Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Neurogastroenterol Motil ; 35(2): e14498, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36408759

RESUMO

BACKGROUND: Impaired bidirectional communication between the gastrointestinal tract and the central nervous system (CNS) is closely related to the development of irritable bowel syndrome (IBS). Studies in patients with IBS have also shown significant activation of the hypothalamus and amygdala. However, how neural circuits of the CNS participate in and process the emotional and intestinal disorders of IBS remains unclear. METHODS: The GABAergic neural pathway projecting from the central amygdala (CeA) to the lateral hypothalamus (LHA) in mice was investigated by retrograde tracking combined with fluorescence immunohistochemistry. Anxiety, depression-like behavior, and intestinal motility were observed in the water-immersion restraint stress group and the control group. Furthermore, the effects of the chemogenetic activation of the GABAergic neural pathway of CeA-LHA on behavior and intestinal motility, as well as the co-expression of orexin-A and c-Fos in the LHA, were explored. KEY RESULTS: In our study, Fluoro-Gold retrograde tracking combined with fluorescence immunohistochemistry showed that GABAergic neurons in the CeA were projected to the LHA. The microinjection of the gamma-aminobutyric acid (GABA) receptor antagonist into the LHA relieved anxiety, depression-like behavior, and intestinal motility disorder in the IBS mice. The chemogenetic activation of GABAergic neurons in the CeA-LHA pathway led to anxiety, depression-like behavior, and intestinal motility disorder. In addition, GABAergic neurons in the CeA-LHA pathway inhibited the expression of orexin-A in the LHA, and orexin-A was co-expressed with GABAA receptors. CONCLUSIONS & INFERENCES: The CeA-LHA GABAergic pathway might participate in the occurrence and development of IBS by regulating orexin-A neurons.


Assuntos
Núcleo Central da Amígdala , Síndrome do Intestino Irritável , Camundongos , Animais , Região Hipotalâmica Lateral/metabolismo , Núcleo Central da Amígdala/metabolismo , Orexinas/metabolismo , Orexinas/farmacologia , Síndrome do Intestino Irritável/metabolismo , Antagonistas GABAérgicos/metabolismo , Antagonistas GABAérgicos/farmacologia , Motilidade Gastrointestinal
2.
Biochem Pharmacol ; 186: 114457, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33556341

RESUMO

Astrocytes are the major glial cells in the central nervous system, but unlike neurons, they do not produce action potentials. For many years, astrocytes were considered supporting cells in the central nervous system (CNS). Technological advances over the last two decades are changing the face of glial research. Accumulating data from recent investigations show that astrocytes display transient calcium spikes and regulate synaptic transmission by releasing transmitters called gliotransmitters. Many new powerful technologies are used to interfere with astrocytic activity, in order to obtain a better understanding of the roles of astrocytes in the brain. Among these technologies, chemogenetics has recently been used frequently. In this review, we will summarize new functions of astrocytes in the brain that have been revealed using this cutting-edge technique. Moreover, we will discuss the possibilities and challenges of manipulating astrocytic activity using this technology.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Desenho de Fármacos , Animais , Sinalização do Cálcio/fisiologia , Antagonistas GABAérgicos/metabolismo , Antagonistas GABAérgicos/farmacologia , Humanos , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Antagonistas da Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
3.
J Agric Food Chem ; 68(50): 14768-14780, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33274636

RESUMO

Broflanilide, a novel insecticide, is classified as a negative allosteric modulator (NAM) of insect γ-aminobutyric acid (GABA) receptors (GABARs) as desmethyl-broflanilide (DMBF) allosterically inhibits the GABA-induced responses. The G277M mutation of the Drosophila melanogaster GABAR subunit has been reported to abolish the inhibitory activity of DMBF. The binding mode of DMBF in insect GABARs needs to be clarified to understand the underlying mechanism of this mutation and to develop novel, efficient NAMs of insect GABARs. Here, we found that a hydrogen bond formed between DMBF and G277 of the D. melanogaster GABAR model might be the key interaction for the antagonism of DMBF by in silico simulations. The volume increase induced by the G277M mutation blocks the entrance of the binding pocket, making it difficult for DMBF to enter the binding pocket and thereby decreasing its activity. The following virtual screening and bioassay results identified a novel NAM candidate of insect GABARs. Overall, we reported a possible binding mode of DMBF in insect GABARs and proposed the insensitivity mechanism of the G277M mutant GABAR to DMBF using molecular simulations. The identified NAM candidates might provide more alternatives or potentials for the design of GABAR-targeting insecticides.


Assuntos
Benzamidas/química , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Antagonistas GABAérgicos/química , Receptores de GABA/química , Receptores de GABA/metabolismo , Animais , Benzamidas/metabolismo , Benzamidas/farmacologia , Simulação por Computador , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Antagonistas GABAérgicos/metabolismo , Antagonistas GABAérgicos/farmacologia , Simulação de Acoplamento Molecular , Receptores de GABA/genética
4.
Molecules ; 25(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979301

RESUMO

Huntington's disease (HD) is a fatal neurodegenerative disease caused by a CAG expansion mutation in the huntingtin gene. As a result, intranuclear inclusions of mutant huntingtin protein are formed, which damage striatal medium spiny neurons (MSNs). A review of Positron Emission Tomography (PET) studies relating to HD was performed, including clinical and preclinical data. PET is a powerful tool for visualisation of the HD pathology by non-invasive imaging of specific radiopharmaceuticals, which provide a detailed molecular snapshot of complex mechanistic pathways within the brain. Nowadays, radiochemists are equipped with an impressive arsenal of radioligands to accurately recognise particular receptors of interest. These include key biomarkers of HD: adenosine, cannabinoid, dopaminergic and glutamateric receptors, microglial activation, phosphodiesterase 10 A and synaptic vesicle proteins. This review aims to provide a radiochemical picture of the recent developments in the field of HD PET, with significant attention devoted to radiosynthetic routes towards the tracers relevant to this disease.


Assuntos
Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagem , Doença de Huntington/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Encéfalo/patologia , Agonistas de Receptores de Canabinoides/metabolismo , Radioisótopos de Carbono/química , Antagonistas de Dopamina/síntese química , Antagonistas de Dopamina/química , Antagonistas de Dopamina/metabolismo , Antagonistas de Aminoácidos Excitatórios/síntese química , Antagonistas de Aminoácidos Excitatórios/química , Antagonistas de Aminoácidos Excitatórios/metabolismo , Radioisótopos de Flúor/química , Antagonistas GABAérgicos/síntese química , Antagonistas GABAérgicos/química , Antagonistas GABAérgicos/metabolismo , Humanos , Doença de Huntington/patologia , Microglia/metabolismo , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/metabolismo , Antagonistas de Receptores Purinérgicos P1/síntese química , Antagonistas de Receptores Purinérgicos P1/química , Antagonistas de Receptores Purinérgicos P1/metabolismo , Compostos Radiofarmacêuticos/química
5.
J Insect Physiol ; 120: 103989, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805284

RESUMO

GABA is the most common inhibitory neurotransmitter in both vertebrate and invertebrate nervous systems. In insects, inhibition plays important roles at the neuromuscular junction, in the regulation of central pattern generators, and in the modulation of information in higher brain processing centers. Additionally, increasing our understanding of the functions of GABA is important since GABAA receptors are the targets of several classes of pesticides. To investigate the role of GABA in motor function, honey bee foragers were injected with GABA or with agonists or antagonists specific for either GABAA or GABAB receptors. Compounds that activated either type of GABA receptor decreased activity levels. Bees injected with the GABAA receptor antagonist picrotoxin lost the ability to right themselves, whereas blockade of GABAB receptors led to increases in grooming. Injection with antagonists of either GABAA or GABAB receptors resulted in an increase in extended wing behavior, during which bees kept their wings out at right angles to their body rather than folded along their back. These data suggest that the GABA receptor types play distinct roles in behavior and that GABA may affect behavior at several different levels.


Assuntos
Abelhas/fisiologia , Agonistas GABAérgicos/metabolismo , Antagonistas GABAérgicos/metabolismo , Receptores de GABA/metabolismo , Transdução de Sinais , Ácido gama-Aminobutírico/fisiologia , Animais , Atividade Motora
6.
Int J Mol Sci ; 20(4)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769838

RESUMO

Gabapentinoids (gabapentin and pregabalin) and antidepressants (tricyclic antidepressants and serotonin noradrenaline reuptake inhibitors) are often used to treat chronic pain. The descending noradrenergic inhibitory system from the locus coeruleus (LC) to the dorsal horn of the spinal cord plays an important role in the analgesic mechanisms of these drugs. Gabapentinoids activate the LC by inhibiting the release of γ-aminobutyric acid (GABA) and inducing the release of glutamate, thereby increasing noradrenaline levels in the spinal cord. Antidepressants increase noradrenaline levels in the spinal cord by inhibiting reuptake, and accumulating noradrenaline inhibits chronic pain through α2-adrenergic receptors in the spinal cord. Recent animal studies, however, revealed that the function of the descending noradrenergic inhibitory system is impaired in chronic pain states. Other recent studies found that histone deacetylase inhibitors and antidepressants restore the impaired noradrenergic descending inhibitory system acting on noradrenergic neurons in the LC.


Assuntos
Dor Crônica/tratamento farmacológico , Norepinefrina/antagonistas & inibidores , Receptores Adrenérgicos alfa 2/genética , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Animais , Antidepressivos Tricíclicos/administração & dosagem , Dor Crônica/genética , Dor Crônica/fisiopatologia , Antagonistas GABAérgicos/administração & dosagem , Antagonistas GABAérgicos/metabolismo , Gabapentina/administração & dosagem , Humanos , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/fisiopatologia , Norepinefrina/genética , Norepinefrina/metabolismo , Pregabalina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiopatologia , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/fisiopatologia
7.
Elife ; 72018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30106375

RESUMO

Brain computations rely on a proper balance between excitation and inhibition which progressively emerges during postnatal development in rodent. γ-Aminobutyric acid (GABA) neurotransmission supports inhibition in the adult brain but excites immature rodent neurons. Alterations in the timing of the GABA switch contribute to neurological disorders, so unveiling the involved regulators may be a promising strategy for treatment. Here we show that the adipocyte hormone leptin sets the tempo for the emergence of GABAergic inhibition in the newborn rodent hippocampus. In the absence of leptin signaling, hippocampal neurons show an advanced emergence of GABAergic inhibition. Conversely, maternal obesity associated with hyperleptinemia delays the excitatory to inhibitory switch of GABA action in offspring. This study uncovers a developmental function of leptin that may be linked to the pathogenesis of neurological disorders and helps understanding how maternal environment can adversely impact offspring brain development.


Assuntos
Adipócitos/metabolismo , Antagonistas GABAérgicos/metabolismo , Hipocampo/metabolismo , Leptina/genética , Animais , Animais Recém-Nascidos , Desenvolvimento Embrionário/genética , Antagonistas GABAérgicos/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Leptina/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Lobo Temporal/efeitos dos fármacos , Lobo Temporal/fisiopatologia , Ácido gama-Aminobutírico/metabolismo
8.
Anesthesiology ; 127(5): 824-837, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28857763

RESUMO

BACKGROUND: The authors characterized the γ-aminobutyric acid type A receptor pharmacology of the novel etomidate analog naphthalene-etomidate, a potential lead compound for the development of anesthetic-selective competitive antagonists. METHODS: The positive modulatory potencies and efficacies of etomidate and naphthalene-etomidate were defined in oocyte-expressed α1ß3γ2L γ-aminobutyric acid type A receptors using voltage clamp electrophysiology. Using the same technique, the ability of naphthalene-etomidate to reduce currents evoked by γ-aminobutyric acid alone or γ-aminobutyric acid potentiated by etomidate, propofol, pentobarbital, and diazepam was quantified. The binding affinity of naphthalene-etomidate to the transmembrane anesthetic binding sites of the γ-aminobutyric acid type A receptor was determined from its ability to inhibit receptor photoaffinity labeling by the site-selective photolabels [H]azi-etomidate and R-[H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid. RESULTS: In contrast to etomidate, naphthalene-etomidate only weakly potentiated γ-aminobutyric acid-evoked currents and induced little direct activation even at a near-saturating aqueous concentration. It inhibited labeling of γ-aminobutyric acid type A receptors by [H]azi-etomidate and R-[H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid with similar half-maximal inhibitory concentrations of 48 µM (95% CI, 28 to 81 µM) and 33 µM (95% CI, 20 to 54 µM). It also reduced the positive modulatory actions of anesthetics (propofol > etomidate ~ pentobarbital) but not those of γ-aminobutyric acid or diazepam. At 300 µM, naphthalene-etomidate increased the half-maximal potentiating propofol concentration from 6.0 µM (95% CI, 4.4 to 8.0 µM) to 36 µM (95% CI, 17 to 78 µM) without affecting the maximal response obtained at high propofol concentrations. CONCLUSIONS: Naphthalene-etomidate is a very low-efficacy etomidate analog that exhibits the pharmacology of an anesthetic competitive antagonist at the γ-aminobutyric acid type A receptor.


Assuntos
Ligação Competitiva/fisiologia , Etomidato/análogos & derivados , Etomidato/metabolismo , Antagonistas GABAérgicos/metabolismo , Receptores de GABA-A/metabolismo , Animais , Ligação Competitiva/efeitos dos fármacos , Relação Dose-Resposta a Droga , Etomidato/farmacologia , Feminino , Antagonistas GABAérgicos/farmacologia , Naftalenos/química , Naftalenos/metabolismo , Naftalenos/farmacologia , Oócitos , Resultado do Tratamento , Xenopus laevis , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
9.
Curr Med Chem ; 24(27): 2935-2945, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28606041

RESUMO

BACKGROUND: γ-Aminobutyric acid (GABA) receptors play a central role in fast inhibitory neurotransmission in insects. Several classes of insecticides targeting insect GABA-gated chloride channels have been developed. The important resistant to dieldrin GABA receptor subunit (RDL) has been used to investigate insecticide sites of action using radioligands, electrophysiology and site-directed mutagenesis. Although this important subunit readily forms robust functional homomeric receptors when expressed, alternative splicing and RNA A-to-I editing can generate diverse forms of the receptor. METHODS: We have reviewed studies on native and recombinant insect GABA-gated chloride channels, their interactions with ligands acting at orthosteric and allosteric sites and their interactions with insecticides. Since some GABA receptor modulators act on L-glutamate-gated chloride channels, some comparisons are included. RESULTS: The actions on GABA-gated chloride channels of polychlorocycloalkanes, cyclodienes, macrocyclic lactones, phenylpyrazoles, isoxazolines, and metadiamides are described and the mechanisms of action of members of these insecticide classes are addressed. Mutations that lead to resistance are discussed as they can be important in developing field diagnostic tests. Toxicity issues relating to insecticides targeting GABA-gated chloride channels are also addressed. An overview of all major insecticide classes targeting insect GABA-gated chloride channels has enhanced our understanding of these important receptors and their insecticide binding sites. However, the subunit composition of native GABA receptors remains unknown and studies to clarify this are needed. Also, the precise sites of action of the recently introduced isoxazolines and meta-diamides will be of interest to pursue.


Assuntos
Inseticidas/metabolismo , Receptores de GABA/metabolismo , Animais , Resistência a Medicamentos/efeitos dos fármacos , Antagonistas GABAérgicos/química , Antagonistas GABAérgicos/metabolismo , Antagonistas GABAérgicos/toxicidade , Humanos , Insetos/efeitos dos fármacos , Inseticidas/química , Inseticidas/toxicidade , Oxazóis/química , Oxazóis/metabolismo , Oxazóis/toxicidade , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/toxicidade , Receptores de GABA/química , Receptores de GABA/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química
10.
Mol Pharmacol ; 92(1): 88-99, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28428226

RESUMO

Fluorometric imaging plate reader membrane potential dye (FMP-Red-Dye) is a proprietary tool for basic discovery and high-throughput drug screening for G-protein-coupled receptors and ion channels. We optimized and validated this potentiometric probe to assay functional modulators of heterologous expressed GABAA receptor (GABAAR) isoforms (synaptic α1ß3γ2, extrasynaptic α4ß3δ, and ß3 homopentomers). High-resolution mass spectrometry identified FMP-Red-Dye as 5,5'-(1-propen-1-yl-3-ylidene)bis[1,3-dimethyl-2-thio-barbituric acid]. GABAAR-expressing cells equilibrated with FMP-Red-Dye exhibited depolarized equilibrium membrane potentials compared with GABAAR-null cells. The channel blockers picrotoxin, fipronil, and tetramethylenedisulfotetramine, and the competitive antagonist bicuculline reduced fluorescence near the levels in GABAAR-null cells indicating that FMR-Red-Dye, a barbiturate derivative, activates GABAAR-mediated outward Cl- current in the absence of GABA. GABA caused concentration-dependent increases in fluorescence with rank order of potencies among GABAAR isoforms consistent with results from voltage-clamp experiments (EC50 values for α4ß3δ, α1ß3γ2, and ß3 homopentamers were 6 ± 1, 40 ± 11, and >18 mM, respectively), whereas GABAAR-null cells were unresponsive. Neuroactive steroids (NAS) increased fluorescence of GABAAR expressing cells in the absence of GABA and demonstrated positive allosteric modulation in the presence of GABA, whereas benzodiazepines only exhibited positive allosteric modulator (PAM) activity. Of 20 NAS tested, allopregnanolone, (3α,5α,20E)-3-hydroxy-13,24-cyclo-18-norcholan-20-ene-21-carbonitrile, eltanolone, 5ß-pregnan-3α,21-diol-20-one, and ganaxolone showed the highest potency. The FMP-Red-Dye-based assay described here provides a sensitive and quantitative method of assessing the activity of GABAAR agonists, antagonists, and PAMs on diverse GABAAR isoforms. The assay has a wide range of applications, including screening for antiseizure agents and identifying channel blockers of interest to insecticide discovery or biosecurity.


Assuntos
Corantes Fluorescentes/metabolismo , Antagonistas GABAérgicos/metabolismo , Moduladores GABAérgicos/metabolismo , Potenciais da Membrana/fisiologia , Subunidades Proteicas/metabolismo , Receptores de GABA-A/metabolismo , Animais , Relação Dose-Resposta a Droga , Corantes Fluorescentes/farmacologia , Antagonistas GABAérgicos/farmacologia , Moduladores GABAérgicos/farmacologia , Células HEK293 , Humanos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Subunidades Proteicas/antagonistas & inibidores
11.
Psychopharmacology (Berl) ; 234(9-10): 1511-1523, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28070618

RESUMO

RATIONALE: There is accumulating evidence for a role of GABAB receptors in depression. GABAB receptors are heterodimers of GABAB1 and GABAB2 receptor subunits. The predominant GABAB1 subunit isoforms are GABAB1a and GABAB1b. GABAB1 isoforms in mice differentially influence cognition, conditioned fear, and susceptibility to stress, yet their influence in tests of antidepressant-like activity has not been fully investigated. OBJECTIVES: Given the interactions between GABAB receptors and the serotonergic system and the involvement of 5-HT1A receptors (5-HT1AR) in antidepressant action, we sought to evaluate 5-HT1AR function in GABAB1a-/- and GABAB1b-/- mice. METHODS: GABAB1a-/- and GABAB1b-/- mice were assessed in the forced swim test (FST), and body temperature and hypothalamic-pituitary-adrenal (HPA) responses to the 5-HT1AR agonist 8-OH-DPAT were determined. Brain 5-HT1AR expression was assessed by [3H]-MPPF and [3H]-8-OH-DPAT autoradiography and 5-HT1AR G-protein coupling by [35S]GTP-γ-S autoradiography. RESULTS: As previously described, GABAB1a-/- mice showed an antidepressant-like profile in the FST. GABAB1a-/- mice also demonstrated profoundly blunted hypothermic and motoric responses to 8-OH-DPAT. Furthermore, 8-OH-DPAT-induced corticosterone and adrenocorticotropic hormone (ACTH) release were both attenuated in GABAB1a-/- mice. Interestingly, [3H]-MPPF and [3H]-8-OH-DPAT binding was largely unaffected by genotype. [35S]GTP-γ-S autoradiography suggested that altered 5-HT1AR G-protein coupling only partially contributes to the functional presynaptic 5-HT1AR desensitization, and not at all to the blunted postsynaptic 5-HT1AR-mediated responses, seen in GABAB1a-/- mice. CONCLUSION: These data demonstrate distinct functional links between 5-HT1ARs and the GABAB1a subunit isoform and suggest that the GABAB1a isoform may be implicated in the antidepressant-like effects of GABAB receptor antagonists and in neurobiological mechanisms underlying depression.


Assuntos
Antidepressivos/metabolismo , Depressão/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de GABA-B/deficiência , Animais , Antidepressivos/farmacologia , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Corticosterona/metabolismo , Depressão/psicologia , Feminino , Antagonistas GABAérgicos/metabolismo , Antagonistas GABAérgicos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Ligação Proteica/fisiologia , Isoformas de Proteínas/metabolismo , Agonistas do Receptor de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia
12.
Anesth Analg ; 123(5): 1220-1227, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27285004

RESUMO

Trafficking of anesthetic-sensitive receptors within the plasma membrane, or from one cellular component to another, occurs continuously. Changes in receptor trafficking have implications in altering anesthetic sensitivity. γ-Aminobutyric acid type A receptors (GABAARs) are anion-permeable ion channels and are the major class of receptor in the adult mammalian central nervous system that mediates inhibition. GABAergic signaling allows for precise synchronized firing of action potentials within brain circuits that is critical for cognition, behavior, and consciousness. This precision depends upon tightly controlled trafficking of GABAARs into the membrane. General anesthetics bind to and allosterically enhance GABAARs by prolonging the open state of the receptor and thereby altering neuronal and brain circuit activity. Subunit composition and GABAAR localization strongly influence anesthetic end points; therefore, changes in GABAAR trafficking could have significant consequences to anesthetic sensitivity. GABAARs are not static membrane structures but are in a constant state of flux between extrasynaptic and synaptic locations and are continually endocytosed and recycled from and to the membrane. Neuronal activity, posttranslational modifications, and some naturally occurring and synthetic compounds can influence the expression and trafficking of GABAARs. In this article, we review GABAARs, their trafficking, and how phosphorylation of GABAAR subunits can influence the surface expression and function of the receptor. Ultimately, alterations of GABAAR trafficking could modify anesthetic end points, both unintentionally through pathologic processes but potentially as a therapeutic target to adjust anesthetic-sensitive GABAARs.


Assuntos
Anestésicos Gerais/metabolismo , Antagonistas GABAérgicos/metabolismo , Inibição Neural/fisiologia , Receptores de GABA-A/metabolismo , Anestésicos Gerais/farmacologia , Animais , Antagonistas GABAérgicos/farmacologia , Humanos , Inibição Neural/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia
13.
Sci Rep ; 6: 26181, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27188845

RESUMO

The functional network of human induced pluripotent stem cell (hiPSC)-derived neurons is a potentially powerful in vitro model for evaluating disease mechanisms and drug responses. However, the culture time required for the full functional maturation of individual neurons and networks is uncertain. We investigated the development of spontaneous electrophysiological activity and pharmacological responses for over 1 year in culture using multi-electrode arrays (MEAs). The complete maturation of spontaneous firing, evoked responses, and modulation of activity by glutamatergic and GABAergic receptor antagonists/agonists required 20-30 weeks. At this stage, neural networks also demonstrated epileptiform synchronized burst firing (SBF) in response to pro-convulsants and SBF suppression using clinical anti-epilepsy drugs. Our results reveal the feasibility of long-term MEA measurements from hiPSC-derived neuronal networks in vitro for mechanistic analyses and drug screening. However, developmental changes in electrophysiological and pharmacological properties indicate the necessity for the international standardization of culture and evaluation procedures.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurônios/fisiologia , Potenciais de Ação , Animais , Células Cultivadas , Fenômenos Eletrofisiológicos , Agonistas de Aminoácidos Excitatórios/metabolismo , Antagonistas de Aminoácidos Excitatórios/metabolismo , Agonistas GABAérgicos/metabolismo , Antagonistas GABAérgicos/metabolismo , Lepidópteros , Rede Nervosa , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Fatores de Tempo
14.
Brain Behav Immun ; 54: 260-277, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26851553

RESUMO

The central nervous system, once thought to be a site of immunological privilege, has since been found to harbour immunocompetent cells and to communicate with the peripheral nervous system. In the central nervous system (CNS), glial cells display immunological responses to pathological and physiological stimuli through pro- and anti-inflammatory cytokine and chemokine signalling, antigen presentation and the clearing of cellular debris through phagocytosis. While this neuroinflammatory signalling can act to reduce neuronal damage and comprises a key facet of CNS homeostasis, persistent inflammation or auto-antigen-mediated immunoreactivity can induce a positive feedback cycle of neuroinflammation that ultimately results in necrosis of glia and neurons. Persistent neuroinflammation has been recognised as a major pathological component of virtually all neurodegenerative diseases and has also been a focus of research into the pathology underlying psychiatric disorders. Thus, pharmacological strategies to curb the pathological effects of persistent neuroinflammation are of interest for many disorders of the CNS. Accumulating evidence suggests that GABAergic activities are closely bound to immune processes and signals, and thus the GABAergic neurotransmitter system might represent an important therapeutic target in modulating neuroinflammation. Here, we review evidence that inflammation induces changes in the GABA neurotransmitter system in the CNS and that GABAergic signalling exerts a reciprocal influence over neuroinflammatory processes. Together, the data support the hypothesis that the GABA system is a potential therapeutic target in the modulation of central inflammation.


Assuntos
Neuroimunomodulação/imunologia , Receptores de GABA/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Agonistas GABAérgicos/metabolismo , Antagonistas GABAérgicos/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Receptores de GABA/imunologia , Ácido gama-Aminobutírico/imunologia
15.
Nat Commun ; 5: 4454, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25072879

RESUMO

Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor ß and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation.


Assuntos
Encéfalo/fisiologia , Antagonistas GABAérgicos/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA-A/efeitos da radiação , Sinapses/fisiologia , Raios Ultravioleta , Análise de Variância , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Piridazinas , Receptores de GABA-A/genética
16.
J Agric Food Chem ; 62(5): 1019-24, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24404981

RESUMO

Isoxazoline insecticides, such as fluralaner (formerly A1443), are noncompetitive γ-aminobutyric acid (GABA) receptor (GABA-R) antagonists with selective toxicity for insects versus mammals. The isoxazoline target in house fly ( Musca domestica ) brain has subnanomolar affinity for [³H]fluralaner and a unique pattern of sensitivity to isoxazolines and avermectin B(1a) (AVE) but not to fipronil and α-endosulfan. Inhibitor specificity profiles for 15 isoxazolines examined with Musca GABA-R and [³H]fluralaner, [³H]-4'-ethynyl-4-n-propylbicycloorthobenzoate ([³H]EBOB), and [³H]AVE binding follow the same structure-activity trends although without high correlation. The 3 most potent of the 15 isoxazolines tested in Musca [³H]fluralaner, [³H]EBOB, and [³H]AVE binding assays and in honeybee (Apis mellifera) brain [³H]fluralaner assays are generally those most toxic to Musca and four agricultural pests. Fluralaner does not inhibit [³H]EBOB binding to the human GABA-R recombinant ß3 homopentamer, which is highly sensitive to all of the commercial GABAergic insecticides. The unique isoxazoline binding site may resurrect the GABA-R as a major insecticide target.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/toxicidade , Antagonistas GABAérgicos/toxicidade , Moscas Domésticas/efeitos dos fármacos , Proteínas de Insetos/antagonistas & inibidores , Inseticidas/toxicidade , Androstenóis/química , Androstenóis/toxicidade , Animais , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/química , Antagonistas GABAérgicos/química , Antagonistas GABAérgicos/metabolismo , Moscas Domésticas/genética , Moscas Domésticas/metabolismo , Proteínas de Insetos/metabolismo , Inseticidas/química , Receptores de GABA/metabolismo
17.
Pestic Biochem Physiol ; 107(3): 285-92, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24267689

RESUMO

γ-Aminobutyric acid (GABA) receptors (GABARs) are an important target for existing insecticides such as fiproles. These insecticides act as noncompetitive antagonists (channel blockers) for insect GABARs by binding to a site within the intrinsic channel of the GABAR. Recently, a novel class of insecticides, 3-benzamido-N-phenylbenzamides (BPBs), was shown to inhibit GABARs by binding to a site distinct from the site for fiproles. We examined the binding site of BPBs in the adult housefly by means of radioligand-binding and electrophysiological experiments. 3-Benzamido-N-(2,6-dimethyl-4-perfluoroisopropylphenyl)-2-fluorobenzamide (BPB 1) (the N-demethyl BPB) was a partial, but potent, inhibitor of [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (GABA channel blocker) binding to housefly head membranes, whereas the 3-(N-methyl)benzamido congener (the N-methyl BPB) had low or little activity. A total of 15 BPB analogs were tested for their abilities to inhibit [(3)H]BPB 1 binding to the head membranes. The N-demethyl analogs, known to be highly effective insecticides, potently inhibited the [(3)H]BPB 1 binding, but the N-methyl analogs did not even though they, too, are considered highly effective. [(3)H]BPB 1 equally bound to the head membranes from wild-type and dieldrin-resistant (rdl mutant) houseflies. GABA allosterically inhibited [(3)H]BPB 1 binding. By contrast, channel blocker-type antagonists enhanced [(3)H]BPB 1 binding to housefly head membranes by increasing the affinity of BPB 1. Antiparasitic macrolides, such as ivermectin B1a, were potent inhibitors of [(3)H]BPB 1 binding. BPB 1 inhibited GABA-induced currents in housefly GABARs expressed in Xenopus oocytes, whereas it failed to inhibit l-glutamate-induced currents in inhibitory l-glutamate receptors. Overall, these findings indicate that BPBs act at a novel allosteric site that is different from the site for channel blocker-type antagonists and that is probably overlapped with the site for macrolides in insect GABARs.


Assuntos
Inseticidas/química , Inseticidas/metabolismo , Receptores de GABA/química , Receptores de GABA/metabolismo , Sítio Alostérico , Animais , Antagonistas GABAérgicos/química , Antagonistas GABAérgicos/metabolismo , Moscas Domésticas , Ivermectina/análogos & derivados , Ivermectina/metabolismo
18.
Biol Bull ; 224(1): 47-52, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23493508

RESUMO

The squid has been the most studied cephalopod, and it has served as a very useful model for investigating the events associated with nerve impulse generation and synaptic transmission. While the physiology of squid giant axons has been extensively studied, very little is known about the distribution and function of the neurotransmitters and receptors that mediate inhibitory transmission at the synapses. In this study we investigated whether γ-aminobutyric acid (GABA) activates neurotransmitter receptors in stellate ganglia membranes. To overcome the low abundance of GABA-like mRNAs in invertebrates and the low expression of GABA in cephalopods, we used a two-electrode voltage clamp technique to determine if Xenopus laevis oocytes injected with cell membranes from squid stellate ganglia responded to GABA. Using this method, membrane patches containing proteins and ion channels from the squid's stellate ganglion were incorporated into the surface of oocytes. We demonstrated that GABA activates membrane receptors in cellular membranes isolated from squid stellate ganglia. Using the same approach, we were able to record native glutamate-evoked currents. The squid's GABA receptors showed an EC(50) of 98 µmol l(-1) to GABA and were inhibited by zinc (IC(50) = 356 µmol l(-1)). Interestingly, GABA receptors from the squid were only partially blocked by bicuculline. These results indicate that the microtransplantation of native cell membranes is useful to identify and characterize scarce membrane proteins. Moreover, our data also support the role of GABA as an ionotropic neurotransmitter in cephalopods, acting through chloride-permeable membrane receptors.


Assuntos
Membrana Celular/metabolismo , Decapodiformes/fisiologia , Receptores de GABA/metabolismo , Animais , Agonistas GABAérgicos/metabolismo , Antagonistas GABAérgicos/metabolismo , Concentração Inibidora 50 , Modelos Biológicos , Modelos Teóricos , Oócitos/fisiologia , Gânglio Estrelado/fisiologia , Xenopus laevis , Zinco/metabolismo , Ácido gama-Aminobutírico/metabolismo
19.
Insect Biochem Mol Biol ; 43(4): 366-75, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23416568

RESUMO

The RDL GABA receptor is an attractive target of insecticides. Here we demonstrate that meta-diamides [3-benzamido-N-(4-(perfluoropropan-2-yl)phenyl)benzamides] are a distinct class of RDL GABA receptor antagonists showing high insecticidal activity against Spodoptera litura. We also suggest that the mode of action of the meta-diamides is distinct from that of conventional noncompetitive antagonists (NCAs), such as fipronil, picrotoxin, lindane, dieldrin, and α-endosulfan. Using a membrane potential assay, we examined the effects of the meta-diamide 3-benzamido-N-(2-bromo-4-(perfluoropropan-2-yl)-6-(trifluoromethyl)phenyl)-2-fluorobenzamide (meta-diamide 7) and NCAs on mutant Drosophila RDL GABA receptors expressed in Drosophila Mel-2 cells. NCAs had little or no inhibitory activity against at least one of the three mutant receptors (A2'S, A2'G, and A2'N), which were reported to confer resistance to NCAs. In contrast, meta-diamide 7 inhibited all three A2' mutant receptors, at levels comparable to its activity with the wild-type receptor. Furthermore, the A2'S·T6'V mutation almost abolished the inhibitory effects of all NCAs. However, meta-diamide 7 inhibited the A2'S・T6'S mutant receptor at the same level as its activity with the wild-type receptor. In contrast, a G336M mutation in the third transmembrane domain of the RDL GABA receptor abolished the inhibitory activities of meta-diamide 7, although the G336M mutation had little effect on the inhibitory activities of conventional NCAs. Molecular modeling studies also suggested that the binding site of meta-diamides was different from those of NCAs. Meta-diamide insecticides are expected to be prominent insecticides effective against A2' mutant RDL GABA receptors with a different mode of action.


Assuntos
Diamida/química , Antagonistas GABAérgicos/química , Inseticidas/química , Receptores de GABA/química , Spodoptera/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Diamida/metabolismo , Diamida/farmacologia , Drosophila/química , Drosophila/efeitos dos fármacos , Drosophila/genética , Drosophila/metabolismo , Antagonistas GABAérgicos/metabolismo , Antagonistas GABAérgicos/farmacologia , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Inseticidas/metabolismo , Inseticidas/farmacologia , Dados de Sequência Molecular , Ligação Proteica , Receptores de GABA/genética , Receptores de GABA/metabolismo , Alinhamento de Sequência , Spodoptera/química , Spodoptera/genética , Spodoptera/metabolismo
20.
Curr Protoc Pharmacol ; 63: 1.18.1-1.18.18, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24510752

RESUMO

This unit describes an in vitro assay for characterization of the picrotoxin site of GABAA receptors in rat brain membranes using various radioligands. Methods and representative data for Scatchard analysis (Kd, Bmax determination), association kinetics, dissociation kinetics, and competition assays (IC50, Ki determination) are included.


Assuntos
Encéfalo/metabolismo , Antagonistas GABAérgicos/metabolismo , Picrotoxina/metabolismo , Receptores de GABA-A/metabolismo , Animais , Ligação Competitiva/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Membrana Celular/metabolismo , Antagonistas GABAérgicos/farmacocinética , Picrotoxina/farmacocinética , Ensaio Radioligante/métodos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...