR1T clonotypes that recognized mycobacteria-infected cells in a TCR-dependent manner. Overall, our data reveal unexpected donor-specific diversity in the TCR repertoire of human MR1T cells as well as associations between mycobacteria-reactive MR1T clonotypes and resistance to M. tuberculosis infection.


Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/imunologia , Uganda , Adulto , Masculino , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/genética , Feminino , Tuberculose/imunologia , Tuberculose/microbiologia , Linfócitos T/imunologia , Tuberculose Latente/imunologia , Tuberculose Latente/microbiologia , Células Clonais/imunologia , Resistência à Doença/imunologia , Resistência à Doença/genética , Adulto Jovem , Antígenos de Histocompatibilidade Classe I
3.
Sci Rep ; 14(1): 7967, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575661

RESUMO

Behçet's disease (BD) manifests as an autoimmune disorder featuring recurrent ulcers and multi-organ involvement, influenced by genetic factors associated with both HLA and non-HLA genes, including TNF-α and ERAP1. The study investigated the susceptible alleles of both Class I and II molecules of the HLA gene in 56 Thai BD patients and 192 healthy controls through next-generation sequencing using a PacBio kit. The study assessed 56 BD patients, primarily females (58.9%), revealing diverse manifestations including ocular (41.1%), vascular (35.7%), skin (55.4%), CNS (5.4%), and GI system (10.7%) involvement. This study found associations between BD and HLA-A*26:01:01 (OR 3.285, 95% CI 1.135-9.504, P-value 0.028), HLA-B*39:01:01 (OR 6.176, 95% CI 1.428-26.712, P-value 0.015), HLA-B*51:01:01 (OR 3.033, 95% CI 1.135-8.103, P-value 0.027), HLA-B*51:01:02 (OR 6.176, 95% CI 1.428-26.712, P-value 0.015), HLA-C*14:02:01 (OR 3.485, 95% CI 1.339-9.065, P-value 0.01), HLA-DRB1*14:54:01 (OR 1.924, 95% CI 1.051-3.522, P-value 0.034), and HLA-DQB1*05:03:01 (OR 3.00, 95% CI 1.323-6.798, P-value 0.008). However, after Bonferroni correction none of these alleles were found to be associated with BD. In haplotype analysis, we found a strong linkage disequilibrium in HLA-B*51:01:01, HLA-C*14:02:01 (P-value 0.0, Pc-value 0.02). Regarding the phenotype, a significant association was found between HLA-DRB1*14:54:01 (OR 11.67, 95% CI 2.86-47.57, P-value 0.001) and BD with ocular involvement, apart from this, no distinct phenotype-HLA association was documented. In summary, our study identifies specific HLA associations in BD. Although limited by a small sample size, we acknowledge the need for further investigation into HLA relationships with CNS, GI, and neurological phenotypes in the Thai population.


Assuntos
Síndrome de Behçet , Feminino , Humanos , Síndrome de Behçet/epidemiologia , Cadeias HLA-DRB1/genética , Sequenciamento de Nucleotídeos em Larga Escala , Antígenos HLA-C/genética , Tailândia , Antígenos HLA-B/genética , Alelos , Tecnologia , Predisposição Genética para Doença , Aminopeptidases/genética , Antígenos de Histocompatibilidade Menor
4.
BMC Cancer ; 24(1): 410, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566115

RESUMO

BACKGROUND: High expression of the glycosyltransferase UGT2B17 represents an independent adverse prognostic marker in chronic lymphocytic leukemia (CLL). It also constitutes a predictive marker for therapeutic response and a drug resistance mechanism. The key determinants driving expression of the UGT2B17 gene in normal and leukemic B-cells remain undefined. The UGT2B17 transcriptome is complex and is comprised of at least 10 alternative transcripts, identified by previous RNA-sequencing of liver and intestine. We hypothesized that the transcriptional program regulating UGT2B17 in B-lymphocytes is distinct from the canonical expression previously characterized in the liver. RESULTS: RNA-sequencing and genomics data revealed a specific genomic landscape at the UGT2B17 locus in normal and leukemic B-cells. RNA-sequencing and quantitative PCR data indicated that the UGT2B17 enzyme is solely encoded by alternative transcripts expressed in CLL patient cells and not by the canonical transcript widely expressed in the liver and intestine. Chromatin accessible regions (ATAC-Seq) in CLL cells mapped with alternative promoters and non-coding exons, which may be derived from endogenous retrotransposon elements. By luciferase reporter assays, we identified key cis-regulatory STAT3, RELA and interferon regulatory factor (IRF) binding sequences driving the expression of UGT2B17 in lymphoblastoid and leukemic B-cells. Electrophoretic mobility shift assays and pharmacological inhibition demonstrated key roles for the CLL prosurvival transcription factors STAT3 and NF-κB in the leukemic expression of UGT2B17. CONCLUSIONS: UGT2B17 expression in B-CLL is driven by key regulators of CLL progression. Our data suggest that a NF-κB/STAT3/IRF/UGT2B17 axis may represent a novel B-cell pathway promoting disease progression and drug resistance.


Assuntos
Leucemia Linfocítica Crônica de Células B , NF-kappa B , Humanos , NF-kappa B/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Prognóstico , Apoptose , RNA , Glucuronosiltransferase/genética , Antígenos de Histocompatibilidade Menor
5.
Target Oncol ; 19(3): 321-332, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38683495

RESUMO

BACKGROUND: MEDI7247 is a first-in-class antibody-drug conjugate (ADC) consisting of an anti-sodium-dependent alanine-serine-cysteine transporter 2 antibody-conjugated to a pyrrolobenzodiazepine dimer. OBJECTIVE: This first-in-human phase 1 trial evaluated MEDI7247 in patients with hematological malignancies. PATIENTS AND METHODS: Adults with acute myeloid leukemia (AML), multiple myeloma (MM), or diffuse large B-cell lymphoma (DLBCL) relapsed or refractory (R/R) to standard therapies, or for whom no standard therapy exists, were eligible. Primary endpoints were safety and determination of the maximum tolerated dose (MTD). Secondary endpoints included assessments of antitumor activity, pharmacokinetics (PK), and immunogenicity. RESULTS: As of 26 March 2020, 67 patients were treated (AML: n = 27; MM: n = 18; DLBCL: n = 22). The most common MEDI7247-related adverse events (AEs) were thrombocytopenia (41.8%), neutropenia (35.8%), and anemia (28.4%). The most common treatment-related grade 3/4 AEs were thrombocytopenia (38.8%), neutropenia (34.3%), and anemia (22.4%). Anticancer activity (number of responders/total patients evaluated) was observed in 11/67 (16.4%) patients. No correlation was observed between ASCT2 expression and clinical response. Between-patient variability of systemic exposure of MEDI7247 ADC and total antibody were high (AUCinf geometric CV%: 62.3-134.2, and 74.8-126.1, respectively). SG3199 (PBD dimer) plasma concentrations were below the limit of quantification for all patients after Study Day 8. Anti-drug antibody (ADA) prevalence was 7.7%, ADA incidence was 1.9%, and persistent-positive ADA was 5.8%. CONCLUSIONS: Thrombocytopenia and neutropenia limited repeat dosing. Although limited clinical activity was detected, the dose-escalation phase was stopped early without establishing an MTD. The study was registered with ClinicalTrials.gov (NCT03106428).


Assuntos
Neoplasias Hematológicas , Imunoconjugados , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Imunoconjugados/farmacocinética , Adulto , Neoplasias Hematológicas/tratamento farmacológico , Idoso de 80 Anos ou mais , Sistema ASC de Transporte de Aminoácidos , Antígenos de Histocompatibilidade Menor
6.
Molecules ; 29(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675657

RESUMO

Triple-negative breast cancer (TNBC) is a malignant breast cancer. There is an urgent need for effective drugs to be developed for TNBC. Tubocapsicum anomalum (T. anomalum) has been reported to have an anti-tumor effect, and six novel withanolides were isolated from it and designated as TAMEWs. However, its anti-TNBC effect is still unknown. The results of an MTT assay indicated a higher sensitivity of TNBC cells to TAMEWs compared to other cells. TAMEWs induced apoptosis via mitochondrial dysfunction. They caused increased levels of lipid ROS and Fe2+, with downregulation of GSH and cystine uptake, and it has been confirmed that TAMEWs induced ferroptosis. Additionally, the results of Western blotting indicate that TAMEWs significantly decrease the expressions of ferroptosis-related proteins. Through further investigation, it was found that the knockdown of the p53 gene resulted in a significant reversal of ferroptosis and the expressions of its associated proteins SLC7A11, ASCT2, and GPX4. In vivo, TAMEWs suppressed TNBC growth with no obvious damage. The IHC results also showed that TAMEWs induced apoptosis and ferroptosis in vivo. Our findings provide the first evidence that TAMEWs suppress TNBC growth through apoptosis and ferroptosis.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Apoptose , Ferroptose , Neoplasias de Mama Triplo Negativas , Proteína Supressora de Tumor p53 , Vitanolídeos , Ferroptose/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Vitanolídeos/farmacologia , Vitanolídeos/química , Apoptose/efeitos dos fármacos , Feminino , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Linhagem Celular Tumoral , Camundongos , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nat Commun ; 15(1): 3301, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671004

RESUMO

Diphthamide is a modified histidine residue unique for eukaryotic translation elongation factor 2 (eEF2), a key ribosomal protein. Loss of this evolutionarily conserved modification causes developmental defects through unknown mechanisms. In a patient with compound heterozygous mutations in Diphthamide Biosynthesis 1 (DPH1) and impaired eEF2 diphthamide modification, we observe multiple defects in neural crest (NC)-derived tissues. Knockin mice harboring the patient's mutations and Xenopus embryos with Dph1 depleted also display NC defects, which can be attributed to reduced proliferation in the neuroepithelium. DPH1 depletion facilitates dissociation of eEF2 from ribosomes and association with p53 to promote transcription of the cell cycle inhibitor p21, resulting in inhibited proliferation. Knockout of one p21 allele rescues the NC phenotypes in the knockin mice carrying the patient's mutations. These findings uncover an unexpected role for eEF2 as a transcriptional coactivator for p53 to induce p21 expression and NC defects, which is regulated by diphthamide modification.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21 , Histidina , Histidina/análogos & derivados , Antígenos de Histocompatibilidade Menor , Crista Neural , Fator 2 de Elongação de Peptídeos , Proteína Supressora de Tumor p53 , Proteínas Supressoras de Tumor , Animais , Crista Neural/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Humanos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Camundongos , Fator 2 de Elongação de Peptídeos/metabolismo , Fator 2 de Elongação de Peptídeos/genética , Histidina/metabolismo , Ribossomos/metabolismo , Mutação , Proliferação de Células , Xenopus laevis , Feminino , Técnicas de Introdução de Genes , Xenopus , Masculino , Camundongos Knockout
8.
J Hepatol ; 80(2): 293-308, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38450598

RESUMO

BACKGROUND & AIMS: The role of solute carrier family 25 member 15 (SLC25A15), a critical component of the urea cycle, in hepatocellular carcinoma (HCC) progression remains poorly understood. This study investigated the impact of SLC25A15 on HCC progression and its mechanisms. METHODS: We systematically investigated the function of SLC25A15 in HCC progression using large-scale data mining and cell, animal, and organoid models. Furthermore, we analyzed its involvement in reprogramming glutamine metabolism. RESULTS: SLC25A15 expression was significantly decreased in HCC tissues, and patients with low SLC25A15 levels had a poorer prognosis. Hypoxia-exposed HCC cells or tissues had lower SLC25A15 expression. A positive correlation between HNF4A, a transcription factor suppressed by hypoxia, and SLC25A15 was observed in both HCC tissues and cells. Modulating HNF4A levels altered SLC25A15 mRNA levels. SLC25A15 upregulated SLC1A5, increasing glutamine uptake. The reactive metabolic pathway of glutamine was increased in SLC25A15-deficient HCC cells, providing energy for HCC progression through additional lipid synthesis. Ammonia accumulation due to low SLC25A15 levels suppressed the expression of OGDHL (oxoglutarate dehydrogenase L), a switch gene that mediates SLC25A15 deficiency-induced reprogramming of glutamine metabolism. SLC25A15-deficient HCC cells were more susceptible to glutamine deprivation and glutaminase inhibitors. Intervening in glutamine metabolism increased SLC25A15-deficient HCC cells' response to anti-PD-L1 treatment. CONCLUSION: SLC25A15 is hypoxia-responsive in HCC, and low SLC25A15 levels result in glutamine reprogramming through SLC1A5 and OGDHL regulation, promoting HCC progression and regulating cell sensitivity to anti-PD-L1. Interrupting the glutamine-derived energy supply is a potential therapeutic strategy for treating SLC25A15-deficient HCC. IMPACT AND IMPLICATIONS: We first demonstrated the tumor suppressor role of solute carrier family 25 member 15 (SLC25A15) in hepatocellular carcinoma (HCC) and showed that its deficiency leads to reprogramming of glutamine metabolism to promote HCC development. SLC25A15 can serve as a potential biomarker to guide the development of precision therapeutic strategies aimed at targeting glutamine deprivation. Furthermore, we highlight that the use of an inhibitor of glutamine utilization can enhance the sensitivity of low SLC25A15 HCC to anti-PD-L1 therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/genética , Glutamina , Neoplasias Hepáticas/genética , Hipóxia/genética , Transporte Biológico , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos/genética
9.
Brain Behav ; 14(3): e3465, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468469

RESUMO

BACKGROUND: SP gene family, consisting of SP100, SP110, SP140, and SP140L, has been implicated in the initiation and advancement of numerous malignancies. Nevertheless, their clinical significance in glioma remains incompletely understood. METHOD: Expression levels and prognostic significance of SP family members were evaluated in the TCGA and CGGA datasets. Multifactorial analysis was used to identify SP gene family members that can independently impact the prognosis of glioma patients. A SP140-based predictive risk model/nomogram was developed in TCGA dataset and validated in CGGA dataset. The model's performance was evaluated through receiver operating characteristic (ROC) curves, calibration plots, and decision curve analyses. Phenotypic associations of SP140 and TRIM22 were examined through CancerSEA and TIMER. The effect of SP140 inhibitor in glioma progress and TRIM22/PI3K/AKT signaling pathway was confirmed in U251/U87 glioma cells. RESULTS: The SP family members exhibited elevated expression in gliomas and were negatively correlated with prognosis. SP140 emerged as an independent prognostic factor, and a SP140-based nomogram/predictive risk model demonstrated high accuracy. SP140 inhibitor, GSK761, lead to the suppression of TRIM22 expression and the PI3K/AKT signaling pathway. GSK761 also restrain glioma proliferation, migration, and invasion. Furthermore, SP140 and TRIM22 coexpressed in glioma cells with high level of vascular proliferation, TRIM22 is closely associated with the immune cell infiltration. CONCLUSION: SP140-based nomogram proved to be a practical tool for predicting the survival of glioma patients. SP140 inhibitor could suppress glioma progress via TRIM22/PI3K/AKT signaling pathway.


Assuntos
Glioma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células , Transdução de Sinais , Glioma/tratamento farmacológico , Glioma/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/farmacologia , Proteínas Repressoras/metabolismo , Antígenos de Histocompatibilidade Menor/farmacologia , Fatores de Transcrição , Antígenos Nucleares/metabolismo , Antígenos Nucleares/farmacologia
10.
Front Immunol ; 15: 1346687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495872

RESUMO

Introduction: Immunotherapy with biologics targeting programmed cell death protein-1 (PD-1) is highly effective in the treatment of various malignancies. Nevertheless, it is frequently responsible for unexpected cutaneous manifestations, including psoriasis-like dermatitis. The pathogenesis of anti-PD-1-induced psoriasis has yet to be clarified, even though it is plausible that some innate and adaptive immunity processes are in common with canonical psoriasis. The genetic predisposition to psoriasis of patients could also be a contributing factor. Here, we investigated the immunological and genetic profiles of two patients with metastatic melanoma and one patient affected by lung cancer, who developed severe psoriasis after receiving anti-PD-1 nivolumab therapy. Methods: The immune patterns of the three patients were compared with those detectable in classical, chronic plaque-type psoriasis or paradoxical psoriasis induced by anti-TNF-α therapy, mostly sustained by adaptive and innate immunity processes, respectively. Therefore, immunohistochemistry and mRNA analyses of innate and adaptive immunity molecules were conducted on skin biopsy of patients. Genetic analysis of polymorphisms predisposing to psoriasis was carried out by NGS technology. Results: We found that anti-PD-1-induced psoriasis showed immunological features similar to chronic psoriasis, characterized by the presence of cellular players of adaptive immunity, with abundant CD3+, CD8+ T cells and CD11c+ dendritic cells infiltrating skin lesions, and producing IL-23, IL-6, TNF-α, IFN-γ and IL-17. On the contrary, a lower number of innate immunity cells (BDCA2+ plasmacytoid dendritic cells, CD15+ neutrophils, CD117+ mast cells) and reduced IFN-α/ß, lymphotoxin (LT)-α/ß, were observed in anti-PD-1-induced psoriasis lesions, as compared with anti-TNF-α-induced paradoxical psoriasis. Importantly, the disintegrin and metalloprotease domain containing thrombospondin type 1 motif-like 5 (ADAMTSL5) psoriasis autoantigen was significantly upregulated in psoriasis lesions of anti-PD-1-treated patients, at levels comparable with chronic plaque-type psoriasis. Finally, NGS analysis revealed that all patients carried several allelic variants in psoriasis susceptibility genes, such as HLA-C, ERAP1 and other genes of the major psoriasis susceptibility PSORS1 locus. Discussion: Our study showed that adaptive immunity predominates over innate immunity in anti-PD-1-induced psoriasis lesions, consistently with the local ADAMTSL5 overexpression. The presence of numerous SNPs in psoriasis susceptibility genes of the three patients also suggested their strong predisposition to the disease.


Assuntos
Linfócitos T CD8-Positivos , Psoríase , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Pele , Fator de Necrose Tumoral alfa/metabolismo , Aminopeptidases/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas ADAMTS
11.
Cancer Lett ; 588: 216727, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38431035

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a formidable cancer type that poses significant treatment challenges, including radiotherapy (RT) resistance. The metabolic characteristics of tumors present substantial obstacles to cancer therapy, and the relationship between RT and tumor metabolism in HNSCC remains elusive. Ferroptosis is a type of iron-dependent regulated cell death, representing an emerging disease-modulatory mechanism. Here, we report that after RT, glutamine levels rise in HNSCC, and the glutamine transporter protein SLC1A5 is upregulated. Notably, blocking glutamine significantly enhances the therapeutic efficacy of RT in HNSCC. Furthermore, inhibition of glutamine combined with RT triggers immunogenic tumor ferroptosis, a form of nonapoptotic regulated cell death. Mechanistically, RT increases interferon regulatory factor (IRF) 1 expression by activating the interferon signaling pathway, and glutamine blockade augments this efficacy. IRF1 drives transferrin receptor expression, elevating intracellular Fe2+ concentration, disrupting iron homeostasis, and inducing cancer cell ferroptosis. Importantly, the combination treatment-induced ferroptosis is dependent on IRF1 expression. Additionally, blocking glutamine combined with RT boosts CD47 expression and hinders macrophage phagocytosis, attenuating the treatment effect. Dual-blocking glutamine and CD47 promote tumor remission and enhance RT-induced ferroptosis, thereby ameliorating the tumor microenvironment. Our work provides valuable insights into the metabolic and immunological mechanisms underlying RT-induced ferroptosis, highlighting a promising strategy to augment RT efficacy in HNSCC.


Assuntos
Ferroptose , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Glutamina/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Antígeno CD47 , Linhagem Celular Tumoral , Ferro/metabolismo , Microambiente Tumoral , Antígenos de Histocompatibilidade Menor/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo
12.
Nat Commun ; 15(1): 2370, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499542

RESUMO

Antiviral DNA cytosine deaminases APOBEC3A and APOBEC3B are major sources of mutations in cancer by catalyzing cytosine-to-uracil deamination. APOBEC3A preferentially targets single-stranded DNAs, with a noted affinity for DNA regions that adopt stem-loop secondary structures. However, the detailed substrate preferences of APOBEC3A and APOBEC3B have not been fully established, and the specific influence of the DNA sequence on APOBEC3A and APOBEC3B deaminase activity remains to be investigated. Here, we find that APOBEC3B also selectively targets DNA stem-loop structures, and they are distinct from those subjected to deamination by APOBEC3A. We develop Oligo-seq, an in vitro sequencing-based method to identify specific sequence contexts promoting APOBEC3A and APOBEC3B activity. Through this approach, we demonstrate that APOBEC3A and APOBEC3B deaminase activity is strongly regulated by specific sequences surrounding the targeted cytosine. Moreover, we identify the structural features of APOBEC3B and APOBEC3A responsible for their substrate preferences. Importantly, we determine that APOBEC3B-induced mutations in hairpin-forming sequences within tumor genomes differ from the DNA stem-loop sequences mutated by APOBEC3A. Together, our study provides evidence that APOBEC3A and APOBEC3B can generate distinct mutation landscapes in cancer genomes, driven by their unique substrate selectivity.


Assuntos
Neoplasias , Proteínas , Humanos , Mutação , Neoplasias/genética , Citidina Desaminase/genética , Citidina Desaminase/química , DNA , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/química , Citosina
13.
Nat Commun ; 15(1): 2369, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499553

RESUMO

The APOBEC3 enzymes convert cytosines in single-stranded DNA to uracils to protect against viruses and retrotransposons but can contribute to mutations that diversify tumors. To understand the mechanism of mutagenesis, we map the uracils resulting from expression of APOBEC3B or its catalytic carboxy-terminal domain (CTD) in Escherichia coli. Like APOBEC3A, the uracilomes of A3B and A3B-CTD show a preference to deaminate cytosines near transcription start sites and the lagging-strand replication templates and in hairpin loops. Both biochemical activities of the enzymes and genomic uracil distribution show that A3A prefers 3 nt loops the best, while A3B prefers 4 nt loops. Reanalysis of hairpin loop mutations in human tumors finds intrinsic characteristics of both the enzymes, with a much stronger contribution from A3A. We apply Hairpin Signatures 1 and 2, which define A3A and A3B preferences respectively and are orthogonal to published methods, to evaluate their contribution to human tumor mutations.


Assuntos
Citosina , Neoplasias , Humanos , Citosina/metabolismo , Proteínas/metabolismo , Mutação , Citidina Desaminase/metabolismo , Neoplasias/genética , Uracila/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo
14.
Mol Biol Rep ; 51(1): 462, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551779

RESUMO

BACKGROUND: Ankylosing spondylitis (AS) is a chronic and systemic seronegative inflammatory spondyloarthropathy, an autoimmune disease that has been associated with impaired Endoplasmic Reticulum Aminopeptidase (ERAP)-1 activity, which is involved in priming antigenic peptides. The purpose of this study is to investigate the association of 3-UTR of ERAP1 gene polymorphism (rs13167972) with the AS occurrence susceptibility in a sample of Iraqi male patients. METHODS: The AS patients were diagnosed clinically and by magnetic resonance imaging (MRI) and other clinical and laboratory criteria like symptoms, increased C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR). The blood grouping and Body Mass Index (BMI) were also investigated to be associated with AS occurrence. The genotyping of the 3-UTR region of the ERAP1 gene (rs13167972) was done by Sanger sequencing. RESULTS: The results revealed that the AS occurred significantly in the age group of 20-35 years (p = 0.013). The BMI shows that the AS patients were overweighted males (p = 0.013) and the most predominant blood group in AS patients was O- (p = 0.002). The ESR and serum level of CRP were significantly raised in AS patient sera (< 0.001). The results of the receiver-operating characteristics curve analysis (ROC) revealed that the CRP (AUC: 0.995, cut-off: 2.48 mg/L, had 95% %sensitivity, 100% specificity, p < 0.001) is more discriminative than BMI (AUC: 0.300, cut-off: 46.91 kg, had 0% sensitivity, 100% specificity, p = 0.001), and ESR (AUC: 0.808, cut-off: 7.50 mm/hr, had 60% sensitivity, 88% specificity, p < 0.001) in distinguishing between AS patients and control group. The genotyping of the 3-UTR region of ERAP1 gene (rs13167972) result shows that the AG and GG genotypes are significantly occurring in AS patients (70%, OR: 2.33, 95%CI: 1.02-5.36, p = 0.04). The G allele is significantly occurring in AS patients (47%, OR: 2.07, 95CI%: 1.15-3.71, p = 0.01). CONCLUSION: The AS occurred in young overweight males with blood group O-. The AG and GG genotypes are risk factors for AS development while the G allele is a risk factor that increases the chances for disease incidence.


Assuntos
Antígenos de Grupos Sanguíneos , Espondilite Anquilosante , Humanos , Masculino , Adulto Jovem , Adulto , Espondilite Anquilosante/diagnóstico , Iraque/epidemiologia , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Aminopeptidases/genética , Retículo Endoplasmático , Antígenos de Histocompatibilidade Menor/genética
15.
J Immunother Cancer ; 12(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38519054

RESUMO

Human leukocyte antigen (HLA) restriction of conventional T-cell targeting introduces complexity in generating T-cell therapy strategies for patients with cancer with diverse HLA-backgrounds. A subpopulation of atypical, major histocompatibility complex-I related protein 1 (MR1)-restricted T-cells, distinctive from mucosal-associated invariant T-cells (MAITs), was recently identified recognizing currently unidentified MR1-presented cancer-specific metabolites. It is hypothesized that the MC.7.G5 MR1T-clone has potential as a pan-cancer, pan-population T-cell immunotherapy approach. These cells are irresponsive to healthy tissue while conferring T-cell receptor(TCR) dependent, HLA-independent cytotoxicity to a wide range of adult cancers. Studies so far are limited to adult malignancies. Here, we investigated the potential of MR1-targeting cellular therapy strategies in pediatric cancer. Bulk RNA sequencing data of primary pediatric tumors were analyzed to assess MR1 expression. In vitro pediatric tumor models were subsequently screened to evaluate their susceptibility to engineered MC.7.G5 TCR-expressing T-cells. Targeting capacity was correlated with qPCR-based MR1 mRNA and protein overexpression. RNA expression of MR1 in primary pediatric tumors varied widely within and between tumor entities. Notably, embryonal tumors exhibited significantly lower MR1 expression than other pediatric tumors. In line with this, most screened embryonal tumors displayed resistance to MR1T-targeting in vitro MR1T susceptibility was observed particularly in pediatric leukemia and diffuse midline glioma models. This study demonstrates potential of MC.7.G5 MR1T-cell immunotherapy in pediatric leukemias and diffuse midline glioma, while activity against embryonal tumors was limited. The dismal prognosis associated with relapsed/refractory leukemias and high-grade brain tumors highlights the promise to improve survival rates of children with these cancers.


Assuntos
Glioma , Leucemia , Neoplasias Embrionárias de Células Germinativas , Humanos , Criança , Antígenos de Histocompatibilidade Classe I , Receptores de Antígenos de Linfócitos T , Antígenos de Histocompatibilidade Classe II , Antígenos de Histocompatibilidade Menor
16.
Cell Rep ; 43(4): 113992, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38536815

RESUMO

Insulin is packaged into secretory granules that depart the Golgi and undergo a maturation process that involves changes in the protein and lipid composition of the granules. Here, we show that insulin secretory granules form physical contacts with the endoplasmic reticulum and that the lipid exchange protein oxysterol-binding protein (OSBP) is recruited to these sites in a Ca2+-dependent manner. OSBP binding to insulin granules is positively regulated by phosphatidylinositol-4 (PI4)-kinases and negatively regulated by the PI4 phosphate (PI(4)P) phosphatase Sac2. Loss of Sac2 results in excess accumulation of cholesterol on insulin granules that is normalized when OSBP expression is reduced, and both acute inhibition and small interfering RNA (siRNA)-mediated knockdown of OSBP suppress glucose-stimulated insulin secretion without affecting insulin production or intracellular Ca2+ signaling. In conclusion, we show that lipid exchange at endoplasmic reticulum (ER)-granule contact sites is involved in the exocytic process and propose that these contacts act as reaction centers with multimodal functions during insulin granule maturation.


Assuntos
Colesterol , Retículo Endoplasmático , Secreção de Insulina , Insulina , Antígenos de Histocompatibilidade Menor , Receptores de Esteroides , Vesículas Secretórias , Retículo Endoplasmático/metabolismo , Vesículas Secretórias/metabolismo , Animais , Colesterol/metabolismo , Insulina/metabolismo , Receptores de Esteroides/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Camundongos , Humanos , Cálcio/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Glucose/metabolismo
17.
Immunol Rev ; 323(1): 138-149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520075

RESUMO

Mucosal-associated invariant T (MAIT) cells have a semi-invariant T-cell receptor that allows recognition of antigen in the context of the MHC class I-related (MR1) protein. Metabolic intermediates of the riboflavin synthesis pathway have been identified as MR1-restricted antigens with agonist properties. As riboflavin synthesis occurs in many bacterial species, but not human cells, it has been proposed that the main purpose of MAIT cells is antibacterial surveillance and protection. The majority of human MAIT cells secrete interferon-gamma (IFNg) upon activation, while some MAIT cells in tissues can also express IL-17. Given that MAIT cells are present in human barrier tissues colonized by a microbiome, MAIT cells must somehow be able to distinguish colonization from infection to ensure effector functions are only elicited when necessary. Importantly, MAIT cells have additional functional properties, including the potential to contribute to restoring tissue homeostasis by expression of CTLA-4 and secretion of the cytokine IL-22. A recent study provided compelling data indicating that the range of human MAIT cell functional properties is explained by plasticity rather than distinct lineages. This further underscores the necessity to better understand how different signals regulate MAIT cell function. In this review, we highlight what is known in regards to activating and inhibitory signals for MAIT cells with a specific focus on signals relevant to healthy and inflamed tissues. We consider the quantity, quality, and the temporal order of these signals on MAIT cell function and discuss the current limitations of computational tools to extrapolate which signals are received by MAIT cells in human tissues. Using lessons learned from conventional CD8 T cells, we also discuss how TCR signals may integrate with cytokine signals in MAIT cells to elicit distinct functional states.


Assuntos
Células T Invariantes Associadas à Mucosa , Transdução de Sinais , Humanos , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Animais , Inflamação/imunologia , Ativação Linfocitária/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo
18.
Blood ; 143(18): 1856-1872, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38427583

RESUMO

ABSTRACT: Allogeneic stem cell transplantation (alloSCT) is a curative treatment for hematological malignancies. After HLA-matched alloSCT, antitumor immunity is caused by donor T cells recognizing polymorphic peptides, designated minor histocompatibility antigens (MiHAs), that are presented by HLA on malignant patient cells. However, T cells often target MiHAs on healthy nonhematopoietic tissues of patients, thereby inducing side effects known as graft-versus-host disease. Here, we aimed to identify the dominant repertoire of HLA-I-restricted MiHAs to enable strategies to predict, monitor or modulate immune responses after alloSCT. To systematically identify novel MiHAs by genome-wide association screening, T-cell clones were isolated from 39 transplanted patients and tested for reactivity against 191 Epstein-Barr virus transformed B cell lines of the 1000 Genomes Project. By discovering 81 new MiHAs, we more than doubled the antigen repertoire to 159 MiHAs and demonstrated that, despite many genetic differences between patients and donors, often the same MiHAs are targeted in multiple patients. Furthermore, we showed that one quarter of the antigens are cryptic, that is translated from unconventional open reading frames, for example long noncoding RNAs, showing that these antigen types are relevant targets in natural immune responses. Finally, using single cell RNA-seq data, we analyzed tissue expression of MiHA-encoding genes to explore their potential role in clinical outcome, and characterized 11 new hematopoietic-restricted MiHAs as potential targets for immunotherapy. In conclusion, we expanded the repertoire of HLA-I-restricted MiHAs and identified recurrent, cryptic and hematopoietic-restricted antigens, which are fundamental to predict, follow or manipulate immune responses to improve clinical outcome after alloSCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Menor , Humanos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/genética , Linfócitos T/imunologia , Estudo de Associação Genômica Ampla , Transplante Homólogo , Feminino , Masculino
19.
Clin. transl. oncol. (Print) ; 26(2): 496-514, feb. 2024.
Artigo em Inglês | IBECS | ID: ibc-230194

RESUMO

Background Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumors, with a slow onset, rapid progression, and frequent recurrence. Previous research has implicated mitochondrial ribosomal genes in the development, metastasis, and prognosis of various cancers. However, further research is necessary to establish a link between mitochondrial ribosomal protein (MRP) family expression and HCC diagnosis, prognosis, ferroptosis-related gene (FRG) expression, m6A modification-related gene expression, tumor immunity, and drug sensitivity. Methods Bioinformatics resources were used to analyze data from patients with HCC retrieved from the TCGA, ICGC, and GTEx databases (GEPIA, UALCAN, Xiantao tool, cBioPortal, STRING, Cytoscape, TISIDB, and GSCALite). Results Among the 82 MRP family members, 14 MRP genes (MRPS21, MRPS23, MRPL9, DAP3, MRPL13, MRPL17, MRPL24, MRPL55, MRPL16, MRPL14, MRPS17, MRPL47, MRPL21, and MRPL15) were significantly upregulated differentially expressed genes (DEGs) in HCC tumor samples in comparison to normal samples. Receiver-operating characteristic curve analysis indicated that all 14 DEGs show good diagnostic performance. Furthermore, TCGA analysis revealed that the mRNA expression of 39 MRPs was associated with overall survival (OS) in HCC. HCC was divided into two molecular subtypes (C1 and C2) with distinct prognoses using clustering analysis. The clusters showed different FRG expression and m6A methylation profiles and immune features, and prognostic models showed that the model integrating 5 MRP genes (MRPS15, MRPL3, MRPL9, MRPL36, and MRPL37) and 2 FRGs (SLC1A5 and SLC5A11) attained a greater clinical net benefit than three other prognostic models. Finally, analysis of the CTRP and GDSC databases revealed several potential drugs that could target prognostic MRP genes (AU)


Assuntos
Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas Ribossômicas/genética , Biomarcadores Tumorais/genética , Antígenos de Histocompatibilidade Menor , Prognóstico , Proteínas de Transporte de Sódio-Glucose
20.
Cell Death Dis ; 15(2): 124, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336749

RESUMO

MYCN amplification is an independent poor prognostic factor in patients with high-risk neuroblastoma (NB). Further exploring the molecular regulatory mechanisms in MYCN-amplified NB will help to develop novel therapy targets. In this study, methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) was identified as the differentially expressed gene (DEG) highly expressed in MYCN-amplified NB, and it showed a positive correlation with MYCN and was associated with a poor prognosis of NB patients. Knockdown of MTHFD1 inhibited proliferation and migration, and induced apoptosis of NB cells in vitro. Mouse model experiments validated the tumorigenic effect of MTHFD1 in NB in vivo. In terms of the mechanism, ChIP-qPCR and dual-luciferase reporter assays demonstrated that MTHFD1 was directly activated by MYCN at the transcriptional level. As an important enzyme in the folic acid metabolism pathway, MTHFD1 maintained the NADPH redox homeostasis in MYCN-amplified NB. Knockdown of MTHFD1 reduced cellular NADPH/NADP+ and GSH/GSSG ratios, increased cellular reactive oxygen species (ROS) and triggered the apoptosis of NB cells. Moreover, genetic knockdown of MTHFD1 or application of the anti-folic acid metabolism drug methotrexate (MTX) potentiated the anti-tumor effect of JQ1 both in vitro and in vivo. Taken together, MTHFD1 as an oncogene is a potential therapeutic target for MYCN-amplified NB. The combination of MTX with JQ1 is of important clinical translational significance for the treatment of patients with MYCN-amplified NB.


Assuntos
Metilenotetra-Hidrofolato Desidrogenase (NADP) , Neuroblastoma , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Homeostase , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , NADP/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...