Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 912: 174591, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34710369

RESUMO

Dry cough has been reported in patients receiving statin therapy. However, the underlying mechanism or other possible alterations in the airways induced by statins remain unknown. Thus, the aim of this study was to evaluate whether simvastatin promotes alterations in airways, such as bronchoconstriction and plasma extravasation, as well as the mechanism involved in these events. Using methods to detect alterations in airway resistance and plasma extravasation, we demonstrated that simvastatin [20 mg/kg, intravenous (i.v.)] caused plasma extravasation in the trachea (79.8 + 14.8 µg/g/tissue) and bronchi (73.3 + 8.8 µg/g/tissue) of rats, compared to the vehicle (34.2 + 3.6 µg/g/tissue and 29.3 + 5.3 µg/g/tissue, respectively). NG-nitro-L-arginine methyl ester (L-NAME, 30 mg/kg, intraperitoneal), a nitric oxide (NO) synthase inhibitor, Icatibant [HOE 140, 10 nmol/50 µl, intratracheal (i.t.)], a bradykinin B2 antagonist, and capsazepine (100 nmol/50 µl, i.t.), a TRPV1 antagonist, attenuated simvastatin-induced plasma extravasation. Simvastatin (5, 10 and 20 mg/kg) did not cause bronchoconstriction per se, but exacerbated the bronchoconstrictive response to bradykinin (30 nmol/kg, i.v.), a B2 agonist (0.7 + 0.1 ml/H2O), or capsaicin (30 nmol/kg, i.v.), a TRPV1 agonist (0.8 + 0.1 ml/H2O), compared to the vehicle (0.1 + 0.04 ml/H2O and 0.04 + 0.01 ml/H2O, respectively). The bronchoconstriction elicited by bradykinin (100 nmol/kg, i.v.) in simvastatin non-treated rats was inhibited by L-NAME. The exacerbation of bronchoconstriction induced by bradykinin or capsaicin in simvastatin-treated rats was inhibited by L-NAME, HOE 140 or capsazepine. These results suggest that treatment with simvastatin promotes the release of bradykinin, which, via B2 receptors, releases NO that can then activate the TRPV1 to promote plasma extravasation and bronchoconstriction.


Assuntos
Brônquios/efeitos dos fármacos , Óxido Nítrico/metabolismo , Receptor B2 da Bradicinina/metabolismo , Sinvastatina/efeitos adversos , Canais de Cátion TRPV/metabolismo , Traqueia/efeitos dos fármacos , Administração Intravenosa , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Bradicinina/administração & dosagem , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Antagonistas de Receptor B2 da Bradicinina/administração & dosagem , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Brônquios/metabolismo , Broncoconstrição/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Capsaicina/administração & dosagem , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Injeções Intraperitoneais , Masculino , NG-Nitroarginina Metil Éster/administração & dosagem , NG-Nitroarginina Metil Éster/farmacologia , Ratos Wistar , Sinvastatina/administração & dosagem , Canais de Cátion TRPV/antagonistas & inibidores , Traqueia/metabolismo
2.
Skin Pharmacol Physiol ; 34(3): 162-166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33794540

RESUMO

Bradykinin increases skin blood flow via a cGMP mechanism but its role in sweating in vivo is unclear. There is a current need to translate cell culture and nonhuman paw pad studies into in vivo human preparations to test for therapeutic viability for disorders affecting sweat glands. Protocol 1: physiological sweating was induced in 10 healthy subjects via perfusing warm (46-48°C) water through a tube-lined suit while bradykinin type 2 receptor (B2R) antagonist (HOE-140; 40 µM) and only the vehicle (lactated Ringer's) were perfused intradermally via microdialysis. Heat stress increased sweat rate (HOE-140 = +0.79 ± 0.12 and vehicle = +0.64 ± 0.10 mg/cm2/min), but no differences were noted with B2R antagonism. Protocol 2: pharmacological sweating was induced in 6 healthy subjects via intradermally perfusing pilocarpine (1.67 mg/mL) followed by the same B2R antagonist approach. Pilocarpine increased sweating (HOE-140 = +0.38 ± 0.16 and vehicle = +0.32 ± 0.12 mg/cm2/min); again no differences were observed with B2R antagonism. Last, 5 additional subjects were recruited for various control experiments which identified that a functional dose of HOE-140 was utilized and it was not sudorific during normothermic conditions. These data indicate B2R antagonists do not modulate physiologically or pharmacologically induced eccrine secretion volumes. Thus, B2R agonist/antagonist development as a potential therapeutic target for hypo- and hyperhidrosis appears unwarranted.


Assuntos
Antagonistas de Receptor B2 da Bradicinina/farmacologia , Bradicinina/análogos & derivados , Sudorese/efeitos dos fármacos , Bradicinina/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/fisiologia , Humanos , Pilocarpina/farmacologia , Receptor B2 da Bradicinina/metabolismo , Pele/metabolismo , Sudorese/fisiologia
3.
Iran J Allergy Asthma Immunol ; 19(S1): 13-17, 2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32534506

RESUMO

The new virus SARS-CoV-2 is savagely spreading out over the world. The biologic studies show that the target receptor for the virus might be angiotensin-converting enzyme 2 (ACE2). This peptide is responsible for converting angiotensin II (Ang II), which is a profoundly active peptide, into Ang 1-7 with quite a balancing barbell function. It is emphasized that the direct target of the virus is ACE2 underlining the obvious difference with ACE. Nevertheless, we hypothesized that a back load build up effect on Ang II may usurp the ACE capacity and subsequently leave the bradykinin system unabated. We think there are clinical clues for dry cough and the presumed aggravating role of ACE inhibitors like captopril on the disease process. Thereby, we speculated that inhibition of bradykinin synthesis and/or blockade of bradykinin B2 receptor using Aprotinin/ecallantide and Icatibant, respectively, may hold therapeutic promise in severe cases and these molecules can be advanced to clinical trials.


Assuntos
Betacoronavirus/metabolismo , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Bradicinina/metabolismo , Infecções por Coronavirus/metabolismo , Pneumonia Viral/metabolismo , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/efeitos dos fármacos , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Humanos , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/tratamento farmacológico , Receptores da Bradicinina/efeitos dos fármacos , Receptores da Bradicinina/metabolismo , SARS-CoV-2 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
4.
FASEB J ; 34(6): 7265-7269, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32359101

RESUMO

As of April 20, 2020, over time, the COVID-19 pandemic has resulted in 157 970 deaths out of 2 319 066 confirmed cases, at a Case Fatality Rate of ~6.8%. With the pandemic rapidly spreading, and health delivery systems being overwhelmed, it is imperative that safe and effective pharmacotherapeutic strategies are rapidly explored to improve survival. In this paper, we use established and emerging evidence to propose a testable hypothesis that, a vicious positive feedback loop of des-Arg(9)-bradykinin- and bradykinin-mediated inflammation â†’ injury â†’ inflammation, likely precipitates life threatening respiratory complications in COVID-19. Through our hypothesis, we make the prediction that the FDA-approved molecule, icatibant, might be able to interrupt this feedback loop and, thereby, improve the clinical outcomes. This hypothesis could lead to basic, translational, and clinical studies aimed at reducing COVID-19 morbidity and mortality.


Assuntos
Betacoronavirus , Antagonistas de Receptor B2 da Bradicinina/uso terapêutico , Bradicinina/análogos & derivados , Infecções por Coronavirus/fisiopatologia , Modelos Biológicos , Peptidil Dipeptidase A/fisiologia , Pneumonia Viral/fisiopatologia , Receptores Virais/fisiologia , Enzima de Conversão de Angiotensina 2 , Bradicinina/farmacologia , Bradicinina/fisiologia , Bradicinina/uso terapêutico , Antagonistas de Receptor B2 da Bradicinina/farmacologia , COVID-19 , Ensaios de Uso Compassivo , Infecções por Coronavirus/complicações , Infecções por Coronavirus/tratamento farmacológico , Dispneia/etiologia , Dispneia/fisiopatologia , Retroalimentação Fisiológica/efeitos dos fármacos , Humanos , Inflamação , Uso Off-Label , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/tratamento farmacológico , Receptores da Bradicinina/efeitos dos fármacos , Receptores da Bradicinina/fisiologia , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
5.
Mol Cell Endocrinol ; 507: 110771, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32114020

RESUMO

Local mediator prostaglandins and bradykinin are involved in inflammation and pain. We explored bradykinin effects on prostaglandin E2 (PGE2) release from fibroblasts derived from human skeletal muscular biopsies. Bradykinin induced PGE2 release through bradykinin B2 receptors, since PGE2 release was blocked by the bradykinin B2 receptor selective antagonist FR173657 and B2 receptor agonist (Hyp3)-bradykinin showed effects comparable to bradykinin. Consistently, bradykinin induced both mRNA cyclooxygenase 2 (COX-2) and protein. Bradykinin also induced ERK1/2 and p38 phosphorylation and provoked the translocation from the cytosol to the nucleus of p65/NF-kB. The release of PGE2 by bradykinin could be blocked inhibiting COX-2 and p65/NF-kB, ERK1/2 or p38 activation. Both ERK1/2 and p38 were upstream to NF-kB inasmuch siRNAs significantly blocked the p65/NF-kB activation induced by bradykinin. Thus, bradykinin, acting via B2 receptors, induced PGE2 release through ERK1/2 and p38-dependent pathways and consequent p65/NF-kB translocation to nucleus. p65/NF-kB induced COX-2 transcription. The release of PGE2 provide a possible explanation for the role of bradykinin in inflammatory diseases.


Assuntos
Bradicinina/farmacologia , Dinoprostona/metabolismo , Fibroblastos/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Adulto , Bradicinina/fisiologia , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Masculino , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Quinolinas/farmacologia , RNA Interferente Pequeno/farmacologia , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo
6.
Eur Rev Med Pharmacol Sci ; 23(22): 10169-10176, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31799689

RESUMO

OBJECTIVE: To explore the effect of bradykinin on rats with thromboangiitis obliterans (TAO) through the phosphatidylinositol 3-hydroxy kinase/protein kinase B (PI3K/Akt) signaling pathway. MATERIALS AND METHODS: The female Wistar rats were injected with lauric acid via the femoral artery to establish the TAO model, and they were randomly divided into control group (healthy rats), model group (TAO rats) and bradykinin group (TAO rats injected with bradykinin B2 receptor-specific inhibitor). The control was set in each group before the operation. The level of serum bradykinin in each group was detected via enzyme-linked immunosorbent assay (ELISA), and the reactive oxygen species (ROS) level, Caspase-3 activity and PI3K/Akt protein concentration in vascular tissues were measured via ELISA, Western blotting, ROS assay, and Caspase-3 activity assay, respectively. Moreover, the specific therapeutic mechanism of bradykinin was analyzed. RESULTS: In control group, the intima of the lower extremity venous tissues was smooth, the extima had no evident changes, and there was no inflammatory cell invasion around the arteries and veins. In model group, there was massive inflammatory cell invasion into the lower extremity venous tissues. In bradykinin group, fibrosis and atrophy occurred in venous tissues, the extima was thickened without fibrosis, and there was phagocytosis of neutrophils and mononuclear macrophages around the arteries and veins, as well as massive inflammatory infiltration. The PI3K/Akt protein concentration in lower extremity venous tissues was the highest in control group and the lowest in bradykinin group, and there were statistically significant differences (p<0.01). At 24 h after administration of doxorubicin (DOX), the level of ROS in lower extremity venous tissues was higher in bradykinin group than that in model group (p<0.05), and it was also higher in model group than that in control group (p<0.05). Besides, the activity of Caspase-3 in lower extremity venous tissues was significantly increased in bradykinin group compared with that in model group and control group, while it was slightly higher in model group than that in control group (p<0.05). CONCLUSIONS: The low expression of bradykinin can promote TAO in rats by the mechanism that it inhibits the PI3K/Akt signaling pathway to raise the oxidative stress level, thereby aggravating TAO.


Assuntos
Antagonistas de Receptor B2 da Bradicinina/administração & dosagem , Bradicinina/sangue , Transdução de Sinais/efeitos dos fármacos , Tromboangiite Obliterante/tratamento farmacológico , Vasodilatadores/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Feminino , Ácidos Láuricos/efeitos adversos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Tromboangiite Obliterante/induzido quimicamente , Tromboangiite Obliterante/metabolismo , Vasodilatadores/farmacologia
7.
J Transl Med ; 17(1): 346, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640792

RESUMO

BACKGROUND: Tibial fracture is associated with inflammatory reaction leading to severe pain syndrome. Bradykinin receptor activation is involved in inflammatory reactions, but has never been investigated in fracture pain. METHODS: This study aims at defining the role of B1 and B2-kinin receptors (B1R and B2R) in a closed tibial fracture pain model by using knockout mice for B1R (B1KO) or B2R (B2KO) and wild-type (WT) mice treated with antagonists for B1R (SSR 240612 and R954) and B2R (HOE140) or vehicle. A cyclooxygenase (COX) inhibitor (ketoprofen) and an antagonist (SB366791) of Transient Receptor Potential Vaniloid1 (TRPV1) were also investigated since these pathways are associated with BK-induced pain in other models. The impact on mechanical and thermal hyperalgesia and locomotion was assessed by behavior tests. Gene expression of B1R and B2R and spinal cord expression of c-Fos were measured by RT-PCR and immunohistochemistry, respectively. RESULTS: B1KO and B2KO mice demonstrated a reduction in post-fracture pain sensitivity compared to WT mice that was associated with decreased c-Fos expression in the ipsilateral spinal dorsal horn in B2KO. B1R and B2R mRNA and protein levels were markedly enhanced at the fracture site. B1R and B2R antagonists and inhibition of COX and TRPV1 pathways reduced pain in WT. However, the analgesic effect of the COX-1/COX-2 inhibitor disappeared in B1KO and B2KO. In contrast, the analgesic effect of the TRPV1 antagonist persisted after gene deletion of either receptor. CONCLUSIONS: It is suggested that B1R and B2R activation contributes significantly to tibial fracture pain through COX. Hence, B1R and B2R antagonists appear potential therapeutic agents to manage post fracture pain.


Assuntos
Dor/fisiopatologia , Receptor B1 da Bradicinina/fisiologia , Receptor B2 da Bradicinina/fisiologia , Fraturas da Tíbia/fisiopatologia , Animais , Antagonistas de Receptor B1 da Bradicinina/farmacologia , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Modelos Animais de Doenças , Inflamação/etiologia , Inflamação/patologia , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dor/tratamento farmacológico , Dor/prevenção & controle , Medição da Dor , Proteínas Proto-Oncogênicas c-fos/biossíntese , RNA Mensageiro , Receptor B1 da Bradicinina/deficiência , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/deficiência , Receptor B2 da Bradicinina/genética , Canais de Cátion TRPV/antagonistas & inibidores , Fraturas da Tíbia/complicações , Fraturas da Tíbia/patologia , Pesquisa Translacional Biomédica
8.
Oncol Rep ; 42(6): 2521-2527, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31638249

RESUMO

It has been reported recently that bradykinin (BK) is involved in the regulation of various processes in cancer cells. However, its role and underlying mechanism of action in cervical cancer (CC) are still unknown. In the present study, it was revealed that BK promoted proliferation, migration, and invasion of CC cells, whereas bradykinin B2 receptor antagonist HOE140 had the inverse effect. Furthermore, it was confirmed that overexpression of bradykinin B2 receptor (B2R) facilitated the proliferation, migration, and invasion of BK­treated CC cells, while knockdown of B2R had the opposite effect. Mechanistically, the present results revealed that the BK/B2R­induced biological function of CC cells occured by activating STAT3 signaling pathways, and that knockdown of B2R or B2R antagonist had the opposite effects. Moreover, it was demonstrated that BK/B2R facilitated CC cell migration and invasion by upregulating the expression of the STAT3­regulated products MMP2 and MMP9, while downregulating the expression of the pro­apoptotic protein cleaved caspase­9. Thus, the present findings revealed that BK promoted CC cell proliferation, migration, and invasion by binding to B2R via STAT3 signaling pathways.


Assuntos
Antagonistas de Receptor B2 da Bradicinina/farmacologia , Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias do Colo do Útero/patologia , Antagonistas de Receptor B2 da Bradicinina/uso terapêutico , Caspase 9/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Receptor B2 da Bradicinina/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética
9.
Inflammopharmacology ; 27(3): 573-586, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30820720

RESUMO

Tumour necrosis factor (TNF) and kinins have been associated with neuropathic pain-like behaviour in numerous animal models. However, the way that they interact to cause neuron sensitisation remains unclear. This study assessed the interaction of kinin receptors and TNF receptor TNFR1/p55 in mechanical hypersensitivity induced by an intraneural (i.n.) injection of rm-TNF into the lower trunk of brachial plexus in mice. The i.n. injection of rm-TNF reduced the mechanical withdrawal threshold of the right forepaw from the 3rd to the 10th day after the injection, indicating that TNF1/p55 displays a critical role in the onset of TNF-elicited neuropathic pain. The connection between TNF1/p55 and kinin B1 and B2 receptors (B1R and B2R) was confirmed using both knockout mice and mRNAs quantification in the injected nerve, DRG and spinal cord. The treatment with the B2R antagonist HOE 140 or with B1R antagonist des-Arg9-Leu8-BK reduced both BK- and DABK-induced hypersensitivity. The experiments using kinin receptor antagonists and CPM inhibitor (thiorphan) suggest that BK does not only activate B2R as an orthosteric agonist, but also seems to be converted into DABK that consequently activates B1R. These results indicate a connection between TNF and the kinin system, suggesting a relevant role for B1R and B2R in the process of sensitisation of the central nervous systems by the cross talk between the receptor and CPM after i.n. injection of rm-TNF.


Assuntos
Plexo Braquial/metabolismo , Neuralgia/metabolismo , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Plexo Braquial/efeitos dos fármacos , Antagonistas de Receptor B1 da Bradicinina/farmacologia , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia/tratamento farmacológico
10.
Toxicology ; 415: 37-48, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30685357

RESUMO

We have previously shown trichloroethylene (TCE) induced occupational medicamentosa-like dermatitis due to TCE (OMLDT) with immune liver injury, and kallikrein-kinin system (KKS) activation as a probably mechanism underlying the immune damage. Bradykinin (BK) is an important active component of KKS system function, but the specific role of BK in the immune liver injury has never been examined. The present study aimed to explore the important role of BK and mechanisms of action in immune liver injury induced by TCE. TCE sensitization significantly increased the expression of BK receptor (B2R) in the liver. Compared to blank and vehicle control group, TCE sensitization positive mice developed exacerbated liver injury evidenced by elevated AST, ALT levels and hepatocyte damage. TCE sensitization also stimulated MAPK and STAT3 activation in liver tissue. B2R antagonist HOE140 ameliorated these changes. Kupffer cells (KCs) of the liver were also activated following TCE sensitization; both CD68+ KCs and CD16/CD32+ M1 type KCs were increased in TCE positive group. Further experiments isolated the KCs from the liver in each group and showed that TCE sensitization resulted activation of MAPK signal pathway which in turn caused release of the pro-inflammatory cytokines, IL-1ß, IL-6, TNF-α, in KCs; the antagonist HOE140 again decreased these changes in KCs. These results uncover a novel role of BK and B2R cross-talk in KCs activation in TCE sensitized mice, mediated by pro-inflammatory cytokine release via MAPK and STAT3 activation, contributing to the immune liver injury.


Assuntos
Bradicinina/fisiologia , Células de Kupffer/efeitos dos fármacos , Fígado/efeitos dos fármacos , Receptor B2 da Bradicinina/metabolismo , Tricloroetileno/toxicidade , Animais , Antígenos CD/imunologia , Bradicinina/análogos & derivados , Bradicinina/metabolismo , Bradicinina/farmacologia , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Citocinas/metabolismo , Feminino , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Fígado/imunologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Receptor B2 da Bradicinina/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
11.
J Immunol ; 202(4): 1229-1238, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30651343

RESUMO

AG-30/5C is an angiogenic host defense peptide that activates human mast cells (MC) via an unknown mechanism. Using short hairpin RNA-silenced human MC line LAD2 and stably transfected RBL-2H3 cells, we demonstrate that AG-30/5C induces MC degranulation via Mas-related G protein-coupled receptor X2 (MRGPRX2). Most G protein-coupled receptors signal via parallel and independent pathways mediated by G proteins and ß-arrestins. AG-30/5C and compound 48/80 induced similar maximal MC degranulation via MRGPRX2, which was abolished by pertussis toxin. However, compound 48/80 induced a robust ß-arrestin activation as determined by transcriptional activation following arrestin translocation (Tango), but AG-30/5C did not. Overnight culture of MC with compound 48/80 resulted in reduced cell surface MRGPRX2 expression, and this was associated with a significant decrease in subsequent MC degranulation in response to compound 48/80 or AG-30/5C. However, AG-30/5C pretreatment had no effect on cell surface MRGPRX2 expression or degranulation in response to compound 48/80 or AG-30/5C. Icatibant, a bradykinin B2 receptor antagonist, promotes MC degranulation via MRGPRX2 and causes pseudoallergic drug reaction. Icatibant caused MC degranulation via a pertussis toxin-sensitive G protein but did not activate ß-arrestin. A screen of the National Institutes of Health Clinical Collection library led to the identification of resveratrol as an inhibitor of MRGPRX2. Resveratrol inhibited compound 48/80-induced Tango and MC degranulation in response to compound 48/80, AG-30/5C, and Icatibant. This study demonstrates the novel finding that AG-30/5C and Icatibant serve as G protein-biased agonists for MRGPRX2, but compound 48/80 signals via both G protein and ß-arrestin with distinct differences in receptor regulation.


Assuntos
Antagonistas de Receptor B2 da Bradicinina/farmacologia , Bradicinina/análogos & derivados , Mastócitos/efeitos dos fármacos , Proteínas do Tecido Nervoso/agonistas , Peptídeos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores de Neuropeptídeos/agonistas , Animais , Bradicinina/farmacologia , Células Cultivadas , Células HEK293 , Humanos , Mastócitos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo
12.
PLoS One ; 13(11): e0206443, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30427893

RESUMO

Endothelial dysfunction is a hallmark of a wide range of cardiovascular diseases and is often linked to oxidative stress and inflammation. Our earlier study reported the formation of a functional heterodimer between bradykinin receptor 2 (B2R) and dopamine receptor 2 (D2R) that may modulate cell responses, dependent on intracellular signaling. Here, for the first time, we showed a cooperative effect of these receptors on the modulation of processes involved in oxidative stress, inflammation, and apoptosis in endothelial cells. Sumanirole, a specific D2R agonist, was shown to diminish the excessive production of reactive oxygen species induced by bradykinin, a proinflammatory B2R-activating peptide. This effect was accompanied by modified activities of antioxidant enzymes and increased phosphorylation of endothelial nitric oxide synthase, leading to enhance NO production. In turn, endothelial cell co-stimulation with B2R and D2R agonists inhibited the release of interleukin-6 and endothelin-1 and modulated the expression of apoptosis markers, such as Bcl-2, Bcl-xL, Bax, and caspase 3/7 activity. All these observations argue that the D2R agonist counteracts the pro-oxidative, pro-inflammatory, and pro-apoptotic effects induced through B2R, finally markedly improving endothelial functions.


Assuntos
Apoptose , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Estresse Oxidativo , Receptor B2 da Bradicinina/metabolismo , Receptores de Dopamina D2/metabolismo , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Bradicinina/farmacologia , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Antagonistas dos Receptores de Dopamina D2/farmacologia , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Inflamação/patologia , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptor B2 da Bradicinina/agonistas , Receptores de Dopamina D2/agonistas , Transdução de Sinais/efeitos dos fármacos
13.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 2957-2971, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29894755

RESUMO

Phospholipase A2 is a known aggravator of inflammation and deteriorates neurological outcomes after traumatic brain injury (TBI), however the exact inflammatory mechanisms remain unknown. This study investigated the role of bradykinin and its receptor, which are known initial mediators within inflammation activation, as well as the mechanisms of the cytosolic phospholipase A2 (cPLA2)-related inflammatory responses after TBI. We found that cPLA2 and bradykinin B2 receptor were upregulated after a TBI. Rats treated with the bradykinin B2 receptor inhibitor LF 16-0687 exhibited significantly less cPLA2 expression and related inflammatory responses in the brain cortex after sustaining a controlled cortical impact (CCI) injury. Both the cPLA2 inhibitor and the LF16-0687 improved CCI rat outcomes by decreasing neuron death and reducing brain edema. The following TBI model utilized both primary astrocytes and primary neurons in order to gain further understanding of the inflammation mechanisms of the B2 bradykinin receptor and the cPLA2 in the central nervous system. There was a stronger reaction from the astrocytes as well as a protective effect of LF16-0687 after the stretch injury and bradykinin treatment. The protein kinase C pathway was thought to be involved in the B2 bradykinin receptor as well as the cPLA2-related inflammatory responses. Rottlerin, a Protein Kinase C (PKC) δ inhibitor, decreased the activity of the cPLA2 activity post-injury, and LF16-0687 suppressed both the PKC pathway and the cPLA2 activity within the astrocytes. These results indicated that the bradykinin B2 receptor-mediated pathway is involved in the cPLA2-related inflammatory response from the PKC pathway.


Assuntos
Bradicinina/metabolismo , Lesões Encefálicas Traumáticas/patologia , Inflamação/patologia , Fosfolipases A2 Citosólicas/metabolismo , Receptor B2 da Bradicinina/metabolismo , Acetofenonas/farmacologia , Adulto , Idoso , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Benzopiranos/farmacologia , Bradicinina/administração & dosagem , Bradicinina/sangue , Bradicinina/líquido cefalorraquidiano , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/etiologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Epilepsia/líquido cefalorraquidiano , Epilepsia/patologia , Feminino , Humanos , Inflamação/sangue , Inflamação/líquido cefalorraquidiano , Inflamação/etiologia , Masculino , Pessoa de Meia-Idade , Quinolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima , Adulto Jovem
14.
Curr Neurovasc Res ; 15(2): 138-144, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29804533

RESUMO

BACKGROUND: Kinins are pro-inflammatory peptides that mediate numerous vascular and pain responses in tissue injury. Kinins exert their biological functions via two G-protein-coupled receptors: Bradykinin 1 Receptor (B1R) and Bradykinin 2 Receptor (B2R). We previously demonstrated the up-regulation of B2R after Hypoxia/Reoxygenation (H/R) injury in primary cultured cortical neurons. However, the role of B2R in inflammasome-induced pyroptosis remains unknown. METHODS: We induced H/R neuronal injury in primary cultured cortical neurons harvested from embryonic day 17 brains. Next, we examined the neuroprotective function of B2R in H/R-induced neuronal apoptosis or necrosis using an annexin V FITC/Propidium Iodide (PI) double-staining technique. The pyroptosis signaling cascade, including caspase-1, IL-1ß and IL-18 levels and Cleaved Gasdermin D (GSDMD) expression was examined by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting to explore the underlying molecular mechanism. RESULTS: H/R injury significantly increased B2R protein expression (P<0.05) as well as the percentage of early apoptotic and necrotic or late apoptotic neurons as verified by the annexin V FITC/PI flow cytometric analysis. Bradykinin (BK), a specific B2R agonist, caused a significant decrease in apoptotic neuronal death after H/R injury, while HOE140, a specific B2R antagonist, markedly reduced the neuroprotective effect of B2R. Following H/R injury, BK downregulated the caspase-1, IL-1ß and IL-18 levels (P<0.01). In contrast, pretreatment with HOE140 significantly increased caspase-1, IL-1ß, and IL-18 levels (P<0.01). Further analysis revealed that GSDMD, a key executioner of pyroptosis, is a target for B2R-mediated inhibition of neuronal pyroptosis. Cleaved GSDMD expression was significantly inhibited by BK pretreatment and significantly enhanced by HOE140 pretreatment (P<0.01). CONCLUSION: These results indicate that activation of B2R plays an important role in pyroptosis mediated by H/R injury.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Piroptose/fisiologia , Receptor B2 da Bradicinina/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/efeitos dos fármacos , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Caspase 1/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Embrião de Mamíferos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Neurônios , Óxido Nítrico/metabolismo , Piroptose/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptor B2 da Bradicinina/genética , Transdução de Sinais/efeitos dos fármacos
15.
Mol Med Rep ; 17(4): 5878-5886, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29436636

RESUMO

The aim of the present study was to investigate the effects of bradykinin (BK) on an epithelial-mesenchymal transition (EMT) model in retinal pigment epithelium (RPE) cells through exposure to transforming growth factor­ß1 (TGF­ß1). The aim was to improve the effect of BK on proliferative vitreoretinopathy (PVR) progression, and to find a novel method of clinical prevention and treatment for PVR. The morphology of ARPE­19 cells was observed using an inverted phase­contrast microscope. A Cell Counting Kit­8 was used to assess the effects of TGF­ß1 on the proliferation of ARPE­19 cells. Western blotting and immunofluorescence were used to detect the expression levels of the epithelial marker E­cadherin, mesenchymal markers α­smooth muscle actin (SMA) and vimentin, and phosphorylated (p) mothers against decapentaplegic homolog (Smad)3 and Smad7 of the TGF/Smad signaling pathway. Wound healing tests and Transwell assays were performed to detect cell migration ability. Reverse transcription­quantitative polymerase chain reaction (RT­qPCR) analysis was performed to detect the expression levels of pSmad3 and Smad7 in the TGF/Smad signaling pathway. The results revealed that the addition of 10 ng/ml TGF­ß1 resulted in the expression of factors associated with EMT in ARPE­19 cells. BK decreased the expression levels of the mesenchymal markers α­SMA and vimentin, and increased the expression of the epithelial marker E­cadherin. BK decreased cell migration in TGF­ß1­induced EMT. These effects were reversed by HOE­140, a specific BK 2 receptor antagonist. BK significantly downregulated the expression of pSmad3 and upregulated the expression of Smad7 in TGF­ß1­treated ARPE­19 cells, and the protective alterations produced by BK were inhibited by HOE­140. In conclusion, 10 ng/ml TGF­ß1 resulted in EMT in ARPE­19 cells and BK served a negative role in TGF­ß1­induced EMT. BK had effects in TGF­ß1­induced EMT by upregulating the expression of Smad7 and downregulating the expression of pSmad3 in TGF­ß/Smad signaling pathway, indicating that BK may be a novel and effective therapy for PVR.


Assuntos
Bradicinina/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Fator de Crescimento Transformador beta1/farmacologia , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Receptor B2 da Bradicinina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Vitreorretinopatia Proliferativa/etiologia , Vitreorretinopatia Proliferativa/metabolismo , Vitreorretinopatia Proliferativa/patologia
16.
Int J Mol Sci ; 19(2)2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29360776

RESUMO

The identification of components of the kallikrein-kinin system in the vitreous from patients with microvascular retinal diseases suggests that bradykinin (BK) signaling may contribute to pathogenesis of retinal vascular complications. BK receptor 2 (B2R) signaling has been implicated in both pro-inflammatory and pro-angiogenic effects promoted by BK. Here, we investigated the role of BK/B2R signaling in the retinal neovascularization in the oxygen-induced retinopathy (OIR) model. Blockade of B2R signaling by the antagonist fasitibant delayed retinal vascularization in mouse pups, indicating that the retinal endothelium is a target of the BK/B2R system. In the rabbit cornea assay, a model of pathological neoangiogenesis, the B2 agonist kallidin induced vessel sprouting and promoted cornea opacity, a sign of edema and tissue inflammation. In agreement with these results, in the OIR model, a blockade of B2R signaling significantly reduced retinal neovascularization, as determined by the area of retinal tufts, and, in the retinal vessel, it also reduced vascular endothelial growth factor and fibroblast growth factor-2 expression. All together, these findings show that B2R blockade reduces retinal neovascularization and inhibits the expression of proangiogenic and pro-inflammatory cytokines, suggesting that targeting B2R signaling may be an effective strategy for treating ischemic retinopathy.


Assuntos
Estresse Oxidativo , Receptor B2 da Bradicinina/genética , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Neovascularização Retiniana/genética , Animais , Bradicinina/metabolismo , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Córnea/efeitos dos fármacos , Córnea/metabolismo , Córnea/patologia , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Camundongos , Modelos Biológicos , Ornitina/análogos & derivados , Ornitina/farmacologia , Coelhos , Receptor B2 da Bradicinina/metabolismo , Doenças Retinianas/patologia , Neovascularização Retiniana/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia
17.
Mol Neurobiol ; 55(3): 2150-2161, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28283888

RESUMO

Kinin B1 (B1R) and B2 receptors (B2R) and the transient receptor potential vanilloid 4 (TRPV4) channel are known to play a critical role in the peripheral neuropathy induced by paclitaxel (PTX) in rodents. However, the downstream pathways activated by kinin receptors as well as the sensitizers of the TRPV4 channel involved in this process remain unknown. Herein, we investigated whether kinins sensitize TRPV4 channels in order to maintain PTX-induced peripheral neuropathy in mice. The mechanical hyperalgesia induced by bradykinin (BK, a B2R agonist) or des-Arg9-BK (DABK, a B1R agonist) was inhibited by the selective TRPV4 antagonist HC-067047. Additionally, BK was able to sensitize TRPV4, thus contributing to mechanical hyperalgesia. This response was dependent on phospholipase C/protein kinase C (PKC) activation. The selective kinin B1R (des-Arg9-[Leu8]-bradykinin) and B2R (HOE 140) antagonists reduced the mechanical hyperalgesia induced by PTX, with efficacies and time response profiles similar to those observed for the TRPV4 antagonist (HC-067047). Additionally, both kinin receptor antagonists inhibited the overt nociception induced by hypotonic solution in PTX-injected animals. The same animals presented lower PKCε levels in skin and dorsal root ganglion samples. The selective PKCε inhibitor (εV1-2) reduced the hypotonicity-induced overt nociception in PTX-treated mice with the same magnitude observed for the kinin receptor antagonists. These findings suggest that B1R or B2R agonists sensitize TRPV4 channels to induce mechanical hyperalgesia in mice. This mechanism of interaction may contribute to PTX-induced peripheral neuropathy through the activation of PKCε. We suggest these targets represent new opportunities for the development of effective analgesics to treat chronic pain.


Assuntos
Hiperalgesia/metabolismo , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/metabolismo , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Hiperalgesia/etiologia , Masculino , Camundongos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Estimulação Física/efeitos adversos , Receptor B1 da Bradicinina/agonistas , Receptor B2 da Bradicinina/agonistas , Moduladores de Tubulina/toxicidade
18.
Eur J Pain ; 22(3): 501-510, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29034546

RESUMO

BACKGROUND: Endometriosis is a gynaecological disease exhibiting severe pelvic pain, but the mechanism of pain production remains unknown. Bradykinin (BK) is known as an inflammatory mediator, and shows elevated levels in inflammatory diseases such as rheumatoid arthritis. In the present study, we evaluated whether BK is involved in endometriosis-related pain. METHODS: Endometriotic lesions were used for immunohistochemistry. Primary cultures of endometriotic stromal cells (ESC) were stimulated with IL-1ß and/or BK. Quantitative RT-PCR was used to evaluate the mRNA expressions of BK receptors (BKR) and endothelin-1 in ESC. The concentration of endothelin-1 in cystic fluid of endometrioma or non-endometrioma was measured with ELISA. The conditioned medium of ESC stimulated with IL-1ß and/or BK was injected intraplantarly in mice, and evaluated whether pain-related licking behaviour was elicited. RESULTS: The expressions of BK and BKR in endometriotic lesions were observed by immunohistochemistry. In vitro experiments showed that IL-1ß induced BKR-B1 and B2 on ESC. Activation of these receptors by BK significantly induced endothelin-1 expression in ESC, which was negated completely by HOE-140, a BKR-B2 antagonist. The cystic fluid of endometrioma contained higher amount of endothelin-1 compared to non-endometrioma. Intraplantar injection of the conditioned medium of ESC treated with IL-1ß and BK significantly induced licking behaviour, which was suppressed with BQ-123, an endothelin type-A receptor antagonist. CONCLUSIONS: The present study demonstrated the presence and the function of the BK axis in endometriosis, and established a potential new therapy target for endometriosis-related pain. SIGNIFICANCE: The present study demonstrated (1) the presence and the function of the BK system in endometriosis, (2) activation of BKR induced endothelin-1 in endometriotic lesion and (3) blocking endothelin-1 was effective to decrease pain.


Assuntos
Bradicinina/metabolismo , Endometriose/metabolismo , Endotelina-1/metabolismo , Dor/metabolismo , Receptores da Bradicinina/metabolismo , Células Estromais/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Estudos de Casos e Controles , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Líquido Cístico/metabolismo , Endotelina-1/efeitos dos fármacos , Endotelina-1/genética , Endotelina-1/farmacologia , Feminino , Humanos , Interleucina-1beta/farmacologia , Camundongos , Doenças Ovarianas/metabolismo , Doenças Peritoneais/metabolismo , RNA Mensageiro/metabolismo , Receptores da Bradicinina/efeitos dos fármacos , Receptores da Bradicinina/genética , Células Estromais/efeitos dos fármacos
20.
Prog Neuropsychopharmacol Biol Psychiatry ; 79(Pt B): 493-498, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28797641

RESUMO

Reported results have shown that the pentapeptide opiorphin inhibits oligopeptidases that degrade brain neuropeptides, and has analgesic and antidepressant effects in experimental animals, without either tolerance or dependency after chronic administration. In a previous study we showed that opiorphin has a panicolytic-like effect in the dorsal periaqueductal gray (dPAG) electrical stimulation test (EST), mediated by the µ-opioid receptor (MOR). This study further analyzes the mechanism of opiorphin panicolytic action, using the EST and drug injection inside the dPAG. The obtained results showed that blockade of the 5-HT1A receptors with WAY-100635 did not change the escape-impairing effect of opiorphin, and combined injection of sub-effective doses of opiorphin and the 5-HT1A-agonist 8-OH-DPAT did not have a significant anti-escape effect. In contrast, the anti-escape effect of opiorphin was antagonized by pretreatment with the kinin B2 receptor blocker HOE-140, and association of sub-effective doses of opiorphin and bradykinin caused a significant anti-escape effect. The anti-escape effect of bradykinin was not affected by previous administration of WAY-100635. Therefore, the anti-escape effect of opiorphin in the dPAG seems to be mediated by endogenous bradykinin, acting on kinin B2 receptors, which previous results have shown to interact synergistically with MOR in the dPAG to restrain escape in two animal models of panic. Chemical compounds: Opiorphin (PubChem CID: 25195667); WAY100635 maleate salt (PubChem CID: 11957721); 8-OH-DPAT hydrobromide (PubChem CID: 6917794); Bradykinin (PubChem CID: 439201); HOE-140 (Icatibant) (PubChem CID: 6918173).


Assuntos
Oligopeptídeos/farmacologia , Pânico/efeitos dos fármacos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Psicotrópicos/farmacologia , Receptor B2 da Bradicinina/metabolismo , Proteínas e Peptídeos Salivares/farmacologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Bradicinina/administração & dosagem , Bradicinina/análogos & derivados , Bradicinina/metabolismo , Bradicinina/farmacologia , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Modelos Animais de Doenças , Reação de Fuga/efeitos dos fármacos , Reação de Fuga/fisiologia , Masculino , Pânico/fisiologia , Substância Cinzenta Periaquedutal/metabolismo , Piperazinas/farmacologia , Piridinas/farmacologia , Ratos Wistar , Receptor 5-HT1A de Serotonina/metabolismo , Receptores Opioides mu/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...