Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
1.
Ecotoxicol Environ Saf ; 246: 114202, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36270036

RESUMO

Many phenolic compounds have been found to have endocrine disrupting activities, but their arylamine analogs, the phenolic hydroxyl groups substituted by aniline amino groups, have rarely been reported. 4,4'-(9-Fluorenylidene)dianiline (BAFL) is an arylamine analog of fluorene-9-bisphenol (BHPF) and BHPF has been reported to be a strong antiestrogen which could cause endometrial atrophy, ovarian damage and adverse pregnancy outcomes in animals. BAFL has been widely used as material to synthetize polymers, such as polyimides, polyamide, and polyamine, for various uses since the 1970s. Here, we assessed the antiestrogenicity of BAFL using a variety of methods and looked into its impacts on the development of females in CD-1 mice. With the aid of a yeast estrogen screen assay, we found BAFL possessed obviously antiestrogenic activity (IC50 = 8.15 × 10-6 M), which close to that of tamoxifen and BHPF. Using a 10-d mouse uterotrophic assay, we found that BAFL obviously decreased uterine weight in a dose-dependent way. Histological analyses of mouse uteri revealed that BAFL induced marked endometrial atrophy and inhibited the uterine development. Immunohistochemical analyses showed that Sprr2d, an estrogen-responsive gene encoding protein, was mainly expressed in endometrial epithelial cells and BAFL decreased the areas and levels of Sprr2d staining in mouse uteri. It was clear from uterine transcriptome investigations that BAFL significantly downregulated the expressions of multiple genes responding to estrogen. Molecular docking showed that BAFL could effectively occupy the antagonist-binding pocket of hERα, and one of the amino groups of BAFL formed hydrogen bonds with the side chains of Arg394 and Glu353 in the receptor. These results indicated that BAFL exhibited clearly antiestrogenic characteristics and could interfere with normal female development in mice, which should be avoided using in commodities that come into direct contact with humans. Moreover, this study indicated that the arylamine analogs of phenolic endocrine disrupting chemicals might also have endocrine disrupting activities.


Assuntos
Antagonistas de Estrogênios , Estrogênios , Humanos , Gravidez , Camundongos , Feminino , Animais , Simulação de Acoplamento Molecular , Antagonistas de Estrogênios/química , Estrogênios/toxicidade , Atrofia
2.
Biochem Pharmacol ; 193: 114763, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509493

RESUMO

Out of the five isoforms of human flavin-containing monooxygenase (hFMO), FMO1 and FMO3 are the most relevant to Phase I drug metabolism. They are involved in the oxygenation of xenobiotics including drugs and pesticides using NADPH and FAD as cofactors. Majority of the characterization of these enzymes has involved hFMO3, where intermediates of its catalytic cycle have been described. On the other hand, research efforts have so far failed in capturing the same key intermediate that is responsible for the monooxygenation activity of hFMO1. In this work we demonstrate spectrophotometrically the formation of a highly stable C4a-hydroperoxyflavin intermediate of hFMO1 upon reduction by NADPH and in the presence of O2. The measured half-life of this flavin intermediate revealed it to be stable and not fully re-oxidized even after 30 min at 15 °C in the absence of substrate, the highest stability ever observed for a human FMO. In addition, the uncoupling reactions of hFMO1 show that this enzyme is <1% uncoupled in the presence of substrate, forming small amounts of H2O2 with no observable superoxide as confirmed by EPR spin trapping experiments. This behaviour is different from hFMO3, that is shown to form both H2O2 and superoxide anion radical as a result of ∼50% uncoupling. These data are consistent with the higher stability of the hFMO1 intermediate in comparison to hFMO3. Taken together, these data demonstrate the different behaviours of these two closely related enzymes with consequences for drug metabolism as well as possible toxicity due to reactive oxygen species.


Assuntos
Flavinas/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Oxigenases/metabolismo , Dicroísmo Circular , Escherichia coli , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/metabolismo , Fention/química , Fention/metabolismo , Flavina-Adenina Dinucleotídeo , Flavinas/química , Humanos , Inseticidas/química , Inseticidas/metabolismo , Cinética , NADP , Oxirredução , Oxigênio , Oxigenases/genética , Tamoxifeno/química , Tamoxifeno/metabolismo , Taurina/análogos & derivados , Taurina/química , Taurina/metabolismo
3.
Bioorg Med Chem ; 47: 116395, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34509864

RESUMO

Estrogen receptor α emerged as a well validated therapeutic target of breast cancer for decades. However, approximately 50% of patients who initially responding to standard-of-care (SoC), such as undergo therapy of Tamoxifen, generally inevitably progress to an endocrine-resistance ER+ phenotype. Recently, selective estrogen receptor covalent antagonists (SERCAs) targeted to ERα have been demonstrated as a therapeutic alternative. In the present study, series of novel 6-OH-benzothiophene (BT) derivatives targeting ERα and deriving from Raloxifene were designed, synthesized, and biologically evaluated as covalent antagonists. Driven by the antiproliferative efficacy in ER+ breast cancer cells, our chemical optimization finally led to compound 19d that with potent antagonistic activity in ER+ tumor cells while without agonistic activity in endometrial cells. Moreover, the docking simulation was carried out to elucidate the binding mode, revealing 19d as an antagonist and covalently binding to the cysteine residue at the 530 position of ER helix H11.


Assuntos
Desenho de Fármacos , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Tiofenos/farmacologia , Relação Dose-Resposta a Droga , Antagonistas de Estrogênios/síntese química , Antagonistas de Estrogênios/química , Receptor alfa de Estrogênio/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química
4.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34452998

RESUMO

Efforts to improve estrogen receptor-α (ER)-targeted therapies in breast cancer have relied upon a single mechanism, with ligands having a single side chain on the ligand core that extends outward to determine antagonism of breast cancer growth. Here, we describe inhibitors with two ER-targeting moieties, one of which uses an alternate structural mechanism to generate full antagonism, freeing the side chain to independently determine other critical properties of the ligands. By combining two molecular targeting approaches into a single ER ligand, we have generated antiestrogens that function through new mechanisms and structural paradigms to achieve antagonism. These dual-mechanism ER inhibitors (DMERIs) cause alternate, noncanonical structural perturbations of the receptor ligand-binding domain (LBD) to antagonize proliferation in ER-positive breast cancer cells and in allele-specific resistance models. Our structural analyses with DMERIs highlight marked differences from current standard-of-care, single-mechanism antiestrogens. These findings uncover an enhanced flexibility of the ER LBD through which it can access nonconsensus conformational modes in response to DMERI binding, broadly and effectively suppressing ER activity.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cristalografia por Raios X , Feminino , Humanos , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Células Tumorais Cultivadas
5.
Artigo em Inglês | MEDLINE | ID: mdl-34266369

RESUMO

The selective oestrogen receptor modulator (SERM) clomiphene is therapeutically used to induce ovulation. While prohibited as a doping agent in sports, it is frequently detected in sports drug testing urine samples. Few reports exist on clomiphene's (illicit) use in the farming industry to increase the egg production rate of laying hens, which creates a risk that eggs as well as edible tissue of these hens contain residues of clomiphene. To investigate the potential transfer of clomiphene into eggs and muscle tissue, laying hens were orally administered with clomiphene citrate at 10 mg/day for 28 days. To determine clomiphene residues in eggs, chicken breast and chicken thigh, the target analyte was extracted from homogenised material with acetonitrile and subjected to ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. The test method reached a limit of quantification (LOQ) of 1 µg/kg and was characterised concerning specificity, precision, trueness and linearity. Analyses were performed on whole egg, egg white and yolk separately, and chicken muscle from breast and thigh. Clomiphene was detectable in eggs two days after the beginning of the drug administration period. The drug concentrations increased to 10-20 µg per egg within one week, and after withdrawal of clomiphene, residues decreased after 4 days, but traces of clomiphene were still detectable until the end of the study (14 days after the last administration). In the chicken's muscle tissue, clomiphene levels up to 150 µg/kg (thigh) and 36 µg/kg (breast) were found. Six days after the last dose, tissue clomiphene concentrations fell below the LOQ. Overall, these results underline the concerns that clomiphene may be transferred into animal-derived food and future research will therefore need to focus on assessing and minimising the risk of unintentional adverse analytical findings in doping controls.


Assuntos
Clomifeno/farmacocinética , Resíduos de Drogas/química , Ovos/análise , Antagonistas de Estrogênios/farmacocinética , Carne/análise , Músculo Esquelético/química , Administração Oral , Animais , Galinhas , Clomifeno/química , Clomifeno/metabolismo , Antagonistas de Estrogênios/química , Feminino , Contaminação de Alimentos , Oviposição
6.
J Cell Biochem ; 122(10): 1445-1459, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34121218

RESUMO

MAP/microtubule affinity-regulating kinase 4 (MARK4) is a member of serine/threonine kinase family and considered an attractive drug target for many diseases. Screening of Indian Medicinal Plants, Phytochemistry, and Therapeutics (IMPPAT) using virtual high-throughput screening coupled with enzyme assay suggested that Naringenin (NAG) could be a potent inhibitor of MARK4. Structure-based molecular docking analysis showed that NAG binds to the critical residues found in the active site pocket of MARK4. Furthermore, molecular dynamics (MD) simulation studies for 100 ns have delineated the binding mechanism of NAG to MARK4. Results of MD simulation suggested that binding of NAG further stabilizes the structure of MARK4 by forming a stable complex. In addition, no significant conformational change in the MARK4 structure was observed. Fluorescence binding and isothermal titration calorimetric measurements revealed an excellent binding affinity of NAG to MARK4 with a binding constant (K) = 0.13 × 106 M-1 obtained from fluorescence binding studies. Further, enzyme inhibition studies showed that NAG has an admirable IC50 value of 4.11 µM for MARK4. Together, these findings suggest that NAG could be an effective MARK4 inhibitor that can potentially be used to treat cancer and neurodegenerative diseases.


Assuntos
Flavanonas/química , Flavanonas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Sítios de Ligação , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/farmacologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Ligação Proteica , Conformação Proteica
7.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069498

RESUMO

Tamoxifen is the most widely used selective modulator of estrogen receptors (SERM) and the first strategy as coadjuvant therapy for the treatment of estrogen-receptor (ER) positive breast cancer worldwide. In spite of such success, tamoxifen is not devoid of undesirable effects, the most life-threatening reported so far affecting uterine tissues. Indeed, tamoxifen treatment is discouraged in women under risk of uterine cancers. Recent molecular design efforts have endeavoured the development of tamoxifen derivatives with antiestrogen properties but lacking agonistic uterine tropism. One of this is FLTX2, formed by the covalent binding of tamoxifen as ER binding core, 7-nitrobenzofurazan (NBD) as the florescent dye, and Rose Bengal (RB) as source for reactive oxygen species. Our analyses demonstrate (1) FLTX2 is endowed with similar antiestrogen potency as tamoxifen and its predecessor FLTX1, (2) shows a strong absorption in the blue spectral range, associated to the NBD moiety, which efficiently transfers the excitation energy to RB through intramolecular FRET mechanism, (3) generates superoxide anions in a concentration- and irradiation time-dependent process, and (4) Induces concentration- and time-dependent MCF7 apoptotic cell death. These properties make FLTX2 a very promising candidate to lead a novel generation of SERMs with the endogenous capacity to promote breast tumour cell death in situ by photosensitization.


Assuntos
Antagonistas de Estrogênios/química , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Neoplasias da Mama/metabolismo , Moduladores de Receptor Estrogênico/farmacologia , Estrogênios/metabolismo , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Humanos , Simulação de Dinâmica Molecular , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Receptores de Estrogênio/metabolismo , Moduladores Seletivos de Receptor Estrogênico/química , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Útero/metabolismo
8.
Bioorg Med Chem ; 40: 116185, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965842

RESUMO

Hormone therapy targeting estrogen receptors is widely used clinically for the treatment of breast cancer, such as tamoxifen, but most of them are partial agonists, which can cause serious side effects after long-term use. The use of selective estrogen receptor down-regulators (SERDs) may be an effective alternative to breast cancer therapy by directly degrading ERα protein to shut down ERα signaling. However, the solely clinically used SERD fulvestrant, is low orally bioavailable and requires intravenous injection, which severely limits its clinical application. On the other hand, double- or multi-target conjugates, which are able to synergize antitumor activity by different pathways, thus may enhance therapeutic effect in comparison with single targeted therapy. In this study, we designed and synthesized a series of novel dual-functional conjugates targeting both ERα degradation and histone deacetylase inhibiton by combining a privileged SERD skeleton 7-oxabicyclo[2.2.1]heptane sulfonamide (OBHSA) with a histone deacetylase inhibitor side chain. We found that substituents on both the sulfonamide nitrogen and phenyl group of OBHSA unit had significant effect on biological activities. Among them, conjugate 16i with N-methyl and naphthyl groups exhibited potent antiproliferative activity against MCF-7 cells, and excellent ERα degradation activity and HDACs inhibitory ability. A further molecular docking study indicated the interaction patterns of these conjugates with ERα, which may provide guidance to design novel SERDs or PROTAC-like SERDs for breast cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Sulfonamidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Antagonistas de Estrogênios/síntese química , Antagonistas de Estrogênios/química , Receptor alfa de Estrogênio/metabolismo , Feminino , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
9.
J Med Chem ; 64(8): 5049-5066, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33844532

RESUMO

Bispecific degraders (PROTACs) of ERα are expected to be advantageous over current inhibitors of ERα signaling (aromatase inhibitors/SERMs/SERDs) used to treat ER+ breast cancer. Information from DNA-encoded chemical library (DECL) screening provides a method to identify novel PROTAC binding features as the linker positioning, and binding elements are determined directly from the screen. After screening ∼120 billion DNA-encoded molecules with ERα WT and 3 gain-of-function (GOF) mutants, with and without estradiol to identify features that enrich ERα competitively, the off-DNA synthesized small molecule exemplar 7 exhibited nanomolar ERα binding, antagonism, and degradation. Click chemistry synthesis on an alkyne E3 ligase engagers panel and an azide variant of 7 rapidly generated bispecific nanomolar degraders of ERα, with PROTACs 18 and 21 inhibiting ER+ MCF7 tumor growth in a mouse xenograft model of breast cancer. This study validates this approach toward identifying novel bispecific degrader leads from DECL screening with minimal optimization.


Assuntos
DNA/química , Receptor alfa de Estrogênio/metabolismo , Bibliotecas de Moléculas Pequenas/química , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Química Click , DNA/metabolismo , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/metabolismo , Antagonistas de Estrogênios/farmacologia , Antagonistas de Estrogênios/uso terapêutico , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/genética , Feminino , Meia-Vida , Humanos , Indóis/química , Indóis/metabolismo , Cinética , Camundongos , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Toxicol Lett ; 345: 24-33, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33857583

RESUMO

As demonstrated for bisphenol AF (BPAF), the electrostatic halogen bond based on the London dispersion force of halogen atoms was found to be a major driving force of their bifunctional ERα-agonist and ERß-antagonist activities. Because similar electronic effects are anticipated for hydrocarbon groups (alkyl or aryl groups), we hypothesized that bisphenol compounds consisting of such groups also work bifunctionally. In the present study, we examined bisphenol AP (BPAP), B (BPB), and Z (BPZ). After recognizing their considerably strong receptor binding affinities, we evaluated the abilities of BPAP, BPB, and BPZ to activate ERα and ERß in a luciferase reporter gene assay. These bisphenols were fully active for ERα but completely inactive for ERß. When we examined their inhibitory activities for 17ß-estradiol in ERß by two different qualitative and quantitative analytical methods, we found that those bisphenols worked as definite antagonists. Consequently, they were established as bifunctional ERα-agonists and ERß-antagonists. The present structure-activity analyses revealed that the dispersion force works not only on the halogens but also on the hydrocarbon groups, and that it is a major driving force of bifunctional ERα-agonist and ERß-antagonist activities.


Assuntos
Compostos Benzidrílicos/toxicidade , Cicloexanos/toxicidade , Disruptores Endócrinos/toxicidade , Antagonistas de Estrogênios/toxicidade , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/antagonistas & inibidores , Estrogênios/toxicidade , Fenóis/toxicidade , Compostos Benzidrílicos/química , Compostos Benzidrílicos/metabolismo , Sítios de Ligação , Cicloexanos/química , Cicloexanos/metabolismo , Disruptores Endócrinos/química , Disruptores Endócrinos/metabolismo , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Estrogênios/química , Estrogênios/metabolismo , Células HeLa , Humanos , Estrutura Molecular , Fenóis/química , Fenóis/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
11.
Ecotoxicol Environ Saf ; 214: 112114, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33711575

RESUMO

Endocrine disrupting chemicals can mimic, block, or interfere with hormones in organisms and subsequently affect their development and reproduction, which has raised significant public concern over the past several decades. To investigate (quantitative) structure-activity relationship, 8280 compounds were compiled from the Tox21 10K compound library. The results show that 50% activity concentrations of agonists are poorly related to that of antagonists because many compounds have considerably different activity concentrations between the agonists and antagonists. Analysis on the chemical classes based on mode of action (MOA) reveals that estrogen receptor (ER) is not the main target site in the acute toxicity to aquatic organisms. Binomial analysis of active and inactive ER agonists/antagonists reveals that ER activity of compounds is dominated by octanol/water partition coefficient and excess molar refraction. The binomial equation developed from the two descriptors can classify well active and inactive ER chemicals with an overall prediction accuracy of 73%. The classification equation developed from the molecular descriptors indicates that estrogens react with the receptor through hydrophobic and π-n electron interactions. At the same time, molecular ionization, polarity, and hydrogen bonding ability can also affect the chemical ER activity. A decision tree developed from chemical structures and their applications reveals that many hormones, proton pump inhibitors, PAHs, progestin, insecticides, fungicides, steroid and chemotherapy medications are active ER agonists/antagonists. On the other hand, many monocyclic/nonaromatic chain compounds and herbicides are inactive ER compounds. The decision tree and binomial equation developed here are valuable tools to predict active and inactive ER compounds.


Assuntos
Disruptores Endócrinos/classificação , Antagonistas de Estrogênios/classificação , Estrogênios/classificação , Receptores de Estrogênio/antagonistas & inibidores , Árvores de Decisões , Disruptores Endócrinos/química , Disruptores Endócrinos/farmacologia , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/farmacologia , Estrogênios/química , Estrogênios/farmacologia , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas
12.
Recent Pat Anticancer Drug Discov ; 16(2): 273-284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33563181

RESUMO

BACKGROUND: Breast Cancer (BC), a common fatal disease and the deadliest cancer next to lung cancer, is characterized by an abnormal growth of cells in the tissues of the breast. BC chemotherapy is marked by targeting the activities of some receptors such as Estrogen Receptor alpha (ER-α). At present, one of the most commonly used and approved marketed therapeutic drugs for BC is tamoxifen. Despite the short-term success of tamoxifen usage, its long time treatment has been associated with significant side effects. Therefore, there is a pressing need for the development of novel anti-estrogens for the prevention and treatment of BC. OBJECTIVE: In this study, we evaluate the inhibitory effect of Cannabis sativa phytoconstituents on ER-α. METHODS: Glide and induced fit docking followed by ADME, automated QSAR and binding free energy (Δ>Gbind) studies were used to evaluate anti-breast cancer and ER-α inhibitory activity of Cannabis sativa, which has been reported to be effective in inhibiting breast cancer cell proliferation. RESULTS: Phyto-constituents of Cannabis sativa possess lower docking scores and good ΔGbind when compared to that of tamoxifen. ADME and AutoQSAR studies revealed that our lead compounds demonstrated the properties required to make them promising therapeutic agents. CONCLUSION: The results of this study suggest that naringenin, dihydroresveratrol, baicalein, apigenin and cannabitriol could have relatively better inhibitory activity than tamoxifen and could be a better and patent therapeutic candidate in the treatment of BC. Further research such as in vivo and/or in vitro assays could be conducted to verify the ability of these compounds.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Cannabis/química , Receptor alfa de Estrogênio/antagonistas & inibidores , Preparações de Plantas/farmacologia , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/farmacologia , Feminino , Humanos , Simulação de Acoplamento Molecular , Patentes como Assunto , Preparações de Plantas/química , Relação Quantitativa Estrutura-Atividade , Tamoxifeno/farmacologia
13.
J Recept Signal Transduct Res ; 41(2): 123-137, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32705921

RESUMO

Aromatase and steroidal sulfatase (STS) are steroidogenic enzyme that increases the concentration of estrogens in circulation, a primary factor leading to breast cancer. At molecular level, 87% of STS is expressed and an inhibitor targeting STS could decrease the level of estrogens. In an attempt to identify the chemical structural requirement targeting placental STS inhibition, 26 compounds with pIC50 ranging from 4.61 to 9.46 were subjected to computational studies including Quantitative Structural-Activity Relationship (QSAR), MolecularDocking followed by Density Functional Theory (DFT) studies. A robust and predictable model were developed with good R2 (0.834) and cross-validated correlation coefficient value Q2 LOO (0.786) explaining the relationship quantitatively. The regression graphs suggests that the STS inhibition was greatly dependent on the electro topological state of an atom, sum of the atom type E-state (SdssC), maximum E-states for strong hydrogen bond acceptors (maxHBa) and basic group count descriptor (BCUTp-1h). Furthermore, docking results showed favorable interactions of sulfamate analogs with catalytically important amino acid residues such as LEU74, VAL101, and VAL486. The interactions of the best active compound 3j when compared with standard Irosustat show similar binding energies. DFT studies further confirm the presence of HOMO orbital centered on chromenone ring further highlighting its importance for receptor ligand hydrophobic interaction. The study reveals that substitution of thio in chromenone nucleus and introduction of adamantyl substitution at second position are favorable in inhibiting the enzyme STS.


Assuntos
Inibidores Enzimáticos/química , Antagonistas de Estrogênios/química , Relação Quantitativa Estrutura-Atividade , Esteril-Sulfatase/ultraestrutura , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Inibidores Enzimáticos/uso terapêutico , Antagonistas de Estrogênios/uso terapêutico , Estrogênios/metabolismo , Feminino , Humanos , Ligação de Hidrogênio/efeitos dos fármacos , Simulação de Acoplamento Molecular , Esteril-Sulfatase/antagonistas & inibidores , Esteril-Sulfatase/química , Esteril-Sulfatase/genética
14.
Bioorg Chem ; 106: 104482, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33272706

RESUMO

Raloxifene agonism of estrogen receptor (ER) in post-menopausal endometrium is not negligible. Based on a rational drug design workflow, we synthesized 14 analogues of raloxifene bearing a polar group in the aromatic ring of the basic side chain (BSC) and/or changes in the bulkiness of the BSC amino group. Analogues with a polar BSC aromatic ring and amino group substituents of increasing volume displayed increasing ER antagonism in Ishikawa cells. Analogues with cyclohexylaminoethoxy (13a) or adamantylaminoethoxy BSC (13b) lacking a polar aromatic ring displayed high ER-binding affinity and ER antagonism in Ishikawa cells higher than raloxifene and similar to fulvestrant (ICI182,780). The endometrial surface epithelium of immature female CD1 mice injected with 13b was comparable to that of vehicle-treated mice, while that of mice treated with estradiol, raloxifene or 13b in combination with estradiol was hyperplastic. These findings indicate that raloxifene analogues with a bulky BSC amino group could provide for higher endometrial safety treatment of the menopausal syndrome.


Assuntos
Desenho de Fármacos , Endométrio/efeitos dos fármacos , Antagonistas de Estrogênios/farmacologia , Cloridrato de Raloxifeno/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Antagonistas de Estrogênios/síntese química , Antagonistas de Estrogênios/química , Feminino , Camundongos , Estrutura Molecular , Cloridrato de Raloxifeno/síntese química , Cloridrato de Raloxifeno/química , Receptores de Estrogênio/metabolismo , Relação Estrutura-Atividade
15.
Assay Drug Dev Technol ; 18(6): 282-294, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881580

RESUMO

The objective of the present investigation is to enhance the dissolution and flow properties of raloxifene hydrochloride (RXH), a biopharmaceutical classification system class II drug. Melt dispersion of RXH with polyethylene glycol (PEG) 6000 was prepared by the fusion method. The melt dispersion was then adsorbed onto a porous adsorbent, Neusilin, by the melt adsorption method. Response surface methodology was employed to establish the design space for formulation variables such as the ratio of RXH to PEG 6000 in melt dispersion and amount of porous adsorbent to melt dispersion. Differential scanning calorimetry, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and accelerated stability techniques were utilized to characterize formulations. Negative Gibbs free energy values indicated spontaneous solubilization of RXH in PEG 6000. The time required for 80% of drug release from optimized formulation was <20 min compared with plain RXH. Accelerated stability studies confirmed the stabilization of amorphous melt dispersion in nanopores (nanoconfinement) of inorganic silicate Neusilin. Melt dispersion, adsorbed on porous carriers, is a promising technique to improve the dissolution characteristic as well as flow properties of drug molecules.


Assuntos
Antagonistas de Estrogênios/química , Cloridrato de Raloxifeno/química , Adsorção , Portadores de Fármacos/química , Tamanho da Partícula , Polietilenoglicóis/química , Porosidade , Solubilidade , Propriedades de Superfície , Termodinâmica
16.
ChemMedChem ; 15(22): 2072-2097, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-32916035

RESUMO

Estrogen receptor-alpha (ERα) is the target of endocrine therapies for the treatment of more than 70 % of ERα-positive breast cancers. Selective estrogen receptor degraders (SERDs) antagonize estrogen binding and target the receptor for degradation, representing the last line of treatment for resistant metastatic breast cancer patients. However, the clinical efficacy of the lone clinically approved SERD (Fulvestrant) is limited by its poor oral bioavailability. Recently, several analogues of GW5638, an acrylic acid-based ERα ligand developed by Glaxo Research Institute in 1994, have been reported as promising orally bioavailable SERDs. Some of these compounds are currently in clinical trials, while various other structurally novel SERDs have also been reported by pharma as well as academic research groups. This review provides a critical analysis of the recent developments in orally available SERDs, with a focus on the structure-activity relationships, binding interactions and pharmacokinetic properties of these compounds.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Administração Oral , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Antagonistas de Estrogênios/administração & dosagem , Antagonistas de Estrogênios/química , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Estrutura Molecular
17.
Mol Pharmacol ; 98(1): 24-37, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32362585

RESUMO

High-dose synthetic estrogen therapy was the standard treatment of advanced breast cancer for three decades until the discovery of tamoxifen. A range of substituted triphenylethylene synthetic estrogens and diethylstilbestrol were used. It is now known that low doses of estrogens can cause apoptosis in long-term estrogen deprived (LTED) breast cancer cells resistant to antiestrogens. This action of estrogen can explain the reduced breast cancer incidence in postmenopausal women over 60 who are taking conjugated equine estrogens and the beneficial effect of low-dose estrogen treatment of patients with acquired aromatase inhibitor resistance in clinical trials. To decipher the molecular mechanism of estrogens at the estrogen receptor (ER) complex by different types of estrogens-planar [17ß-estradiol (E2)] and angular triphenylethylene (TPE) derivatives-we have synthesized a small series of compounds with either no substitutions on the TPE phenyl ring containing the antiestrogenic side chain of endoxifen or a free hydroxyl. In the first week of treatment with E2 the LTED cells undergo apoptosis completely. By contrast, the test TPE derivatives act as antiestrogens with a free para-hydroxyl on the phenyl ring that contains an antiestrogenic side chain in endoxifen. This inhibits early E2-induced apoptosis if a free hydroxyl is present. No substitution at the site occupied by the antiestrogenic side chain of endoxifen results in early apoptosis similar to planar E2 The TPE compounds recruit coregulators to the ER differentially and predictably, leading to delayed apoptosis in these cells. SIGNIFICANCE STATEMENT: In this paper we investigate the role of the structure-function relationship of a panel of synthetic triphenylethylene (TPE) derivatives and a novel mechanism of estrogen-induced cell death in breast cancer, which is now clinically relevant. Our study indicates that these TPE derivatives, depending on the positioning of the hydroxyl groups, induce various conformations of the estrogen receptor's ligand-binding domain, which in turn produces differential recruitment of coregulators and subsequently different apoptotic effects on the antiestrogen-resistant breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Antagonistas de Estrogênios/síntese química , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Estilbenos/síntese química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estradiol/química , Estradiol/farmacologia , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/farmacologia , Feminino , Humanos , Células MCF-7 , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Estilbenos/química , Estilbenos/farmacologia , Relação Estrutura-Atividade
18.
Molecules ; 25(7)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231072

RESUMO

The preparation of certain 2-(2-oxo-2H-chromen-4-yl)-N-substituted acetamides IIIa-h was planned as a step in the development of new modified nonsteroidal antiestrogens. The purity of target compounds IIIa-h was checked by thin-layer chromatography (TLC), and their structures were confirmed using various spectroscopic tools including IR, 1H-NMR, 13C-NMR, and MS spectroscopy. Viability tests were applied using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay to evaluate the cytotoxic effect of the synthesized compounds against two breast cancer cell lines, MCF-7 and MDA-MB-231. Compound IIIb proved the most active against MCF-7 cells, with an IC50 value of 0.32 µM. The results of an analysis of in vitro antiestrogenic activity indicated that only compound IIIb exhibited antiestrogenic activity; its IC50 value of 29.49 µM was about twice as potent as that of the reference compound, MIBP. The aromatase activity was evaluated for the synthesized target compounds IIIa-g and the intermediates Ib and IIa. A significant aromatase inhibition was observed for the intermediate Ib and compound IIIe, with IC50 values of 14.5 and 17.4 µM, respectively. Compound IIIb, namely 7-methoxy-4-(2-oxo-2-(piperidin-1-yl)ethyl)-2H-chromen-2-one, could be used as an antiestrogen and/or cytotoxic agent with selective activity against tumor cells.


Assuntos
Acetamidas/química , Acetamidas/farmacologia , Cumarínicos/química , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/farmacologia , Inibidores da Aromatase/química , Inibidores da Aromatase/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular
19.
Bioorg Chem ; 97: 103666, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32088420

RESUMO

Selective estrogen receptor degrader (SERD) that acts as not only ER antagonist, but also ER degrader, would be useful for the treatment for drug-resistance ER+ breast cancer. However, most of currently available SERD candidates involve very limited molecular scaffolds and are still in clinical trials. In this study, we introduced a 1,3,5-triazine ring into a homobibenzyl motif extracted from amounts of ER ligands and synthesized sixteen SERDs bearing acrylic acid or acrylic amide side chains that possess both ERα antagonism and degradation properties. And all compounds were screened for their anti-proliferative activity against ER+ MCF-7 and Ishikawa cell lines. Among them, compound XHA1614 displayed potent growth inhibition activity against MCF-7 and Ishikawa cells with IC50 values of 3.15 µM and 3.11 µM, respectively. Moreover, XHA1614 could dramatically degrade ER level at 1 nM in a Western blotting assay and afforded an outstanding antagonistic activity via suppressing the expression of progesterone receptor messenger RNA in MCF-7 cells in a RT-PCR assay. Further molecular docking and dynamic simulation on properly selected derivative furnished insights into its binding profile within ERα. Our findings suggest that the 1,3,5-triazine core was a feasible alternative to currently reported SERD scaffold, and provide information that will be useful for further development of promising SERDs candidates for breast cancer therapies.


Assuntos
Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/farmacologia , Triazinas/química , Triazinas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
20.
Environ Pollut ; 255(Pt 1): 113193, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31521998

RESUMO

Phthalate esters (PAEs), as widely used plasticizers, have been concerned for their possible disruption of estrogen functions via binding to and activating the transcription of estrogen receptors (ERs). Nevertheless, the computational interpretation of the mechanism of ERs activities modulated by PAEs at the molecular level is still insufficient, which hinders the reliable screening of the ERs-active PAEs with high speed and high throughput. To bridge the gap, the in silico simulations considering the effects of coactivators were accomplished to explore the molecular mechanism of action for the purpose of predicting the estrogenic potencies of PAEs. The transcriptional activation functions of human ERα (hERα) modulated by PAEs is predicted via the simulations including binding interaction of PAEs and hERα, conformational changes of PAEs-hERα complexes and recruitment of coactivators. Molecular insight into the diverse estrogen mechanism of action among PAEs with regard to hERα agonists and selective estrogen receptor modulators (SERMs) is provided. Agonist-modulated conformational change of hERα leads to the optimal exposure of its Activation Function 2 (AF-2) surface which, in turn, facilitates the recruitment of coactivators, therefore promoting the transcriptional activation functions of hERα. Conversely, binding interaction of hERα with SERMs among PAEs leads to the conformational change with blocked AF-2 surface, thus preventing the recruitment of coactivators and consequently inhibiting the AF-2 activity. The two-hybrid recombinant yeast is experimentally used for verification. The established in silico evaluation methodology exhibits great promise to speed up the prediction of chemicals which work as hERα agonist or SERMs.


Assuntos
Poluentes Ambientais/toxicidade , Antagonistas de Estrogênios/química , Receptor alfa de Estrogênio/química , Estrogênios/química , Ácidos Ftálicos/toxicidade , Plastificantes/toxicidade , Estrona , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...